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ABsTRACT. This paper surveys recent work on quasi-exactly solvable Schrédinger
operators and Lie algebras of differential operators.

1. INTRODUCTION.

Lie algebraic and Lie group theoretic methods have played a significant role in
the development of quantum mechanics since its inception. In the classical appli-
cations, the Lie group appears as a symmetry group of the Hamiltonian operator,
and the associated representation theory provides an algebraic means for computing
the spectrum. Of particular importance are the exactly solvable problems, such as
the harmonic oscillator or the hydrogen atom, whose point spectrum can be com-
pletely determined using purely algebraic methods. The fundamental concept of a
“spectrum generating algebra” was introduced by Arima and Iachello, [4], [5], to
study nuclear physics, and subsequently, by Tachello, Alhassid, Glirsey, Levine, Wu
and their collaborators, was also successfully applied to molecular dynamics and
spectroscopy, [19], [22], and scattering theory, [1], [2], [3]. The Schrédinger opera-
tors amenable to the algebraic approach assume a “Lie algebraic form”, meaning
that they belong to the universal enveloping algebra of the spectrum generating
algebra. Lie algebraic operators reappeared in the discovery of Turbiner, Shifman,
Ushveridze, and their collaborators, [26], [28], [29], [33], of a new class of physically
significant spectral problems, which they named “quasi-exactly solvable”, having
the property that a (finite) part of the point spectrum can be determined using
purely algebraic methods. This is an immediate consequence of the additional
requirement that the hidden symmetry algebra preserve a finite-dimensional repre-
sentation space consisting of smooth wave functions. In this case, the Hamiltonian
restricts to a linear transformation on the representation space, and hence the asso-
ciated eigenvalues can be computed by purely algebraic methods, meaning matrix
eigenvalue calculations. Finally, one must decide the “normalizability” problem of
whether the resulting “algebraic” eigenfunctions are square integrable and there-
fore represent true bound states of the system. Connections with conformal field
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theory, [15], [25], [27], and the theory of orthogonal polynomials, [30], [31], [32],
lend additional impetus for the study of such problems.

In this paper we will survey recent work done by the authors in the mathematical
study of Lie algebraic and quasi-exactly solvable Schrodinger operators. Our princi-
pal focus has been in the classification of quasi-exactly solvable problems, especially
those of physical importance. The one-dimensional case is relatively easy for two
important reasons. First, there is just a single discrete family of finite-dimensional
(quasi-exactly solvable) Lie algebras of first order differential operators on the line,
which are well-known realizations of the s[(2,R) algebra. Second, every second or-
der differential operator on R can, up to an overall sign, be (locally) mapped to a
Schrodinger operator. The determination of explicit normalizability conditions on
the resulting operators and Lie algebraic coefficients relies on an unusual combi-
nation of elementary asymptotics and classical invariant theory. Therefore, in one
dimension, we can determine a complete list of quasi-exactly solvable potentials
and explicit normalizability conditions.

In higher dimensions, much less is known. Only a few special examples of quasi-
exactly solvable problems in two dimensions have appeared in the literature to
date, [28], all of which are constructed using semi-simple Lie algebras. Complete
lists of finite-dimensional Lie algebras of differential operators are known in two
(complex) dimensions; there are essentially 24 different classes, some depending on
parameters. The quasi-exactly solvable condition imposes a remarkable quantiza-
tion constraint on the cohomology parameters classifying these Lie algebras. This
phenomenon of the “quantization of cohomology” has recently been been given an
algebro-geometric interpretation, [9]. Any of the resulting quasi-exactly solvable
Lie algebras of differential operators can be used to construct new examples of two-
dimensional quasi-exactly solvable spectral problems. An additional complication
is that, in higher dimensions, not every elliptic second order differential operator is
equivalent to a Schrodinger operator (i.e., minus Laplacian plus potential), so not
every Lie algebraic operator can be assigned an immediate physical meaning. The
resulting “closure conditions” are quite complicated to solve, and so the problem of
completely classifying quasi-exactly solvable Schrodinger operators in two dimen-
sions appears to be too difficult to solve in full generality. A variety of interesting
examples are given in [14], and we present a few particular cases of interest here.

2. QUASI-EXACTLY SOLVABLE SCHRODINGER OPERATORS.

Let M denote an open subset of Euclidean space R” with coordinates x =
(z',..., 2™). The time-independent Schrodinger equation for a differential operator
‘H is the eigenvalue problem

Hly] = Ay (1)

In the quantum mechanical interpretation, a (self-adjoint) differential operator H
plays the role of the quantum “Hamiltonian” of the system. A nonzero wave func-
tion () is called normalizable if it is square integrable, i.e., lies in the Hilbert
space L?(R™), and so represents a physical bound state of the quantum mechani-
cal system, the corresponding eigenvalue determining the associated energy level.
While it is of great interest to know the bound states and energy levels of a given
operator, complete explicit lists of eigenvalues and eigenfunctions are known for
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only a handful of classical “exactly solvable” operators, such as the harmonic oscil-
lator. For the vast majority of quantum mechanical problems, the spectrum can,
at best, only be approximated by numerical computation. The quasi-exactly solv-
able systems occupy an important intermediate station, in that a finite part of the
spectrum can be computed by purely algebraic means.

To describe the general form of a quasi-exactly solvable problem, we begin with
a finite-dimensional Lie algebra g spanned by r linearly independent first-order
differential operators

T0=) @) 5o (@), a=1..7, (2)

i=1

whose coefficients €%, 5% are smooth functions of z. The Lie algebra assumption
requires that the commutator between two such operators can be written as a linear
combination of the operators: [T, T% = TT* —T*T* =5 _C¢,T¢, where the C¢,
are the structure constants of the Lie algebra g. Note that each differential operator
is a sum, 7% = v¢+ 7%, of a vector field v¢ = 5 £%9/0z" (which may be zero) and
a multiplication operator n°.

