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ABSTRACT
Finite-dimensional real analytic Lie algebras of vector fields on U2 are completely classified up to

changes of local coordinates.

1. Introduction
In the early days of Lie theory, the problem of classifying Lie algebras of vector
fields under local diffeomorphisms played a central role in the subject, notably
because of the applications to the integration of differential equations admitting
infinitesimal symmetries. Lie himself classified the Lie algebras of vector fields in
one real variable, one complex variable and two complex variables (see Lie
[14,15], Bianchi [2], Campbell [5], Hermann and Ackermann [9]). He also
outlined an ingenious geometric argument which enabled him to list the Lie
algebras of vector fields in two real variables [16, p. 360]. Finally, in [16, pp.
122-178], Lie claimed to have completely classified all Lie algebras of vector
fields in three complex variables, but writes that it would take too much space to
present the complete results. Instead, he gives details in the case of primitive
algebras, and divides the imprimitive cases into three classes, of which only the
first two are treated. It is not known whether the remaining calculations still exist.
The prohibitive complexity of the calculations required to classify the Lie algebras
of vector fields under local diffeomorphisms in more than two variables and the
new directions opened by Elie Cartan's classification of abstract semisimple
complex Lie algebras [6], led the researchers working in Lie theory to turn their
attention to more algebraic problems, such as the ones arising in the repre-
sentation theory of Lie algebras.

Recently, there has been a revival of interest in the local classification problem
for Lie algebras of vector fields, owing notably to their role in geometric control
theory [4], in the theory of systems of non-linear ordinary differential equations
with superposition principles [21,23], and in the so-called algebraic approach to
molecular dynamics [1]. It is this latter connection which motivates the present
work. Specifically, R. Levine [13] posed the problem of classifying all the
second-order time independent Schrodinger operators which are elements of the
universal enveloping algebra of a finite-dimensional Lie algebra g of first-order
differential operators. The solution of Levine's problem requires as a first step the
classification of the Lie algebras of vector fields. In a pair of recent papers [11,12]
two of the present authors gave a complete solution to Levine's problem in the
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one-dimensional case, that is for Schrodinger operators on the real or complex
line. The classification of the Lie algebras of first-order differential operators in
two complex variables, based on Lie's classification of Lie algebras of vector fields
in two complex variables, was also completed recently [8]. In the present paper,
we carry out the first step in the solution of Levine's problem in the
two-dimensional real case by performing a complete classification of the Lie
algebras of vector fields in two real variables. There are twenty-eight equivalence
classes (some of them depending on essential parameters), for which we present a
complete list of normal forms. (As with Lie's classification, this classification
holds at 'generic points' away from singularities.) While the algebras we obtain
correspond to those listed earlier by Lie, we are not aware of any existing attempt
to do the classification using rigorous methods from the modern theory of Lie
algebras. We will apply these results to the classification of Lie algebras of
differential operators in two real variables and the solution to Levine's problem in
subsequent publications.

The classification proceeds according to whether the Lie algebra of vector fields
considered is primitive or imprimitive. In the imprimitive case, the classification is
the same in the real and complex cases, and thus gives rise to twenty
parametrized equivalence classes. (This is also treated in Chapter E of [9].) The
major part of our paper is thus devoted to the case of primitive Lie algebras of
vector fields, for which the results are considerably more complicated in the real
than in the complex case. Indeed, in addition to the three equivalence classes
obtained by Lie in the complex case, we obtain five new equivalence classes of
Lie algebras. These Lie algebras, for which we present normal forms, are
equivalent upon analytic continuation to one of the previous ones under a
complex local diffeomorphism, but not under a real local diffeomorphism. The
complete classification and list of normal forms for all finite-dimensional Lie
algebras of vector fields in 1R2 (our 'Real Gruppenregister', being the counterpart
of Lie's Complex Gruppenregister given in reference [14]) are conveniently
collected together in Table 1 (see § 9 for a detailed explanation).

These results will, we hope, clear up some confusing and contradictory
statements in the literature on this problem. The classical authors, for example,
Lie, Campbell, Bianchi, etc., never really made it clear whether they were
working over the real or the complex numbers, which has led to confusion among
more recent authors. For example, in their translation and commentary on Lie's
paper [9], Hermann and Ackerman assert that the lemma on triangularization of
matrices holds only over the complex numbers [9, p. 296], while the commentary
is clearly aimed at real vector fields. A similar mis-statement occurs in Bluman
and Kumei's recent book on symmetry groups of differential equations [3, p. 129],
where it is falsely asserted that Campbell [5] obtained the classification of vector
fields over U2. Bluman and Kumei go on to use Campbell's complex classification
to state a theorem which does not hold in the real case: that every Lie algebra of
vector fields on the plane contains a two-dimensional subalgebra, a result which
has important consequences for the integrability of ordinary differential equations
using symmetry groups. Interestingly, the only counter-example to Bluman and
Kumei's assertion is the Lie algebra 3o(3, U), which has an action on IR2,
obtained by stereographically projecting its standard action by infinitesimal
rotations on the unit sphere S2; see § 7, and entry 3 in Table 1.
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TABLE 1. Finite-dimensional Lie algebras of vector fields in the real
plane

I. Locally primitive algebras

Generators Structure

1. {p, q, a(xp+yq) + yp-xq}, a^O U K U2

2. {p, xp + yq, (x2 - y2)p + 2xyq} §1(2)
3. {yp - xq, (1 + x2 - y2)p + 2xyq, 2xyp + (1 + y2 - x2)q} §o(3)
4. {/?, q,xp+yq, yp-xq} R2K U2

5. {p,q,xp-yq,yp,xq} §((2)IX(R2

6. {p, q, xp, yp, xq, yq} g((2) K U2

1. {p, q, xp + yq, yp - xq, (x2 - y2)p + 2xyq, §o(3, 1)
2xyp + (y2-x2)q}

8. {p, q, xp, yp, xq, yq, x2p+xyq, xyp + y2q} §1(3)

II. Imprimitive algebras

Generators Structure

9. {p} R
10. {p, xp} f)2
11. {p, xp, x2p} §1(2)
12. {p, q, xp + ayq}, 0<|a-|=£l IR tX R2

13. [p, q, xp,yq} f)2®*>2
14. {p, q, xp, x2p}
15. {p, q, xp, yq, x2p}
16. {p, q, xp, yq, x2p, y2q} §f(2) 0 §[(2) = §o(2, 2)
17. {p + q, xp+yq, x2p + y2q} §[(2)
18. {p, 2xp+yq, x2p + xyq} §r(2)
19. {p, xp, yq,x2p+xyq} gf(2)
20. {q, Ux)q,-,Ux)q),r^\ Rr+1

21. {q, yq, ^(x)q, ..., Ux)q}, r^\ R X R ' + 1

22. {p,iixix)q,...,nAx)q},r&\ UKRr

23. {p, yq, r\,(x)q, ..., r)r(x)q}, r^\ R2X W
24. {p, q, xp + ayq, xq, ..., xrq}, r & 1 ^ K Rr+I

25. {p, q, xq, ..., xr~lq, xp + (ry + xr)q}, r > l R K ( R X R r )
26. {p, q, xp, xq, yq, x2q, ...,xrq},r^\
27. {p, q, 2xp + ryq, xq, x2p + rxyq, x2q..., xrq}, r & 1
28. {p, q, xp, xq, yq, x2p + rxyq, x2q..., xrq}, r & 1

2. Preliminaries

We shall collect in the following section a few definitions and basic results
which will be useful in the rest of the paper. In what follows, Q will denote a real
analytic Lie algebra of vector fields on (an open subset of) U2 and ̂  its associated
local Lie group of transformations (cf. [18,19]).