A differential operator is said to be Lie algebraic if it lies in the universal en-
veloping algebra U(g) of the Lie algebra g, meaning that it can be expressed as a
polynomial in the operators 7'®. In particular, a second order differential operator
is Lie algebraic if it can be written as a quadratic combination

—H = Z ey 7T + Z e, T% + ¢y, (3)
ab a

for certain constants c,, ¢4, ¢o. (The minus sign in front of the Hamiltonian is
taken for later convenience.) If some of the operators 7% generating the Lie algebra
are pure multiplication operators, then one could allow higher degree combinations
in (3); however, it is not hard to show that such Lie algebraic operators can always
be re-expressed in a quadratic form, (3), for some possibly larger Lie algebra g, and
so we are not losing any generality with the form (3). Note that the commutator
[T¢,H] of the Hamiltonian with any generator of g, while still of the same Lie
algebraic form, is not in general a multiple of the Hamiltonian H (unless H happens
to be a Casimir for g). Therefore, the “hidden symmetry algebra” g is not a
symmetry algebra in the traditional sense. Lie algebraic operators appeared in the
early work of lachello, Levine, Alhassid, Glursey and collaborators in the algebraic
approach to scattering theory, [1], [2], [22].

The condition of quasi-exact solvability imposes an additional constraint on the
Lie algebra and hence on the type of operators which are allowed. A Lie algebra
of first order differential operators g will be called quasi-ezactly solvable if it pos-
sesses a finite-dimensional representation space (or module) A” C C' consisting of
smooth functions; this means that if € A and T* € g, then T%(¢) € N. A differ-
ential operator H is called quasi-ezactly solvable if it lies in the universal enveloping
algebra of a quasi-exactly solvable Lie algebra of differential operators. Clearly,
the module A is an invariant space for the Hamiltonian M, i.e., H(N) C N, and
hence M restricts to a linear matrix operator on A”. We will call the eigenvalues
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and corresponding eigenfunctions for the restriction H|A algebraic since they can
be computed by algebraic methods for matrix eigenvalue problems. (This does
not mean that these functions are necessarily “algebraic” in the traditional pure
mathematical sense.) Note that the number of such “algebraic” eigenvalues and
eigenfunctions equals the dimension of A. So far we have not imposed any normal-
izability conditions on the algebraic eigenfunctions, but, if they are normalizable,
then the corresponding algebraic eigenvalues give part of the point spectrum of the
differential operator.

It is of great interest to know when a given differential operator is in Lie alge-
braic or quasi-exactly solvable form. There is not, as far as we know, any direct
test on the operator in question that will answer this in general. Consequently, the
best approach to this problem is to effect a complete classification of such operators
under an appropriate notion of equivalence. In order to classify Lie algebras of dif-
ferential operators, and hence Lie algebraic and quasi-exactly solvable Schrodinger
operators, we need to precisely specify the allowable changes of variables.

Definition 1. Two differential operators are equivalent if they can be mapped into
each other by a combination of change of independent variable,

z = p(z), (4)
and “gauge transformation”

H=e%®) .m0 (5)

The transformations (4), (5), have two key properties. First, they respect the
commutator between differential operators, and therefore preserve their Lie alge-
bra structure. Second, they preserve the spectral problem (1) associated with the
differential operator H, so that if ¥(x) is an eigenfunction of H with eigenvalue A,
then the transformed (or “gauged”) function

U(2) = e"@yp(a), where z = ¢&(x), (6)

is the corresponding eigenfunction of H having the same eigenvalue. Therefore this
notion of equivalence is completely adapted to the problem of classifying quasi-
exactly solvable Schrodinger operators. The gauge factor p(x) = €7 in (5) is
not necessarily unitary, i.e., o(x) is not restricted to be purely imaginary, and
hence does not necessarily preserve the normalizability properties of the associated
eigenfunctions. Therefore, the problem of normalizability of the resulting algebraic
wavefunctions must be addressed.

Definition 2. A quasi-exactly solvable Schrodinger operator is called normalizable
if every algebraic eigenfunction is normalizable. An operator is called partially
normalizable if some of the algebraic eigenfunctions are normalizable.

Let us summarize the basic steps that are required in order to obtain a complete
classification of quasi-exactly solvable operators and their algebraic physical states.
1. Classify finite-dimensional Lie algebras of differential operators.
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Determine which Lie algebras are quasi-exactly solvable.

Solve the equivalence problem for differential operators.

Determine normalizability conditions.

Solve the associated matrix eigenvalue problem.

The remainder of this survey will discuss what is now known about these prob-
lems, except the last which is merely an exercise in linear algebra.

Ot = W N

3. EQUIVALENCE OF DIFFERENTIAL OPERATORS.

Consider a second-order linear differential operator

n

M= 3 40 g+ D K@) g ), (7)

i,j=1

defined on an open subset M C R™. We are interested in studying the problem of
when two such operators are equivalent under the combination of change of vari-
ables and gauge transformations (4), (5). Of particular importance is the question
of when H is equivalent to a Schrodinger operator, which we take to mean an op-
erator § = —A + V(z), where A denotes either the flat space Laplacian or, more
generally, the Laplace-Beltrami operator over a curved manifold. (Operators on
Riemannian manifolds with non-zero curvature can be viewed as constrained quan-
tum mechanical systems, e.g., a particle moving on a sphere, [6].) This definition
of Schrodinger operator excludes the introduction of a magnetic field, which, how-
ever, can also be handled by these methods. There is an essential difference between
one-dimensional and higher dimensional spaces in the solution to the equivalence
problem for second order differential operators.