Given a transformation g e ^ , its derivative at a point P eU2, denoted by
Dg(P), is a linear map

Do(P\- T P2—* T P 2 O "H
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The projective transformation generated by (2.1) will be denoted by

gV(P): P(TPU2)->P(Tg(P)U2), (2.2)

where P(TPR2) denotes the projective space built on TPU2; in other words,

gW{P)-[y] = [Dg(P)'y], forallverPIR2,v*0. (2.3)
The mapping (2.2) is closely related to the notion of first prolongation [3,17,18],
of the transformation g. Indeed, if g = (glt g2), P = (x,y) and

\ = (x,y)eTPU2 (2.4a)
is a non-vertical vector, then the affine coordinate of [v] e IP(7 ÎR2) is given by

y'=y/x, (2.4b)
while that of g(1)(P) • [v] is given by

l=g2,x(x,y)+g2,y(x>yW (25)

gi,x(x>y)+gi,y(x>y)y'
(cf. (2.1)-(2.3)). The first prolongation of g at (x, y, y') is then defined by

pt1)g(x,y,y') = {g(x,y),n (2.5b)

DEFINITION 2.1. A Lie algebra of vector fields g is primitive in an open subset
U c U2 if there is no one-dimensional foliation of U left invariant by the action of
% otherwise, g is imprimitive in U. Equivalently, g is primitive in U if there is no
one-dimensional distribution 2> on U invariant under the action of the maps (2.1)
or (2.2), for all g e ^ . Finally, g is locally primitive if it is primitive in every open
subset UczU2.

A primitive Lie algebra of vector fields may fail to be locally primitive, as
discussed, for instance, in [7]. However, since this paper is concerned with
questions of a local nature, the latter fact will not play an important role here.

DEFINITION 2.2. A point P e U2 will be called generic for the Lie algebra of
vector fields g if the dimension of the linear subspace of TQU2,

is constant for all Q in some neighbourhood of P. Equivalently, P is a generic
point for g if and only if all the orbits of ^ have constant dimension in a
neighbourhood of P.

For real analytic Lie algebras—which are the only ones we shall deal with in
this paper—it is clear that the set of generic points is dense in IR2.

If all the orbits of ^ in an open subset U are two-dimensional, ^ and its Lie
algebra g are said to be transitive in U; otherwise, <& and g are intransitive in U.
A well-known necessary and sufficient condition for g to be transitive in a
neighbourhood of a point P e U2 is that

Q(P) = TPU2. (2.6)

Notice that if a Lie algebra of vector fields g is intransitive, then g is clearly
imprimitive in a neighbourhood of every generic point.
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Let ^pcz^ denote the isotropy subgroup of ̂  at P e IR2, that is,

P}- (2-7)
Its Lie algebra is the isotropy subalgebra of g at P, given by

Q, = {*eg | X(P) = 0}. (2.8)
Since P is fixed by any transformation g e %, it follows that Dg(P) is a linear
transformation of TPU2. This defines an action

o: % x TPU2^ TPU2 (2.9)
of % on TPU2 by linear mappings, that is, a representation of ̂  as a subgroup of
GL(TPR2). The representation (2.9) induces a representation

p : QP x TPM2-> TPU2 (2.10)
of g as a subalgebra of QI(TPU2) in the usual way:

where {g(t)}teU c ^P is the one-parameter subgroup generated by X. Identifying
the tangent space to TPU2 at v with TPU2 itself and the vector field

X = £(*, y)dx + rj(x, y)dy e QP (2.12)
with the map X: (R2-» U2 given by

we obtain the following explicit formula for the representation (2.10):
X'Y = DX(P)-\. (2.13)

In other words, X e QP is represented by the linear map
p(X) = DX(P) e Ql(TPU2). (2.14)

Note that since X*-+ p(X) is a representation, we have
[p{X),p{Y)] = p{[X,Y]), (2.15)

a result that could be checked by a direct calculation using (2.14). Finally, using
as coordinates of v e TPU2 its components (x, y) in the natural basis, we can write
(2.13) as follows:

(2.16)""'dy'
where D, stands for the 'total time derivative' operator:

9 9
Dt = x— + y—. (2.17)

9x 9y
In a completely analogous way, we have an action d of ^P on P(TPU2) by

projective transformations, given by
ge%^>gil\P). (2.18)

As before, this action induces an action p of QP on P(TPU2) by the formula

| _ (g(tr\p) - M>. (2.i9)
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Taking into account (2.5a), we obtain the following explicit expression for the
action (2.19):

X'[y] = (ay'2 + by' + c)^, (2.20)

with (cf. (2.4) and (2.16))

a = -Un b = riy(P)-UP). c = rjx(P). (2.21)
As was to be expected from the analogous fact for g(1)(P), p(X) is closely related
to the first prolongation pr^l)X of the vector field X (cf. [18]); in fact, we have

pr(1)*(x, y,y') = X(x, y) 0 p(X, [v]). (2.22)
In other words, p(X, [v]) is the y' component of p r 0 ^ at (x,y,y'). An
important property of p worth pointing out is that p(QP) is a Lie algebra of vector
fields on P(TPU2) and p is a Lie algebra homomorphism, that is,

[p(X),p(Y)] = p([X,Y]). (2.23)
As before, the latter formula can be checked directly by a straightforward
calculation; it is, of course, equivalent to the following familiar property of the
first prolongation of vector fields:

[pr(1)JVT, pr(1)Y] = pr(1)[AT, Y]. (2.24)
The distinction between primitive and imprimitive algebras plays a key role in

Lie's local classification of Lie algebras of vector fields in C2 [15]. (See also
[2,5,9].) Roughly speaking, the fact that a Lie algebra of vector fields is
imprimitive means that the action on C2 or IR2 of its local group of transforma-
tions can be understood in terms of its action on a cross-section of its invariant
one-dimensional foliation. Since this cross-section has (complex or real) dimen-
sion 1, this explains intuitively why the local classification of the imprimitive
algebras of vector fields in C2 or IR2 can be reduced to the local classification of
Lie algebras of vector fields in C or U. Now, it is well known [15], that in one
dimension there is no difference between the real and the complex classifications:
in either case, the only possible examples of Lie algebras of vector fields are, up
to a local change of variables, the subalgebras of the three-dimensional (real or
complex) projective group. These heuristic considerations strongly suggest that
the classification of imprimitive Lie algebras of vector fields in the plane is the
same in the real and the complex cases. Indeed, this can be rigorously verified by
going through the lengthy, though elementary, calculation found in [15] for the
imprimitive case and checking that it still holds when the coordinates (x, y) in
which the calculation is carried out are assumed to be real instead of complex.
(See also [9].) We thus have the following theorem:

THEOREM 2.3. / / g is an imprimitive Lie algebra of vector fields in an open
subset ofU2, then there are local coordinates (x, y) in U2 in which Q assumes one
of the forms listed in Table l.II.

To finish the local classification of Lie algebras of vector fields in U2, we can
thus restrict ourselves from now on to the class of locally primitive algebras.
Before we start classifying these algebras, however, it is convenient to derive
several criteria for checking primitivity that will be useful in the following
discussion.
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DEFINITION 2.4. We shall say that the action of % (respectively gP) on TPU2 is
reducible if there is a proper (i.e. one-dimensional) linear subspace of TPU2

invariant under % (respectively gP).

PROPOSITION 2.5. Let P be a generic point for a Lie algebra, g, of vector fields in
U2. The following facts are then equivalent:

(1) g is imprimitive in a neighbourhood of P;
(2) the action of % on TPU2 is reducible;
(3) the action of QP on TPU2 is reducible;
(4) the action of (SP on P(TPU2) has at least one fixed point;
(5) p(QP) vanishes at least at one point of P(TPU2).

Proof First of all, it is clear that statements (3) and (5) are the infinitesimal
versions of (2) and (4), respectively, so that it suffices to prove the equivalence of
(1), (2) and (4). Secondly, since the equivalence of (2) and (4) is obvious, we
shall only show here that (1) is equivalent to (2).