Theorem 3. Let

d? ~ d -
—H_P(a:)@—}—Q(m)E—I—R(x), z €R,
be a second order differential operator such that P(x) > 0. Then the change of
variables

Py)

z =)= (8)

and gauge factor

2P(y)

mmﬂmm”%m{xm”@} (9)

will place the operator H into Schrédinger form

The potential is given by

. 3P —8QP +4Q% ~ 1
V(JJ) = — 16P —_ R+ 5
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where the right hand side is evaluated at * = ¢~ '(z). Moreover, if {(z) is a wave
function in the original coordinates, then

P(&) = p(e™ ! (2) v(e™ ! (7)) (11)
will be the corresponding wave function in the physical (Schrédinger) coordinates.

In higher space dimensions, it is no longer true that every second order differen-
tial operator is locally equivalent to a Schrédinger operator of the form —A 4+ V (z),
where —A is the flat space Laplacian — explicit equivalence conditions were first
found by E. Cotton, [7]. Since the symbol of a linear differential operator is in-
variant under coordinate transformations, we begin by assuming that the operator
is elliptic, meaning that the symmetric matrix g(z) = (gij(x)) determined by
the leading coefficients of —H is positive definite. Owing to the induced trans-
formation rules under the change of variables (7), we interpret the inverse matrix
g(z)=g(x)"t = (gij (z)) as defining a Riemannian metric

Z g;;(z)dz’ ' da? (12)

t,j=1

on the subset M C R™. We will follow the usual tensor convention of raising
and lowering indices with respect to the Riemannian metric (12). We rewrite the
differential operator (7) in a more natural coordinate-independent form

- z": 9V = ANV = A4) +V, (13)

i,j=1

where V; denotes covariant differentiation using the associated Levi-Civita connec-
tion. Physically, A(z) = (4,(x),...,A,(z)) can be thought of as a (generalized)
magnetic vector potential; in view of its transformation properties, we define the
associated magnetic one-form

w = ZAZ-(;E) da’, (14)

(Actually, to qualify as a physical vector potential, A must be purely imaginary and
satisfy the stationary Maxwell equations, but we will not impose this additional
physical constraint in our definition of the mathematical magnetic one-form (14).)
The explicit formulas relating the covariant form (13) to the standard form (7) of
the differential operator are

R~ g
Zg”A Y 2\/—2 <\giyg )’

:—k+Z[A AZ—T%(\/_Ai)],

(15)
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where g(z) = det (gij(;l‘)) > 0. Each second order elliptic operator then is uniquely
specified by a metric, a magnetic one-form, and potential function V(z). In partic-
ular, if the magnetic form vanishes, so A = 0, then H has the form of a Schrodinger
operator H = —A + V| where A is the Laplace-Beltrami operator associated with
the metric (12).

The application of a gauge transformation (5) does not affect the metric or
the potential; however the magnetic one-form is modified by an exact one-form:
w — w + do. Consequently, the “magnetic two-form” Q = dw, whose coefficients
represent the associated magnetic field, s unaffected by gauge transformations.

Theorem 4. Two elliptic second order differential operators H and H are (locally)
equivalent under a change of variables ¥ = ¢(x) and gauge transformation (5) if
and only if their metrics, their magnetic two-forms, and their potentials are mapped
to each other

o (d§2) = ds’, 50*<§) =9, 30*<V) =V (16)

(Here ¢* denotes the standard pull-back action of ¢ on differential forms; in par-

ticular, o*(V) = Vop.)

In particular, an elliptic second order differential operator is equivalent to a
Schrodinger operator —A + V' if and only if its magnetic one-form is closed: dw =
Q = 0. Moreover, since the curvature tensor associated with the metric is invariant,
the Laplace-Beltrami operator A will be equivalent to the flat space Laplacian if
and only if the metric ds? is flat, i.e., has vanishing Riemannian curvature tensor.

4. LIE ALGEBRAS OF DIFFERENTIAL OPERATORS.

In this section, we summarize what is known about the classification problem for
Lie algebras of first order differential operators. Any finite-dimensional Lie algebra
g of first order differential operators has a basis of the form

T =vi4pl@),..., T"=v" +797(z), T = Nx),..., T = (), (17)

cf. (2). Here vl ... v" are linearly independent vector fields spanning an r-
dimensional Lie algebra . The functions (!(z),...,(*(z) define multiplication
operators, and span a finite-dimensional h-module M C C*° of smooth functions,
hence v¥(¢/) = 3°b7(* for constants b;). The functions n®(z) must satisfy ad-
ditional constraints in order that the operators (17) span a Lie algebra; these
conditions can be conveniently expressed using the basic theory of Lie algebra
cohomology, [20]. Define the “one-cochain” on the vector field Lie algebra f by
the linear map F': h — C*° which satisfies (F';v?) = 5. Since we can add in any
constant coefficient linear combination of the ¢%’s to the n®’s without changing the
Lie algebra g, we should interpret the n®’s as lying in the quotient module C*° /M,
and hence regard I' as a C*°/M-valued cochain. It is straightforward to see that
the collection of differential operators (17) spans a Lie algebra if and only if the
cochain F' satisfies

v(I';w) —w(F;v)—(F;[v,w]) ¢ M forall v,wEeEHb. (18)
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The left hand side of (18) is just the evaluation (6, F'; v, w) of the coboundary of the
1-cochain F', hence (18) expresses the fact that the cochain F' must be a C®° /M-
valued cocycle. A l-cocycle is itself a coboundary, written F' = 6,0 for some
o(x) € C* if and only if (F';v) = v(o) for all v € h. It can be shown that two
cocycles will differ by a coboundary 6,0 if and only if the corresponding Lie algebras
are equivalent under the gauge transformation (5). Therefore two cocycles lying in
the same cohomology class in the cohomology space H'(h,C*°/M) = Ker §, /Im§,,
will give rise to equivalent Lie algebras of differential operators. In summary, then,
we have the following fundamental characterization of Lie algebras of first order
differential operators.

Theorem 5. There is a one-to-one correspondence between equivalence classes
of finite dimensional Lie algebras g of first order differential operators on M and
equivalence classes of triples [b, M, [F]], where

1. b is a finite-dimensional Lie algebra of vector fields,
2. M C C* is a finite-dimensional h-module of functions,

3. [F] is a cohomology class in H(h, C*®/M).

Based on Theorem 5, there are three basic steps required to classify finite dimen-
sional Lie algebras of first order differential operators. First, one needs to classify
the finite dimensional Lie algebras of vector fields h up to changes of variables; this
was done by Lie in one and two dimensions under the assumption that the Lie
algebra has no singularities — not every vector field in the Lie algebra vanishes at
a common point. (Lie further claimed to have completed the classification in three
dimensions, [23], but the complete results were never published.) Secondly, for each
of these Lie algebras, one needs to classify all possible finite-dimensional h-modules
M of C* functions. Trivial modules, valid for any Lie algebra of vector fields are
the zero module M = 0, which consists of the zero function alone, and that con-
taining just the constant functions, which we write M = {1}. Finally, for each of
the modules M, one needs to determine the first cohomology space H(f, C*°/M).
As the tables indicate, the cohomology classes are parametrized by one or more
continuous parameters or, in a few cases, smooth functions.

It is then a fairly straightforward matter to determine when a given Lie alge-
bra satisfies the quasi-exactly solvable condition that it admit a non-zero finite-
dimensional module A/ C C*. A simple lemma says that we can always, without
loss of generality, take the Lie algebra g to be represented by a triple [b, {1}, [F]]
with M = {1}. (Indeed, g admits a finite-dimensional module if and only if
M = {1} or M = 0, and, in the latter case, g can always be enlarged to include
constant functions without destroying its quasi-exact solvability.) Remarkably, in
all known cases, the cohomology parameters are “quantized”, the quasi-exact solv-
ability requirement forcing them to assume at most a discrete set of distinct values.
This intriguing phenomenon of “quantization of cohomology” has been geometri-
cally explained in terms of line bundles on complex surfaces in [9].

In one dimension, meaning M = R or C, the classification of non-singular quasi-
exactly solvable Lie algebras is straightforward, and summarized in the following
table for the real case. The complex classification is exactly the same, but with C
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replacing IR. (This, though, is particular to one-dimensional Lie algebras.)

Basis Structure Action ModuleCohomology Q.E.S.

a, R x4+ Ker D 0 0

d,,20, b, ar+ 3 pr) 0or R 0
ar+

0,,28,,2%,  s(2,R) ot {1} R N

Here the first column provides a basis for the Lie algebra of vector fields h. The
second column gives the structure as an abstract Lie algebra; we use h, = R x R
to denote the unique solvable two-dimensional Lie algebra, x denoting semi-direct
product. The third column indicates the associate group action. The fourth column
lists the general h—module M; in particular, Ker D = Span{z’e** |0 < i < n,}
denotes the solution space to a linear, constant coefficient ordinary differential
equation Dy = 0, while P(*) denotes the space of polynomials of degree at most n.
As for the cohomology, in case 2 it is only nontrivial if M = 0, in which case it is
represented by the operators 8., 20, + ¢ for ¢ € R; in Case 3, it is represented by
Oy, 20, +c, 220, +2cx, ¢ € R. The final column discusses when a Lie algebra satisfies
the requirement of quasi-exactly solvability, assuming M = {1}, i.e., the algebra g
contains the constant functions. In Case 3, the cohomology parameter is quantized,
c= —%n, where n € N is a non-negative integer (which plays the physical role of
spin). The corresponding module is N = P the space of polynomials of degree
n. Therefore, we have proven the basic classification theorem for quasi-exactly
solvable Lie algebras of differential operators in one dimension.

Theorem 6. Every (non-singular) finite-dimensional quasi-exactly solvable Lie al-
gebra of first order differential operators in one (real or complex) variable is, locally,
equivalent to a subalgebra of one of the Lie algebras

G, =Span{ 9, 20, 2°0,—nz 1}, (19)

)
where n € N. For g, , the associated module N = P() consists of the polynomials
of degree at most n.

Turning to the two-dimensional classification, a number of additional complica-
tions present themselves. First, as originally shown by Lie, there are many more
equivalence classes of finite-dimensional Lie algebras of vector fields. Moreover,
the classification results in R? and C? are no longer the same — here we just
present the complex case since the real classification has yet to be completed. An-
other complication is that the modules M for the vector field Lie algebras are no
longer necessarily spanned by monomials, a fact that makes the determination of
the cohomology considerably more difficult. Tables 1 — 3 at the end of the paper
summarize our classification results for finite-dimensional Lie algebras of differen-
tial operators in two complex variables, [10], [12]. Lie’s classification of nonsingular
finite-dimensional Lie algebras of vector fields on C? is summarized in Table 1. The
first column exhibits a basis of the algebra, and the second indicates its structure as
an abstract Lie algebra. The last column indicates where the Lie algebra lies in Lie’s
“Gruppenregister”, [24]. (We have, in a few cases, employed different coordinate
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systems than Lie.) Table 2 describes the different finite-dimensional modules for
each of these Lie algebras. The first column tells whether the module is necessarily
spanned by monomials, i.e., single terms of the indicated form. (In cases 5 and 20,
we have monomials unless « € QT or r < o € Q% are positive rational numbers,
respectively.) The second column indicates a typical term in a basis element for the
module — the non-monomial basis elements will be linear combinations of terms of
the indicated type; i, j always denote nonnegative integers. The third column ei-
ther indicates ranges of indices which must be included, or, in the case of an arrow,
indicates other indices which must be included if the given one is. For instance, in
Case 19, if the monomial z'y/ ¢#® belongs to the module, so must the monomials
ity erT and gitryitlelntr)e (provided ¢ > 0 and/or j > 0) for each exponent A
appearing in the Lie algebra. Finally, R}"™(z) denotes the polynomial