(1)=>(2). If g is imprimitive in some neighbourhood U of P, then there is by
definition a one-dimensional distribution 2) invariant under the action of (S. Let

Then L is clearly invariant under the action of ^P, since by the invariance of
under the action of *§ we have

fova\\ge% (2.25)
and

2)(g(P)) = 2)(P) = L, for all g e %, (2.26)

by definition of ^P.
(2)=>(1). Suppose now that there are a generic point PeU2 and a proper

linear subspace L c TPU2 invariant under the action of ^P, that is,

°(g)' v = A(g, v)v, for all ge<$P,\eL. (2.27)
If ^ is intransitive on a neighbourhood of P, we have finished, by the remarks
following Definition 2.2. Otherwise, let U be an open neighbourhood of P on
which ^ is transitive. If Q e U, there is at least one transformation gQe^ such
that

8Q(P) = Q- (2-28)
We can then define a one-dimensional distribution 2) on U by setting

L. (2.29)
To verify that 2) is well defined, we have to check that the right-hand side of the
latter formula does not depend on the choice of the transformation gQ satisfying
(2.28). But this is easy, since if heW satisfies h{P) = Q then

h=gQgP, (2.30)
with gP e %. We then have

Dh(P) • L = DgQ(P)DgP(P) • L
= DgQ(P)(o(gP) • L) = DgQ(P) • L, (2.31)
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where the last equality is a consequence of the invariance of L under %. Finally,
the fact that the distribution 2 we have just defined is invariant under the action
of $P is also straightforward, since we have

Dg(Q) • 3>(Q) - Dg{Q)DgQ{P) • L = D{g°gQ){P) • L
= ®((80gQ)(P)) = ®(g(Q)), for all ̂ e » . (2.32)

This completes the proof of the proposition.

COROLLARY 2.6. / / there is a generic point P e U2 such that o(^P) is the full
projective group of P(TPU2), then g is primitive in an open neighbourhood of P.

Proof. Indeed, since the projective group has obviously no fixed points, the
result follows from the equivalence between statements (1) and (4) of Proposition
2.5.

At this point, we would like to remark that Proposition 2.5 and Corollary 2.6
are also valid in the complex case. On the other hand, whereas the converse of
Corollary 2.6 is true in the complex case [2, § 147], it is generally false in the real
one. This makes a crucial difference, since the whole classical classification of the
primitive algebras in C2 depends critically on the validity of the converse of the
latter corollary. Although the reason of why Corollary 2.6 does not hold in the
real case will become apparent in the next section, it is appropriate to illustrate it
here by means of a very simple example.

EXAMPLE 2.7. Let g be the Lie algebra of the group <& of dilations and motions
of U2, generated by the vector fields

dx, dy, xdx+ydy, ydx-xdy. (2.33)
In this example, it is clear that every point is generic, the dimension of g(P) being
equal to 2 everywhere. Also, it is plain that g is locally primitive, since for every
PeU2 the subgroup of rotations around P acts irreducibly on TPU2. However,
o(^P) is never the full projective group, since it is only one-dimensional for every
PeU2. Indeed, the isotropy subgroup of a point P is the two-dimensional
subgroup generated by the rotations and the dilations around that point;
however, when we consider the action of this subgroup on the projective space
P(TPU2), it is obvious that the dilations around P act as the identity
transformation.

On the other hand, if we regard (2.33) as a Lie algebra of vector fields in the
complex plane, the situation is totally different. Indeed, in this case (2.33) is no
longer primitive, since it can be easily checked that the family of parallel lines

y = ix + c, with c e C, (2.34)
gives a one-dimensional foliation invariant under dilations and motions of C2.

3. Locally primitive algebras: generalities
Lie proved in [15] that there are exactly the following three local equivalence

classes of (locally) primitive Lie algebras of vector fields in C2, up to changes of
analytic coordinates:

span{p, q, xp, yp, xq, yq, x2p + xyq, xyp + y2q}, (3.1a)
span{p, q, xp, yp, xq, yq}, (3.1b)
span{p, q, xp -yq, xq, yp}, (3.1c)
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where we are using the convenient classical notation
p = dx, q = dy> (3.2)

and where spanfA^,..., Xn) denotes the Lie algebra with basis {Xu ..., Xn). The
corresponding Lie groups are the full projective group, the general affine group,
and the special affine group, respectively.

Of course, if (x, v) are real instead of complex coordinates, the algebras (3.1)
are examples of locally primitive Lie algebras of vector fields in the real plane.
On the other hand, from Example 2.7 we know that the Lie algebras (3.1) do not
exhaust all the possible equivalence classes of locally primitive Lie algebras in U2.
In this section we shall start the classification of locally primitive Lie algebras of
vector fields in the real plane by studying their linearization at a generic point, as
a first step for finding all the local equivalence classes of these algebras not
already included in the list (3.1).

PROPOSITION 3.1. A Lie algebra Q of vector fields in U2 is locally equivalent
under a real analytic change of coordinates to one of the algebras (3.1) if and only
if there is a generic point P such that

= 3. (3.3)

Proof. First of all, it can be readily checked that for any of the Lie algebras
(3.1), p(Qp) is three-dimensional for all PeIR2, in agreement with the remarks
following Corollary 2.6. Conversely, if p(Qp) is three-dimensional then g is
primitive in a neighbourhood of P by Corollary 2.6. Moreover, it can be shown
that when (3.3) is satisfied, Lie's calculations for the complex primitive case (cf.
[15, pp. 72-87; 2, pp. 388-400]) carry over without modification to the real
primitive case.

PROPOSITION 3.2. If Q is a locally primitive Lie algebra of vector fields in U2 not
locally equivalent under a real analytic change of coordinates to one of the algebras
(3.1), then

dimp(g,>) = l (3.4)
at every generic point P.

Proof. By the previous proposition, all we have to do is to check that p(Qp)
cannot be zero- or two-dimensional at a generic point P. The proof of this simply
consists of an elementary case-by-case analysis.

First of all, it is clear that p(QP) cannot be zero at a generic point P, since
otherwise statement (5) of Proposition 2.5 would be trivially satisfied, and
therefore g would be imprimitive in a neighbourhood of such a point P.

Assume, therefore, that p(QP) is two-dimensional at a generic point P, and let

U = (ay'2 + by' + c)-^7, V = {ay'2 + p>' + y)^-, (3.5)

be a basis of p{QP). We shall then show that the vector fields (3.5) must
necessarily have a common zero, which by the equivalence of statements (1) and
(5) of Proposition 2.5 would again imply that g is imprimitive in a neighbourhood
of P.
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To begin with, it is clear that we can assume without loss of generality that
c = 0, replacing, if necessary, U by a suitable linear combination of U and V.
Suppose first that

( i )* = 0.
We can then let b = 1, j8 = 0 without loss of generality, and hence

[U,V] = (ay'2-Y)^;. (3.6)
dy

The right-hand side of (3.7) is a linear combination of U and V if and only if
ay = 0, that is, if either

or
V-± (3.7b)

In the first instance, both U and V vanish at the horizontal line element (y' =0).
In the second one, changing coordinates in P(TPU2) by setting

*' = 1//, (3.8)

we easily check that

which vanish simultaneously at the vertical line element x' = 0.
Finally, suppose that
(ii) a ± 0.

In this case, we can take a = \, a = 0. If y = 0, U and V both vanish at y' = 0. On
the other hand, if y^O, we can further normalize V by setting y = 1, and we
have

[U,V) = -(py'2 + 2y' + b)1?1. (3.10)
dy

The right-hand side of the latter equation is a linear combination of U and V if
and only if

6/8 = 1, (3.11)
that is, if and only if (up to immaterial constant factors)

U = (y'2 + by')^, V^{y' + b)-^, (3.12)

which vanish simultaneously at y' = — b. This completes the proof of the
proposition.

It should now be clear why the converse of Corollary 2.6 is true in the complex
case. Indeed, if p(QP) is generated by only one vector field, then it necessarily has
a zero in the complex case, by (2.20) and the Fundamental Theorem of Algebra.
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The equivalence between statements (1) and (5) of Proposition 2.5 would then
imply that g is imprimitive in a neighbourhood of P.