Ry (Z)Iﬁ(z—l) (24 1)",

which, for m = 0, is a multiple of the ultraspherical Gegenbauer polynomial
C’;j_k,j(l/z)(z), [8; vol. 2]. Table 3 describes the cohomology spaces H!(h, C*°/ M)
for each of the Lie algebras and corresponding modules. The first column indicates
the dimension of the cohomology space, and the second column gives a representa-
tive cocycle of each nontrivial cohomology class. Only the vector fields v® which are
actually modified are indicated, i.e., those for which n®* = (F';v®) £ 0, ¢f. (17). In
Case 4, DivM = {f, +g,|f,9 € M}. Finally, Table 4 describes the quantization
condition resulting from the quasi-exactly solvability assumption that, assuming
M = {1}, the Lie algebra admit a finite-dimensional module A". If the cohomol-
ogy is trivial, so g is spanned by vector fields and the constant functions, then
it automatically satisfies the quasi-exactly solvable condition, with the associated
finite-dimensional modules being explicitly described in Table 2. The maximal al-
gebras, namely Case 11, sl(2) @ s[(2), Case 15, s1(3), and Case 24, gl(2) x R", play
an important role in Turbiner’s theory of differential equations in two dimensions
with orthogonal polynomial solutions, [32].

5. Quasi-EXACTLY SOLVABLE OPERATORS ON THE LINE.

Let us now specialize to problems in one dimension. In view of Theorem 6, we
let n € N be a nonnegative integer, and consider the Lie algebra g,, spanned by the
differential operators

d d n d
=1 =, TO:TT?:,ZE—? T+:T::zza—nz, (20)
which satisfy the standard s[(2) commutation relations. In this section, we shall use
z instead of  for the “canonical coordinate” | retaining x for the physical coordinate
in which the operator takes Schrodinger form. The Lie algebra g, in Theorem 6 is
merely a central extension (by the constant functions) of the subalgebra g,,, hence
g, is isomorphic to the Lie algebra gl(2) of all 2 x 2 matrices. Note that since
g, and g, only differ by inclusion of constant functions, in our analysis of Lie
algebraic differential operators we can, without loss of generality, concentrate on
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the Lie algebra g,,, since any Lie algebraic operator (3) for the full algebra g, is
automatically a Lie algebraic operator for the subalgebra g, .

Thus, the most general second order quasi-exactly solvable Hamiltonian in one
space dimension can therefore be written in the form

—H = (T + ey o[TTT° + T°TH] + co(T°) + ey [TYT™ + T TH ]+

21
+ e [T°T™ + T T+ e _(T7) + e T+ ¢T° + e T +e,. (21)

Substituting the explicit formulas (20) for 7%, 7°, 7~ into (21), we find that every
quasi-exactly solvable operator can be written in the canonical form

d2 n—1 d n n(n — 1)
_ =P _ _ Pl I _ P//
n=r@) o+ {ee - T re ) L {r-fee+ )
(22)
where
P(z) = C++Z4 + 20+023 + (24 + cop)z” + 2¢o_z+c__,
Q(z) = c+22—|—coz—|—c_, (23)
n? +2n n? + 2n
R(z) = T3 Co0 T T3 C4- + c,,

are (general) polynomials of respective degrees 4,2,0. Since the module A is the
space P(™) of polynomials of degree at most n, the algebraic eigenfunctions (21) will,
in the z-coordinates, just be polynomials x,(z) € P In terms of the standard
basis x,(2) = 2%, k= 0,... ,n, the restricted Hamiltonian H | P(*) takes the form
of a pentadiagonal matrix, or, if ¢,, = ¢__ = 0, a tridiagonal matrix. Thus,
for a normalizable one-dimensional quasi-exactly solvable operator, there are n + 1
algebraic eigenfunctions which, in the canonical z coordinates, are polynomials of
degree at most n.

Specializing the solution to the equivalence problem given by Theorem 3 to the
particular operator (22), we find that the change of variables (16) required to place
the operator into physical (Schrodinger) form will, in general, be given by an elliptic
integral

z = p(z) = z\/%. (24)
The corresponding gauge factor is
o) = P e { [ 500 au} (25)
The potential is given by
Vi) = n(n+2) (PP" = §P”) +3(n+ 1)(QP' - 2PQ') - 3Q* R (26)

12P

where the right hand side is evaluated at z = ¢~!(z). In the physical coordinate,
the associated algebraic wave functions will then take the form

v(z) = ple™ (@) x(e™ (2)), (27)
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where x(z) is a polynomial of degree at most n.

The canonical form (22) of a quasi-exactly solvable differential operator is not
unique, since there is a “residual” symmetry group which preserves the Lie algebra
g,,- Not surprisingly, this group is GL(2,R), which acts on the (projective) line by
linear fractional (Mobius) transformations

:(3 ?) det A=A =ab—py#0.  (28)

To describe the induced action of the transformations (28) on the quasi-exactly solv-
able operators (22), we first recall the basic construction of the finite-dimensional
irreducible rational representations of the general linear group GL(2,R).

Definition 7. Let n > 0, i be integers. The irreducible multiplier representation
Pn i of GL(2,R) is defined on the space P of polynomials of degree at most n by

the transformation rule P = Pr i(P), where

~ , <az+ﬁ

P(z) = (yz + 6)"(ab — By)' P o 5) ., Pep), (29)

The multiplier representation p,, ; has infinitesimal generators given by the differ-
ential operators (5) combined with the operator of multiplication by ¢ representing
the diagonal subalgebra (center) of gl(2,R). The action (28) induces an automor-
phism of the Lie algebra g,,, which is isomorphic to the representation p, _;, and,
consequently, preserves the class of quasi-exactly solvable operators associated with
the algebra g,,. Moreover, the corresponding gauge action

H(z) = (v2 4+ 6)" - H - (yz +6)™", (30)

will preserve the space of quasi-exactly solvable Hamiltonians (22). Identifying the
operator ‘H with the corresponding quartic, quadratic and constant polynomials
(23), we find that the action (30) of GL(2,R) on the space of quasi-exactly solvable
operators 1s isomorphic to the sum of three irreducible representations, p, _, ®
P21 @ pgo; the quartic P(z) transforms according to p, _,, the quadratic Q(2)
according to p, _;, while R is constant. Finally, the associated module, which is
just the space of polynomials P(*)| transforms according to the representation Pn.o-

Using the action of GL(2,R), we can place the gauged operator (22) into a
simpler canonical form, based on the invariant theoretic classification of canonical
forms for real quartic polynomials, [18].

Theorem 8. Under the representation p, _, of GL(2,R), every nonzero real quar-
tic polynomial P(z) is equivalent to one of the following canonical forms:

v(l— 23 (1 = k*2?), v(l =25 (1 = k* + k%27), v(14 251 + k%2?),

v('=1), v(E+1), v w41 oz 1

bl
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where v and 0 < k < 1 are real constants.

The nine cases correspond to the positions of the complex roots of the quartic,
which are, respectively, four simple real roots, two simple real roots and two simple
complex conjugate roots, four simple complex roots, one double and two simple
real roots, one double real and two simple complex roots, two double real roots,
two double complex roots, one triple and one simple real roots, and one quadruple
real root. Note that we are allowing oo to be a root, whose order is defined to be
4 — d where d is the degree of the polynomial. (This makes the concept of order of
a root of a quartic polynomial invariant under the representation p47_2.)

Remark. If P has four simple roots, then the Schrodinger equation (1) for the
operator (22), (23), has four regular singularities, and hence, by a complez linear
fractional transformation, can be mapped to a form of Heun’s equation

d? 6 d b
: <1+ : )_y P y=0, (31)

dz2+ z z—1 z-a dz+z(z—1)(z—a)
with a + 3 —7 -6 —e+ 1 = 0, which amounts to placing P into the complex
canonical form P(z) = vz(z — 1)(z — a) with the roots at 0,1, a and co. Therefore,
the algebraic eigenfunctions can be expressed in terms of Heun polynomials, or, in
the case of multiple roots, confluent Heun polynomials, [8; vol. 3].

The solution to the normalizability problem begins with a detailed analysis of
the elliptic integral (24). Consider an interval z, < z < z; where P(z) > 0 is
positive and vanishes at the endpoints, P(z,) = P(z;) = 0. Simple asymptotic
analysis of (24) immediately implies that if both z, and z, are simple roots, then
(8) defines z as a periodic function of z; therefore, the potential V() and the
corresponding algebraic eigenfunctions are periodic functions of z, and cannot be
normalizable. (However, if they have no singularities, they do contribute, albeit
minutely, to the continuous spectrum of the operator.) If P(z) > 0 is everywhere
positive and has no real roots including oo, then the same conclusion of periodicity
holds. Therefore, a necessary condition for the quasi-exactly solvable operator
(22), (23), to be normalizable is that the quartic polynomial P(z) have at least one
multiple real root, which must lie at the end of an interval of positivity. Thus, the
class of quasi-exactly solvable potentials naturally splits into two subclasses — the
periodic potentials, which are never normalizable, and the non-periodic potentials,
which are sometimes normalizable.

Tedious but direct calculations based on (24), (25), (27), produce the explicit
change of variables, the potential, and eigenfunctions for the above normal forms
in physical coordinates. Each of the classes of potentials is a linear combination
of four elementary and/or elliptic functions, plus a constant which we absorb into
the eigenvalue. The potentials naturally divide into two classes, which are listed
in the following two Tables. In each case, the four coefficients are not arbitrary,
but satisfy a single complicated algebraic equation and one or more inequalities;
for simplicity, we only exhibit these in the non-periodic case. For the more general
class of Lie algebraic potentials see [21].

First, the periodic quasi-exactly solvable potentials correspond to the cases when
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the roots of P are simple, of which there are five cases given in the following Table.

L v(l—2%)(1— k%%,

2. v(l=22)(1 = k* + k%27,

3. v(1+2)(1+ (1 —k%)2?), (32)
4. v(1—=2%),

5. v(z2+1)%

where v > 0, 0 < k£ < 1. The explicit formulas for the corresponding potentials
follows. In the first three cases, the corresponding potentials are written in terms
of the standard Jacobi elliptic functions of modulus k, [8; vol. 2]. Also, as remarked
above, the coefficients A, B, C, D are not arbitrary, although the explicit constraints
are too complicated to write here.

PERrIODIC QUASI-EXACTLY SOLVABLE POTENTIALS

dn=2 I/:L‘(ASH\/;I—FB)—}—CH_Z Vx(C’sn\/;a:—l—D)
dn*Vvz(Aemvrve+ B) +sn 2 ve(Cenyve + D)

Aenvvaesnyve+ Ben?\ve+ Cdn? ym(cn\/;rsn V;r—i—Dcnz\/;m)
Asin®\/vz + Bsin\/vz+ Ctan\/vxsec\/vz + Dsec’ /v z
Acosd\/vx+ Beos2y/vr+ Csin2v/ve + Dsind/v &

QU = W N =

The elliptic functions sn y, cn y, dn y are periodic of period 4K (or 2K in the case
of dny), where

,:/1 dz
o V== kD)

is the complete elliptic integral of modulus k. Moreover, dny is never zero, cny
vanishes at odd multiples of K, and sny vanishes at even multiples of K; also
endmK =1 =sn(dm+ 1)K, cn(dm + 2)K = —1 = sn(4m + 3)K. Therefore, the
potentials in cases 1, 2 and 4 have singularities unless C' = D = 0. In Cases 3 and
5, the potential has no singularities, reflecting the fact that in these cases P(z) has
no real roots. Case 3 includes the Lamé equation, [8; vol. 3].