Our next step shall be to take advantage of the previous proposition to
determine the forms, up to terms of order 2 or higher, of all locally primitive Lie
algebras of vector fields in 1R2 not equivalent to one of the algebras (3.1). To this
end, we introduce the notion of the order of a vector field at a point, which will
play an important role in all that follows:

DEFINITION 3.3. If A" is a vector field real analytic at P = (a, b) e U2, we shall
say that X is of order greater than or equal to k at P if

X = o((\x-a\ + \y-b\)k-1), (3.13a)
that is,

lim

In the latter formula, we assume for convenience that (x, y) are the standard
Cartesian coordinates of IR2 and X(x, y) is the mapping [R2—»IR2 naturally
associated to X, as explained in the previous section. However, it is not difficult
to show that the above definition is actually independent of the (real analytic)
coordinates used around P. In particular, it is no loss of generality to assume that
the coordinates of P are (0,0), as we shall do from now on.

If P is a generic point for a real analytic Lie algebra of vector fields g in U2, let
us define the sets

Qk
P = {X e g| * is of order at least k at P} (3.14)

for k 5= 0. In particular,

Q°p=Q> QP=QP (3.15)

and we also have
gy

P c g£, for all / 2= k. (3.16)

Moreover, from the equations

[at, fl£] cr g'/*"1 (j2 + k2>0), (3.17)

it follows that QJ
P is a subalgebra of g for all /, and that q/P is an ideal of gji for all

Thus, (3.14) and (3.17) define a filtration

of g. Since QP is an ideal of qP, the quotient QP/Q2
P is a Lie algebra, with Lie

bracket
[X + Q2

P> Y + Q2
P] = [X, Y] + Q2

P, for all X, Y e qP. (3.19)

We shall call

^P(Q) = QP/QP (3.20)

the linear part of g at P, since it can be identified to the space obtained by taking
the vector fields in g whose order at P is 1 and discarding the terms of order 2 or
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higher. To make this a little more precise, let J£ be the Lie algebra of linear
vector fields inU2, and define a mapping

<p: 2p(Q)^£
by

q)(X) = linear part of X at P. (3.21)
For instance, if P = (0, 0) and X = (x - y2)p + sin(2>>)<7 then

<p(X)=xp
It is then easy to show that ££P(Q) is isomorphic to the subalgebra of linear vector
fields (p(2P(Q)).

We shall now compute SSP(Q) for all locally primitive Lie algebras not
equivalent to one of the algebras (3.1) under a real analytic change of local
coordinates. To this end, notice that by (2.21) we have

= 0. (3.22)
The map p thus passes to the quotient, i.e. we can define a map (also called p)

p: 2p(Q)^p(QP) (3.23a)
by setting

p(X + Q2
P) = p(X). (3.23b)

By elementary linear algebra,
dim &P(Q) = dim ker p + dim p(Qp) = dim ker p + 1, (3-24)

where the last equality is a consequence of Proposition 3.2. Finally, suppose that
X +Q2

Pe ker p. (3.25)
By (2.21), this implies that

!„(/>) = i?,(P) = 0, UP) = Vy(P) (3.26)
and therefore X is of the form

X = k(xp+yq) + ..., (3.27)
where of course A = %X(P) and the dots stand for terms of order 2 or higher at P.
We thus see that kerp is either zero- or one-dimensional. We have thus proved
the following:

PROPOSITION 3.4. If Q is a locally primitive Lie algebra of vector fields in U2 not
equivalent to an algebra of type (3.1), then its linear part ifp(g) at a generic point
P is either one- or two-dimensional. Moreover, 3?P(Q) is two-dimensional if and
only if Q contains a vector field agreeing with xp + yq up to terms of order 2 or
higher at P.

To conclude this section, we are going to find normal forms for £P(Q) when, as
before, Q is a locally primitive algebra of vector fields not locally equivalent to
any of the algebras (3.1). According to the previous proposition, there are two
cases to consider:

(i)
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In this case, let X be the generator of ^P(Q), and consider the linear part of X,

XL = cp(X) = (ax + by)p + (ex + dy)q (3.28)

(cf. (3.21)). By (2.21),

p(X) = [c + (d-a)y'- by'2] -?-„ (3.29)
dy

and since p(QP) is one-dimensional by Proposition 3.2, it must be generated by
(3.29). But, by the equivalence between (1) and (5) in Proposition 2.5, the latter
vector field must have no zeros in P(TPU2), which is only possible if

(d-a)2 + 4bc<0. (3.30)
Calling

-(a b\ (3.31)

the matrix of the coefficients of the linear vector field (3.28), the latter equality is
equivalent to

( t M ) 2 < 4 d e t A (3.32)

Thus the real canonical form of A is

J. (3.33)
It is then immediate to check that if we perform the linear change of coordinates

(x,y) = M-(x,y) (3.34)

then we obtain

Id d\ I d d\hta) (3'35)
where the dots represent terms of order higher than the first in (x, y) and we
have suppressed the irrelevant factor A. Since the order of a vector field at a point
P does not depend on the real analytic coordinates chosen around P, the new
coordinates (x, y) are as good as the old ones. We have thus shown that when
££P(Q) is one-dimensional there is a coordinate system around P in which the
generator of ££P(Q) assumes the simple form

X = a(xp+yq) + (yp-xq) + .... (3.36)
(ii) dimi?p(g) = 2.

First of all, we know from Proposition 3.4 that one of the generators of S£P{%) is
of the form

Y = xp+yq + ..., (3.37)
where the dots stand for terms of order higher than 1 at P = (0, 0). Let X be the
second generator, with (p(X) given again by (3.28). Since

(3.38)
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we see that p(Q/>) is again generated by p(X). Hence, exactly as in the previous
case, there is a linear change of coordinates (3.34) under which X assumes the
form (3.35). On the other hand, it is plain that any linear change of coordinates
will turn (3.37) into

y - i | + , ± + ..., (3.39)

where as usual the dots stand for terms of order higher than 1 in (x, y). Choosing
Y and X - ocY as the new basis of S6P{ci) and dropping the oyerbars, we see that
in this case ££P(Q) is generated by the vector fields

xp+yq +..., yp-xq + .... (3.40)

REMARK 3.5. The results we have found so far allow us to give a complete
description of g up to terms of order 2 or higher at a generic point P. Before
doing this, it is perhaps necessary to point out that the set

Q-QP+1 (3.41)

of all vector fields in g which are of order k or less at a generic point P is
obviously not a linear space. However, it is natural to regard two elements of the
previous set as equivalent when they differ by a vector field in g whose order at P
is greater than or equal to k + 1. The quotient space obtained from (3.41) in this
way is the linear space g/g£+1. It is customary in the classical literature to identify
both spaces, and thus, for example, to speak of a basis of (3.41), when what is
really meant is a set of vector fields in (3.41) whose equivalence classes form a
basis of g/g£+1. Since this common practice is almost always harmless and
notationally quite convenient, we shall adopt it in what follows.

THEOREM 3.6. If § is a locally primitive Lie algebra of vector fields in U2 not
locally equivalent under a real analytic change of coordinates to one of the algebras
(3.1), we can choose local coordinates around a point P generic for g such that
Q- QP is generated either by

p + ..., <? + ..., a(xp+yq) + (yp-xq) + ... (3.42)
or by

p + ..., q + ..., xp+yq + ..., yp-xq + .... (3.43)
(In the latter formulas, the dots stand for terms of higher order at x = y = 0 than
those preceding them; as usual, we have assumed that P has coordinates (0,0).)