The non-periodic potentials correspond to the cases with one or two multiple
roots, which are given in the following Table.

L. v(z241), ( o0)

2. v(z*=1), [l,00) or (—o0,—1]

3. vzl (0,00) or (—o0,0) (33)
4. z, [0, 00)

5. 1 ( o0)

Here v > 0, and the second column indicates the interval(s) where P is positive, with
square brackets designating simple roots. In cases 2 and 3 there are two possible
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intervals of positivity, and hence potentially two different physical Hamiltonians,
although we can readily switch from one to the other by a discrete reflection z — —z.

The explicit formulas for the corresponding potentials follow.

NON-PERIODIC QUASI-EXACTLY SOLVABLE POTENTIALS

Asinh? \/v # + Bsinh /v & + Ctanh /v & sech /v & + Dsech® \/v &
Acosh? vz + Bcosh vz + Ccothy/wa csch vz + Desch? vz
AeVVE 4 BeVVE 4 CemVVE 4 Dem VYT

D
Az + Bz* + C2? + ]

St = W N

Az* + B23 + Cz% + D=

In cases 2 and 4, the potential has a singularity at = 0 unless C+D = 0 (Case 2) or
D = 0 (Case 4). The nonsingular potentials in Case 4 are the anharmonic oscillator
potentials discussed in detail in [29], [27]. The algebraic constraints satisfied by the
coefficients are given in the following table.

NoN-PERIODIC CONSTRAINTS

[B+ 2(n+ )VvA* + A4D — v)[B £ 2(n + 1)VvA]* —4A%C* =0, A >0.

[B+2(n+ 1)VvA* — A4D + v)[B £ 2(n + 1)VvA]? +4A%C* =0, A >0.

+ CVA+ BVD =2(n+1)VvAD, A,D>0.

16A3[(4n 4 5)(4n + 3) — 4D] + 32(n + 1)A%%(B% — 4AC) + (B* — 440)? = 0,
A>0, D>-1

5. 8A’D + B(B? —4AC) = +16(n+1)4%/2, A >0.

= W N =

According to Turbiner, [29], a potential is ezactly solvable if it does not explic-
itly depend on the discrete “spin” parameter n, since, in this case, one can find
representation spaces of arbitrarily large dimension and thereby (if normalizable)
produce infinitely many eigenvalues by algebraic methods. Note that since the
gauge transformation (8), (9), can explicitly depend on n, exact solvability cannot
be detected in the canonical coordinates, but depends on the final physical form of
the operator. The exactly solvable nonperiodic potentials are characterized by the
condition A = B = 0, or, in case 3, C = D = 0. In Case 2, there is an additional
inequality, |C| < D + %y, to be satisfied. The exactly solvable potentials include
the (restricted) Poschl-Teller potentials (Case 1), the Morse potentials (Case 3),
the radial harmonic oscillator (provided D = (I + 1), | € N) (Case 4), and the
harmonic oscillator (Case 5), as well as a number of new and interesting cases not
noted before in the literature.
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NORMALIZABILITY CONDITIONS

1. c++:c+0:co_:0, c__:20+_+coo, c+:0, ey < —ne__

2. ey =cg=c_ =0, ¢ =-2¢c, —cqy
(c++co—|—c_:—nc__ or c++co+c_:—(n+2)c__),
(c+<0 or c+:0, co<nc__).

3. c++:c+0:co_:c__:0),

(c+<0, or ¢, =0, co<—2nc+_—ncoo)),
(c_>0, or c¢_ =0, co>2nc+_+ncoo).
1
4. c++:c+0:20+_+000:c__:0, Co_ = 3,

(c_ = %n or c¢_ = %n—}—l),

(c+ <0, or ¢, =0, ¢ <0).
5. cpy =cpg=2c, teu=¢_ =0, c._=1 ¢, =0, ¢ <0

Analysis of the explicit formulas for the eigenfunctions based on Theorem 3
vields a complete set of conditions for the normalizability of the non-periodic po-
tentials, which are written in terms of the coefficients of the quadratic polynomial
Q(z) as given in (23). Note that this requires that P(z) be in canonical form.
Thus, although this table provides a complete list of normalizable potentials, it
does not give the most general set of normalizable Lie algebraic coefficients, but
rather, describes a single representative set of coefficients for each GL(2, R) orbit of
normalizable quasi-exactly solvable operators. See [13] for partial normalizability
conditions.

It is possible to deduce explicit, general normalizability conditions on the Lie
algebraic coefficients c,;, by using the fact that such conditions must be invariant
under the action of the group GL(2,R). Therefore, normalizability conditions can
be written in terms of the classical joint invariants and covariants of the pair of
polynomials P, ). The simplest of these necessary conditions stems from our earlier
observation that, for normalizability, the quartic polynomial P must have a multiple
root. This condition can be expressed in an invariant manner by the vanishing of
the discriminant of P, which results in a sixth degree algebraic constraint, having
the explicit form

3
[126++C__ —12¢ gco_ + (2c+_ + 600)2] =

2
begy 3eqo 2c,_ + cog (34)
= [ det 3c+0 20+_ + ¢go 3cq_ .
2cy _ +cqp 3¢ be__

Additional normalizability conditions require further joint covariants, which can be
explicitly written in terms of the classical transvectants.