Proof First of all, notice that by (2.6), g contains two vector fields linearly
independent at P. By taking suitable linear combinations of these two vector
fields, we see that g contains the vector fields

p + ..., q + - , (3.44)
where the dots are terms of order 1 or higher at P. The latter vector fields are a
basis for the vector fields of order zero at P, that is (cf. Remark 3.5 above), their
equivalence classes modulo QP are a basis for g/gP. Finally, since

9/92p~ (fl/gp) e (gP/gJ) = (g/g,,) 0 ^ , (g) , (3.45)
the theorem follows from the results about i?p(g) obtained above.
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4. Non-semisimple locally primitive algebras
We shall determine in this section all the equivalence classes of locally primitive

non-semisimple Lie algebras of vector fields in U2 not already included in Lie's
list (3.1). The fundamental theorem needed to carry out this classification is the
following:

THEOREM 4.1 [7]. If Q is a non-semisimple locally primitive Lie algebra of vector
fields in U2, and P is a generic point for g, then there exists a two-dimensional
abelian ideal a of g such that:

(i) G = g P © a ;
(ii) QP acts faithfully and irreducibly on a, that is,

(1) ifXeqp and [X, a] = 0, then X = 0,
(2) if Yea and [X, Y] = X{X)Y for all X e QP, then Y = 0.

We are now ready to classify all non-semisimple locally primitive Lie algebras
of vector fields in IR2:

THEOREM 4.2. Let Q be a non-semisimple locally primitive Lie algebra of vector
fields in U2 not locally equivalent to one of the algebras (3.1). Then there are local
coordinates (x, y) in which either

(i) g = span{p, q, a(xp + yq) + yp - xq) (4.1)
for some a eU, or

(ii) g = span{p, q, xp+yq, yp-xq}. (4.2)

Proof. To begin with, let P be a generic point for g, and let us choose
coordinates such that P = (0, 0). By the previous theorem,

, (4.3)
where a is an abelian ideal of g. By the transitivity of g around P we know (cf.
(2.6)) that

g/g/> = (R2, (4.4)
from which we deduce that

dim a = dim g/ gP = 2. (4.5)
Moreover, from (4.3) and (2.6) it also follows that

dim a(P) = dim g(P) = 2. (4.6)
From (4.5), (4.6) and the fact that a is abelian, we can choose local coordinates
around P such that P = (0, 0) and

a = span{p, q). (4.7)
We now claim that

92p={0}. (4.8)
Indeed, since a is an ideal of g, we must have [g2*, a]c=a, and from (3.17),
[Q2

P, a] <= QP. Hence
2 = {0}, (4.9)
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from which (4.8) follows using Part (ii)(l) of the previous theorem. From this fact
and Theorem 3.6, we can conclude that g is spanned in a neighbourhood of P
either by

p, q, a(xp + yq) + yp - xq + U (4.10)
for some a e U, or by

p, q, xp+yq + D, yp-xq + R, (4.11)
where U, D and R are vector fields of order 2 or greater at (0,0). (Notice that the
change of variables used in Theorem 3.6 to bring QP to its canonical form (3.42)
or (3.43) is linear, and therefore does not change (4.7).) Imposing now the
condition that span{p, q) is an ideal of Q, we easily obtain that

U = D = R=0. (4.12)
Finally, we have already checked in § 2 (cf. Example 2.7) that the Lie algebra

(4.2) is indeed locally primitive. For the algebras of the form (4.1), it suffices to
notice that the action of QP on TPU2 is obviously given by multiplication by the
matrix

a 1
- 1 a.

for all P eU2. Since this matrix has no real eigenvalues, Proposition 2.5 implies
that (4.1) is locally primitive.

Since the algebra (4.1) with parameter —a is related to the one with parameter
a by the change of coordinates

(x, y)>-+(—x, y), (4.14)
we can restrict a in (4.1) to assume only non-negative values. If we do this, then
no two Lie algebras of the type (4.1) are equivalent under a local change of
variables. Indeed, suppose that (4.1) is transformed into the Lie algebra

span{3u, dv, fi(udu + vdv) + vdu - udv} (4.15)
by a local change of variables

(u, v) = 4>(x, y). (4.16)
Letting

0(0, 0) = (a, b) (4.17)
be the (u, u)-coordinates of the point P, we can immediately check that the
isotropy algebra of this point is generated by the vector field

P(&u + vdv) + Vdu ~ |S«, (4.18)
where % = u — a, r\ = v — b. Since both (4.18) and a(xp + yq) +yp —xq generate
the isotropy subalgebra QP) we must have

P(%du + V^v) + vdu ~ %dv = k[a(xp + yq) +yp — xq] (4.19)
for some A=£0. Now, the action of (4.18) on TPU2 is given by the matrix

P 1 V (4.20)
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from (4.13), (4.16) and (4.19) we then easily obtain

with
M = D3>(0, 0). (4.22)

In particular, equating the trace and determinant of both sides of (4.21) gives the
following system of equations:

Eliminating the unknown quantity A among these equations yields

a2 = p 2 , (4.24)

which establishes our claim.

5. Semisimple locally primitive algebras

To finish our classification of Lie algebras of vector fields in the real plane up to
local changes of coordinates, we only have to deal with the semisimple locally
primitive algebras. To this end, we shall need a few preliminary definitions and
basic results. In the rest of this section, g will always denote a locally primitive
semisimple Lie algebra of vector fields in 1R2.

Let

K(X, Y) = tr(ad X • ad Y) (5.1)

denote the Killing-Cartan bilinear form on g, where ad X: g—> g is defined as

SL6X = [X, •]. (5.2)

It is well known [10] that g is semisimple if and only if K is non-degenerate, that
is,

K{X, Y) = 0 for all Y e g <£> X = 0. (5.3)

LEMMA 5.1. For every generic point P we have

Ql={0}. (5.4)

Proof. If A e g and B e Q3
P, we have from (3.17) that

adfl.gJ.c8J?-2, (5.5)

and therefore, applying (3.17) again, that

(adi4-adfl)-g'pC9^+1. (5.6)

Now, since

9 = ©9WQ'/> + \ (5.7)
ysso

we can construct a basis of g by adding the bases for each of the linear subspaces
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Q/P/Q'P1. Working in such a basis, it is clear that (5.6) implies that

tr(ad/4-adfl) = 0, (5.8)

or equivalently

K(Q,B) = 0. (5.9)

The lemma then follows from the non-degeneracy of K.

PROPOSITION 5.2. Qp is abelian at every generic point P.

Proof. The proof is again a simple consequence of (3.17). Indeed,

[Q2
P, QP)C:QP={0}, (5.10)

where the last equality follows from the previous lemma.

PROPOSITION 5.3. If P is a generic point for g, we have

d i m g ^ 2 . (5.11)

Proof The orthogonal complement Q2
P

X of Qp with respect to K is given by

Qy = {XeQ\ K{X, g2
P) = 0}. (5.12)

By an argument analogous to that of Lemma 5.1, it is easy to show that

QPCZQ2
P\ (5.13)

Since K is non-degenerate, we have
dim g = dim Q2

P + dim Qp'x, (5.14)
whence

dim Qp = dim g — dim Q2
P

X

=£ dim g - dim gP

>R2 = 2. (5.15)

The above results put very stringent restrictions on the dimension of g. Indeed,
from (5.4), it follows that

dim g = dim Q/QP + dim gP/gp + dim Q2
P

= 2 + dim QP/Q2
P + dim Qp. (5.16)

But Theorem 3.6 implies that

P / 8 j ^ 2 , (5.17)
when g is not equivalent to an algebra in the list (3.1); combining this with (5.11)
and (5.16) yields the following bounds for dim g:

^ 6 . (5.18)
Upon complexification, we obtain

c=s6. (5.19)



LIE ALGEBRAS OF VECTOR FIELDS 357

If g is semisimple, then so will be its complexification gc; from this and the
well-known classification of abstract complex semisimple Lie algebras [10], it
follows that either

8 c «i4i»3l(2 ,C) (5.20)
or

Qc^A1®Al^§o(4,C). (5.21)

Since Ax has only two real forms, namely §1(2, R) and §o(3, R) (=§u(2)),
combining the previous results we obtain:

THEOREM 5.4. If Q is a semisimple locally primitive Lie algebra of vector fields
in U2 not equivalent to one of the algebras (3.1), then we have the following
alternatives:

(i) 8«3l(2,R); (5.22)
(ii) fl«8o(3,R); (5.23)
(iii) gc~§o(4,C) (r>dimRg = 6). (5.24)
In the first two cases,

Q2P={0} (5.25)
at every generic point P, whereas in the third case qj, is abelian and

£ = 2. (5.26)

In the next sections, we shall determine all the equivalence classes of
semisimple locally primitive Lie algebras of vector fields in R2 through a
case-by-case analysis of the three possibilities (5.22)-(5.24).

6. Locally primitive algebras isomorphic to §1(2, R)

We shall determine in this section all the equivalence classes of semisimple
locally primitive algebras of vector fields in the real plane isomorphic to §1(2, R).
To begin with, let {Xo, X+, X_) be a basis of g satisfying the standard §1(2, R)
commutation relations

[X0,X±] = ±X±, [X+,X.] = -2X0. (6.1)

Let us choose local coordinates (x, y) such that

X_=p (6.2)
in a neighbourhood of (0,0). If we impose the condition [Xo, XJ\ = —X_, it
immediately follows that Xo must be of the form

X0 = (x + Z(y))p + r,(y)q. (6.3)

The latter expression can be simplified without altering (6.2) by means of a
change of variables of the form

Ci=x + cp(y),
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Indeed, if cp(y) and ip(y) solve the ordinary differential equations

I ' * ' " * ' (6-5)

then (6.2) and (6.3) are transformed into
AT_ = p , Xo = xp + yq. (6.6)

Therefore we may set
S = 0, ri=y (6.7)

by relabelling the variables x and y. Imposing now the condition [X+, A""_] =
—2XQ, we readily obtain

X+ = (x2p + Ixyq) + y(y)p + fty)q. (6.8)
Finally, using the remaining commutation relation in (6.1) we arrive at the
following system of ordinary differential equations in the unknown functions f$(y)
and y(y):

yp'-2P=yy'-2y = 0, (6.9)
whence

p = 2ciy
2, y = c2y2. (6.10)

Thus we have
X+ = (x2 + c2y2)p + 2y(x + Cly)q. (6.11)

A final change of variables

x=x + c1y, y = \c\ + c2\h (6.12)
changes (6.11) into

X+ = (x2±f)p+2xyq (6.13)
without affecting Xo or Ar_. This proves that there are at most two equivalence
classes of locally primitive Lie algebras of vector fields in (R2 isomorphic to
§t(2, U), spanned by the vector fields

P, xp + yq, (x2 - y2)p + Ixyq (6.14)
or

p, xp + yq, (x2 + y2)p + 2xyq. (6.15)
Of these two Lie algebras of vector fields, only the first one is locally primitive,

as is easily verified using Proposition 2.5. Indeed, it is trivial to check that for
both (6.14) and (6.15) all points are generic except those on the x-axis. A trivial
calculation shows that the isotropy subalgebra of (6.14)-(6.15) at a generic point
P = (a, b) {b =£ 0) is generated by the vector field

-j - (X+ - 2aX0 + X_) = ±r,p + £q, (6.16)

where the '+ ' sign corresponds to (6.15), and % = x — a, rj =y — b. According to
§ 2, the action of (6.16) on TPU2 is given by the matrix

'0 ±1
C o )•
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From this and Proposition 2.5 our assertion clearly follows. Thus we have proved
the following:

THEOREM 6.1. There is, up to local diffeomorphisms, exactly one equivalence
class of locally primitive Lie algebras of vector fields in U2 isomorphic to §((2, U).
A representative of this equivalence class is the Lie algebra given by

span{p, xp +yq, {x2-y2)p + Ixyq).

7. Locally primitive algebras isomorphic to s>o(3, R)

We shall show in this section that there is exactly one equivalence class of
locally primitive Lie algebras of vector fields in 1R2 isomorphic to 3o(3, R). In
addition, we shall find a representative of this equivalence class whose expression
is particularly simple in appropriate local coordinates.

We start by choosing a basis {XX) X2, X3} of g obeying the standard §o(3, IR)
commutation relations, namely

[X1)X2] = X3, [X2,X3] = XU [X3)XX] = X2. (7.1)
As before, we choose local coordinates (8, r) such that, for instance,

X, = de (7.2)
in some open set. It is then easy to see that the commutation relations of Xx with
X2 and X3 imply that the latter vector fields are of the form

X2 = cos 6A(r) + sin 6 B(r),
X3= -sin 6A(r) + cos 6B(r),

with
A{r) = ax{r)de + a2(r)dr,
B(r) = b1(r)de+b2(r)dr. K ' ]

We can simplify the form of the vector fields (7.3) without changing Xx by
performing a change of coordinates of the type

G=d + cp(r), R=f(r). (7.5)

It is readily checked that, under such a change, the vector fields A and B are
transformed into

A(R) = [(flt + (p'a2)cos q)-{bx + <p'b2)s\n <p]d& + (a2cos (p - b2 sin q))f'dR,
B(R) = [(flx + <p'a2)sin cp + {bx + cp'b2)cos (p]d& + (a2 sin q> + b2 cos cp)f'dR.

We can always choose the arbitrary function q>(r) in (7.5) so that the coefficient
of dR in B vanishes. Going back to the old coordinates (6, r), we see that this
amounts to setting

&2 = 0 (7.7)

in (7.4). Computing now the Lie bracket of X2 with X3 we obtain

[X2, X3] = (a2b[ -a\- b2)de -axa2dr, (7.8)

and equating it to Xx = de we finally arrive at the equations

(7.9)
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Rescaling the radial coordinate r, we can set, without loss of generality,

«2W = i( l + r2). (7.10)

With this choice of a2, the complete solution of (7.9) is

I +2cr — r2 2r
^ ) i h ^ b()

2r
( ) , or bl(r) = —2, (7.11)

the singular solution corresponding to c = °°. Finally, let us choose / in equation
(7.5) as

/«-££ or /(,)-£, (7.12)
where, in the first case, y is any of the two (real) roots of the equation

c y 2 - 2 y - c = 0. (7.13)

It is then straightforward to check that X2 and X3 are transformed into

~l)cos 6 d C ' 'X3 = -\{\ + /?2)sin 6 dR + i(R - R~l)cos 6 de.

We thus see that there is exactly one equivalence class of locally primitive Lie
algebras of vector fields in the real plane isomorphic to 3o(3, U), whose basis
elements are given by (7.2)—(7.14) in appropriate local coordinates (6, R). A
simpler expression for the latter generators is obtained by changing back to
cartesian coordinates

x = Rcosd, y = Rsind;

namely, up to irrelevant constant factors,

Xx=xq-yp,
X2 = (l + x2-y2)p + 2xyq, (7.15)
X3 = 2xyp + (l+y2-x2)q.

This proves the following:

THEOREM 7.1. All locally primitive Lie algebras of vector fields in U2

isomorphic to §o(3, U) are equivalent to the Lie algebra spanned by the vector
fields (7.15) under a local change of coordinates.

Note that the vector fields (7.15) have the following simple interpretation: the
Lie algebra §o(3, U) acts on the unit sphere 52(=(R3 by infinitesimal rotations,
with generators

Yx=xdy-ydx,
Y2 = zdx-xd2, (7.16)

The vector fields Xx, X2, X3 are just the images of Yx, Y2, Y3 under the standard
stereographic projection from the north pole (0, 0,1).
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8. Locally primitive algebras with complexification isomorphic to §o(4, C)
The last case to examine in order to complete our classification of Lie algebras

of vector fields in U2 under changes of local coordinates is given by (5.24),
namely that of the six-dimensional algebras whose complexification is isomorphic
to the complex Lie algebra §o(4, C).

From the discussion in § 5, we know that in this case Q2
P is a two-dimensional

abelian subalgebra of g, for every generic point P. We claim that this implies that
there is a generic point Q^P such that

2 2. (8.1)
Indeed, if (8.1) is not satisfied at any generic point Q^P, then there must be a
generic point P'i^P such that Q2

P(Q) is one-dimensional for all Q in some
neighbourhood of P'. If this is the case, the fact that g^ is abelian further implies
that we can choose local coordinates around P' such that Q2

P is generated by the
vector fields

Xx=p, X2 = yp (8.2)
in a neighbourhood of P'. It follows that, if Q = (a,b) is any generic point in a
sufficiently small neighbourhood of P', the isotropy algebra QQ contains the linear
vector field

X2-bX1 = (y-b)p. (8.3)
But the action of this vector field on rGIR2 is reducible, since it is given by the
matrix

0 0

hence g must be locally equivalent to the Lie algebra (3.1b) by Theorem 3.6,
which is clearly impossible since the latter algebra is not semisimple.

Assume, therefore, that (8.1) holds. Since g2* is abelian, this implies that there
are local coordinates (x, y) around the generic point Q^P such that

, q) (8.4)
in a neighbourhood of Q, whose coordinates can be taken as (0,0). From
Theorem 3.6 and Lemma 5.1, it follows that g is generated in a neighbourhood of
(0,0) by the vector fields

p,q,D,R,QA,Q2, (8.5)
where

D = xp + yq + D = Do + D,
R=yp-xq + R=R0 + R, (8.6)
Qi-Qio + Qu for /= 1,2.

In the previous formula, the vector fields £>, R and Qt are of the following orders
at (0,0):

\y\)2), (8.7)
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and Qi0 is a quadratic vector field, that is,
Qi0 = (aiX

2 + 2b(xy + Ciy2)p + (d(x2 + 2e{xy +fty*)q, for i = 1, 2, (8.8)
with ah ...,fi constant. Moreover, from Proposition 5.2 we know that

[Qi,Q2] = 0- (8.9)
At this point, it is convenient to introduce some complex notation. We let

z = x + iy, z =x-iy, (8.10)
and we define the corresponding partial differential operators

dz = h(p~iq), d-z = h{p + iq\ (8.11)
Furthermore, let us introduce the complex vector fields

2 = |(D + iR),

and, similarly,
% = h{D0 + iR0) = zdz,

The Lie brackets of the vector fields (8.5) are completely determined by those of
their complex counterparts

9 d- Q) Q\ 0 Q (Q -IA\
<JZ, <JZ} UJ, oil, <>£, o £ , yo. itj

and conversely. It follows that the vector fields (8.14) are the generators of a
complex Lie algebra, which is nothing but the complexification of g.

Let us now derive the commutation relations of the (complex) Lie algebra
spanned by the vector fields (8.14). In the first place, taking into account (3.17),
(8.7) and (8.13), we readily obtain:

[dz, 2] = dz + o^b + o$ + ̂ 21 + \ix2L, (8.15)
[9Z, 2] = o22 + o2§) + n2£ + Ji2% (8.16)
[dz, 2] = o32 + o33) + ju3£ + ju3a, (8.17)
[dz, 2] = o42 + d42 + ju4£ + ju4Ji, (8.18)

where oh dif fiif p.t are complex constants. From (8.17) and (8.18), upon equating
terms of order 1 at (0,0) we obtain

But

and

We

, from the

the latter

thus have

r^D G) 1 ^ /-r Oft -L pr (

[3£, %] = o4% + d4i
Jacobi identity,

[dz, [dz, %]] =
formulae, we readily infer

C73=C

[dz, %] = (73zdz,

^ 0 = a3z3z

l 0 = o4zdz

-- [dz, [dz, °-
that
r4 = 0.

\d- 5 1-

+ d3zdz,
+ d4zdz.

>o]]

o4zdz.

(8.19a)
(8.19b)

(8.20)

(8.21)

(8.22)
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Taking into account (cf. (8.8)) the fact that

£o(0) = 0 (8.23)

and integrating (8.22), we easily obtain

% = h(o3z2dz + o4z2dz). (8.24)

Replacing the generators 2, and §. by their linear combination

o3£ o4§.

w l ^ l (a25)

and its complex conjugate—which amounts to replacing the generators Qx and Q2
of Q by a linear combination thereof—we can henceforth assume, without loss of
generality, that

% = \z2dz. (8.26)
(Notice that | a 3 | 2 - | 5 4 | 2 #0 , since otherwise 2. and §,, and hence Qx and Q2,
would be linearly dependent.) Using (8.26), we see that it is straightforward to
obtain

[dz, £] = 2> + ju32 + J13% (8.27)

[af,S] = M + M , (8.28)
[%£] = &, (8.29)
[§,2] = 0, (8.30)

and, from (8.9),

[2.,2] = 0. (8.31)
Adding to 3> an appropriate linear combination of 9. and §. (which, again, is
equivalent to adding to D and R certain linear combinations of Qx and Q2) we
easily check that we can replace the commutation relations (8.15) and (8.16) by
the following simpler ones:

[dz, 2] = dz + ox§) + nx£ + fix&, (8.32a)
[dz, 2] = o22 + ii2£ + j&2£ (8.32b)

Applying the Jacobi identity

[d-z, [dz> 2]] = [dz, [dz> SH]], (8.33)
we immediately obtain

&i = <72 = 0, (8.34)

and hence (8.32) further simplifies to

[dx,2] = dx + pi& + jil% (8.35a)
[dz, 2] = P2& + }12± (8.35b)

On the other hand, from the first equation in (8.13) it follows that

[0, 3] = ji52 + j«55, (8.36)
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where ^5 and ju5 are complex constants. Making use of the Jacobi identity
[dz> [2, 2]] = [2, [dz, 2]] + [2, [2, d2]]

and of equations (8.27)-(8.30) and (8.32), we are led to
iU5 = 0. (8.37a)

Taking the complex conjugate of (8.36) we then obtain
fi5=-ji5 = 0, (8.37b)

that is,
[2, S] = 0. (8.38)

Using once more the Jacobi identity and (8.29)-(8.31), we see that
= [% dz]

= [% dz] + fi3% (8.39)
from which we obtain

/i3 = 0. (8.40a)
Similarly, taking the Lie bracket of §. with [dz, 2] we obtain

£3 = 0, (8.40b)
that is,

[dz, £\ = 2. (8.41)
In a completely analogous way, computing the Lie bracket [§., [dz, 2))] we arrive
at

[ds, 2] = 0. (8.42)
Finally, the computation of [2), [dz, 2]] leads to

£i = £2 = 0, (8.43)
from which it follows that

^2 = 0 (8.44)
by applying the Jacobi identity to [dz, [dz, 2]].

For ease of reference, we shall summarize below the commutation relations of
the Lie algebra gc which we have just computed:

[dz, 2] = dz + o)2% (8.45)
[d2, &] = 2, (8.46)
[dz,£] = [d!,2] = 0, (8.47)
[2, £] = £, (8.48)
[2, 2] = [2, 2] = [% 2] = 0. (8.49)

In the latter formulae, we have set
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and we have omitted the commutation relations obtained from the above by
complex conjugation, such as

[dz, 2] = dz + co2&. (8.50)
Equations (8.45)-(8.47), as well as the initial conditions

0 (8.51)
(cf. (8.6)-(8.8)), completely determine the vector fields 2b and Si. In fact,
integrating (8.45)-(8.47) with (8.51) taken into account, one immediately obtains

2 = o)-lsinh((oz)d2, £ = a)-2[cosh(coz) - l]dz, (8.52a)

if co ^ 0, or
2 = zdz, % = \z2dz, (8.52b)

if co = 0.
The Lie algebra spanned by the real and imaginary parts of (8.52a) together

with the translations p and q is actually equivalent, under a local change of
coordinates in U2, to the algebra spanned by p, q, and the real and imaginary
parts of (8.52b). Indeed, let us perform the local change of variables

u = eax-b>cos(bx + ay),
v = eax-bysin(bx + ay), K }

with co = a + ib. In complex notation, (8.53) is simply

w = u + iv = ewz, (8.54)
so that we have

dz = coewzdw = cow 9W, (8.55a)

3>=^-(ewz- e-™)dz = \{w2 - l)dw, (8.55b)
LCO

21=Trf(£?"+e~wz ~2)dz=h>{w2~2w+1)dw- (8-55c)

Thus, the complex change of variables (8.54) maps the vector fields dz and
(8.52a) into linear combinations of the vector fields

dw, wdw, w2dw. (8.56)

It thus follows that the change of variables (8.53) will transform the Lie algebra
generated by the real and imaginary parts of dz and the vector fields (8.52a) into
the Lie algebra generated by the real and imaginary parts of (8.56).

Checking that the latter Lie algebra is indeed locally primitive offers no
difficulty, thanks again to Proposition 2.5. Thus we have shown that all locally
primitive Lie algebras of vector fields in U2 whose complexification is isomorphic
to §o(4, C) are equivalent (under local changes of coordinates) to the Lie algebra
generated by the real and imaginary parts of the vector fields (8.56). Using (8.10)
and (8.11), we find the following explicit formulae for the generators of the latter
Lie algebra:

P, q> xp+yq, yp-xq, (x2-y2)p + 2xyq, 2xyp + (y2 -x 2 )q . (8.57)
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The commutation relations of (8.57) can be easily extracted from (8.45) (with
co = 0). In fact [23], it is well known that the algebra generated by the vector
fields (8.57) is isomorphic to §o(3, 1), the Lie algebra of the Lorentz group of
four-dimensional Minkowski space. Equivalently, it can be shown that (8.57)
generates §f(2, C), when regarded as a Lie algebra over IR. Note that the vector
fields (8.57) generate the restricted conformal algebra in IR2, that is, the
corresponding group action is generated by translations, rotations, dilatations and
inversions. It is the two-dimensional analogue of the full conformal group in three
or more dimensions. (Of course, the full conformal group in the plane (R2 = C is
infinite-dimensional, since any analytic function / : C—»C gives a conformal
transformation away from its critical points.)

As before, we shall finish by summarizing the main results obtained in this
section in the following theorem:

THEOREM 8.1. Every locally primitive Lie algebra of vector fields in U2 whose
complexification is isomorphic to §o(4, C) is equivalent to the Lie algebra
generated by the vector fields (8.57) under a local change of coordinates. In
particular, all such algebras are isomorphic to §o(3, 1).

Interestingly, §o(3, 1) is the only real form of §o(4, C) which can be realized by
a primitive Lie algebra of real vector fields in the plane. On the other hand,
§o(2, 2) is the only real form of §o(4, C) which can be realized by an imprimitive
Lie algebra of real vector fields in the plane. There is a direct geometrical
interpretation of this result. The representation of §o(2, 2) given in entry 16 of
Table 1 reflects the well-known Lie algebra isomorphisms

§o(2, 2) = §1(2, IR) 0 §1(2, IR) = §o(2, 1) 0 §o(2, 1). (8.58)
The quotients of the corresponding Lie group 0(2, 1) by its subgroups come into
play now. In standard notation, §o(2, 1) is spanned by the infinitesimal
hyperbolic rotations Kt around the x'-axes (/ = 1, 2) and the infinitesimal rotation
L3 around the jc3-axis. The quotient 0(2, 1)/G(1), where G(l) is the connected
subgroup generated by K2 + L3, is isomorphic to the upper sheet of a cone (cf.
[21]). The action of 0(2, 1) on this cone has an invariant foliation provided by the
generators of the cone. The action becomes primitive on the one-dimensional
quotient 0(2, 1)/G(2), where G(2) is the connected subgroup generated by
{Ki, K2 + L3}, isomorphic to the affine group on the line. (Alternatively, one
could form the quotient 0(2, 1)/0(1, 1), which is isomorphic to a one-sheeted
hyperboloid [21]. The 0(2, 1) action has two invariant foliations given by the
rulings of the hyperboloid.)

Thus we see that the imprimitive action of §o(2, 2) on IR2 depends crucially on
the decomposition (8.58). None of the other real forms g of §o(4, C) enjoy
decompositions of the form Q = Qi © Q2> such that the action of the correspond-
ing subgroup G, on the two-dimensional homogeneous space Gi/H/, where
H{ a Gj is a closed subgroup, admits an invariant foliation. For example, for the
real form

§o(4, IR)* = §o(2, 1) 0 §o(3, (R),

we see that SO(3, IR) has no invariant foliation on 52 = SO(3, IR)/SO(2, IR), and
such a decomposition would be needed for §o(4, (R)* to act imprimitively on IR2.
Similar arguments hold for the other real forms of §o(4, C).
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9. Concluding remarks

In the previous sections, we have completely classified all (real analytic)
finite-dimensional Lie algebras of vector fields in the real plane under changes of
local coordinates. Apart from the algebras found by Lie in the complex case, we
have found five additional equivalence classes, namely the Lie algebras (4.1),
(4.2), (6.14), (7.15) and (8.57). The complete list of equivalence classes of
finite-dimensional Lie algebras of vector fields in U2 under local changes of
variables is therefore as shown in Table 1 (p. 341).

In Table 1, we have omitted the trivial algebra {0} whose only element is the
zero vector field. The functions 1, ^(x),. . . , %r{x) appearing in Cases 20 and 21
should be linearly independent. The functions i)\{x),..., vM appearing in Cases
22 and 23 are not arbitrary, but must form a basis of solutions for an rth order
homogeneous ordinary linear differential equation with constant coefficients. The
symbol g tx rj indicates the semi-direct product of the Lie algebras g and Ij, where
f) is a g-module. For instance, fj2 = ^ K R is the unique solvable two-dimensional
Lie algebra.

For the locally primitive algebras, there are two maximal algebras, #7 =
§0(3, 1) and # 8 « §1(3, R). Note that algebras #1,2, 3, 4 are all contained in #7,
and we also have the chains of inclusions

I c 4 c 6 c z 8 , I c 5 c 6 c 8 .
As for the structure of these Lie algebras, #2, 3, 7, 8, 11, 16, 17, 18, are the only
semi-simple algebras. The algebras #9, 20 are abelian. The algebras # 1 , 4, 10,
12, 13, 21, 22, 23, 24, 25, 26 are solvable. In Case 10, the nilradical is spanned by
p; in Cases 1, 4, 12, 13, it is spanned by p, q. In Case 21, the nilradical is the
subalgebra of type 20. In Case 22, the nilradical is abelian, spanned by all the
vector fields r]i{x)q, unless all the r/, are polynomials, in which case #22 is
nilpotent, and the vector fields r)i(x)q span the maximal abelian ideal. Similarly,
in Case 23, the nilradical is also spanned by all the vector fields rjj(x)q, unless all
the 7]i are of the form pi{x)e>uc for a single exponent A, in which case the vector
field p + Xyq is also in the nilradical, which is then no longer abelian. Cases 24, 25
and 26 all have non-abelian nilradicals, spanned by p, q, xq, ...,xr~lq, and, in
Cases 24 and 26, also xrq. For the remaining cases, which are neither solvable nor
semi-simple, the Levi decomposition is either explicitly indicated (Cases 5, 15, 27)
or follows immediately from the usual Levi decomposition g[(2) = §[(2) © U of
the general linear algebra (Cases 6, 14, 19, 28). This completes our short
discussion of these Lie algebras.

Finally, we identify some of the particular low-dimensional Lie algebras in our
table with those in the general classification scheme of Patera, Sharp, Winternitz
and Zassenhaus [20] and Turkowski [22]. The algebra f)2 is the same as A2>i in
this classification. Lie algebra #1 is A%n if oc =£0, or A36 if a = 0. Algebras #4, 5,
6 are A4l2, L51, and L6>3, respectively. Finally, algebra #12 is>l£5 if a?^ 1, A3>3
if oc = 1, or A34 if a= —1. All the other algebras in our list are well-known, or
direct sums of well-known ones, or of variable dimension r.
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