Definition 9. Let F'(z) € P™) and G(z) € P(®) be polynomials, and suppose that
r < min{m,n}. The r-th transvectant of F and G is the polynomial

= k) (m-r) (n—r)!
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Theorem 10. Suppose F' € P™) and G € P are polynomials transforming
under GL(2,R) according to the representations Prmis P js respectively. Then the
r-th transvectant (F, G)(’) € pUntn=2r) js a polynomial of degree at most m+n—2r
and transforms according to the representation p,, . o, ;i1 ir-

The fact that (F, G)(T) has degree at most m + n — 2r is not obvious from the
formula (20). The First Fundamental Theorem of classical invariant theory, [16],
[18], states that every joint covariant of a system of polynomials is a suitably homo-
geneous polynomial in the succesive transvectants of the system. The transvectants
are not all independent, and, except for a few low order cases (which, fortunately,
include the case of a quartic and a quadratic), the determination of a complete
list of algebraically independent covariants (a Hilbert Basis) is a difficult, unsolved
problem.

Theorem 11. Let P be a quartic polynomial and () a quadratic polynomial. Then
a complete system of irreducible covariants for the pair P, () is provided by the poly-
nomials themselves, the discriminant A = (Q, Q)(z) of the quadratic, the covariants
H = (P, P)® T = (H, P)Y, and invariants i = (P, P)*), j = (H, P)*) of the
quartic, and the following 11 joint covariants:

P, QN, (P, (P,H®, (P,HW, H,QWY, H, QP
(H,QH®, (H,@HW, (T,Q)® (T,QH%, (T, Q*.

For example, the discriminant of a quartic is given by the combination

ﬁ {% (P, PY¥]® — [(H, P)(4)]2} .

Using the covariants in Theorem 11, we can now state the explicit necessary and
sufficient conditions for normalizability of a quasi-exactly solvable operator on the
line. In each case, the first line gives the invariant conditions for a quartic P to be
equivalent to one of our five canonical forms with a multiple root; these conditions
automatically imply the discriminantal condition (34). The subcases a) and b) are
different alternatives; also, in Cases 2 and 4, n* means either n or n+2. Finally, we
write F' =~ G if F(z) > G(z) for all z, and F' # G. Each of these conditions, when
written out, gives a (very) complicated, but explicit condition on the Lie algebraic
coefficients of our quasi-exactly solvable operator.

Theorem 12. A one-dimensional quasi-exactly solvable operator (21) is normal-
izable if and only if its Lie algebraic coeflicients satisfy one of the following sets of
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constraints.

I P =340, tH — 3P > 0.
GH —jP, Q)Y =0,  3(T, Q)® = 10n(ill — jP).
I # =340, iH —jP <0.
a) (iH —jP, Q)" £,
12:4(T, @*)(®) + 1800n*2(iH — jP, Q%) =
- 25\/(3jP — 3il, Q)% [(QjH +i2P, Q1™ — 144i5(Q, Q)@)] .
b) (i —jP, Q") =0,
25[(P, Q*)®)*(ill — jP) = 864(Q, QP [3(T, Q™ + 100" (il — jP)]’,
(T Q)<2> < 10n(iH — jP).
m. #=j*#+0, T=0.
a) (H, Q)™ —48i(Q, Q) > 0.

b) (H, Q)™ =48i(Q, @), (H, Q) —8iQ £ 0,
IV. i=j=0, H#0.
a) (T, Q%) >0, 2400(Q, Q)W (H, @*)® — 25[(P, Q*)W)* = 64n™ (T, @),
b) (T, Q%) =, (P, Q)% =0, 3PH,Q)"W —6H(P, Q)Y =8n*H>.
V. i=j=T=H=0,
(P,QHY* =0, and (P, Q)Y 0.

(P, Q2)(3)

(. Q) —sig =™

6. Two DIMENSIONAL PROBLEMS.

There are a number of additional difficulties in the two dimensional problem
which do not appear in the scalar case. First, there are several different classes of
quasi-exactly solvable Lie algebras available. Even more important is the fact that,
according to Theorem 3, there are nontrivial “closure conditions” which must be
satisfied in order that the magnetic one-form associated with a given Hamiltonian
operator be closed and hence the operator be equivalent, under a gauge transfor-
mation (5) to a Schrodinger operator. Unfortunately, in all but trivial cases, the
closure conditions associated with a quasi-exactly solvable Hamiltonian (3) corre-
sponding to the generators of one of the quasi-exactly solvable Lie algebras on our
list are nonlinear algebraic equations in the coefficients ¢, c,, ¢y, and it appears
to be impossible to determine their general solution. Nevertheless, there are useful
simplifications of the general closure conditions which can be effectively used to gen-
erate large classes of planar quasi-exactly solvable and exactly solvable Schrodinger
operators, both for flat space as well as curved metrics.

Suppose that the Lie algebra g is spanned by linearly independent first-order
differential operators as in (2). Substituting these into the general Lie algebraic
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form (3), we find that the operator assumes the form (7) with

r

gZ] _ Z Cabgaigbj’

a,b=1
hi _ Zr: ¢ ga]’ aim 49 agbi te gai 36
a,b=1 " Ozl ! ’ ’ ( )
_ . aj 87717 a. b a
b= 3 o (e e v

The magnetic form w, (14), and potential V for the covariant form (13) of the
Hamiltonian are then computed using formulas (15). The closure conditions dw = 0
are equivalent to the solvability of the system of partial differential equations

r n bj r r
¥ e (¢ 35+ ) - S [p e+

a,b=1 ji=1 a=1 b=1

, 1=1,...,n,

(37)
for a scalar function 7(z), given by 7 = 20+ 1 logdet g in terms of the gauge factor
€? required to place the operator in Schrodinger form. The closure conditions
(37) are extremely complicated to solve in full generality, but a useful subclass of
solutions can be obtained from the simplified closure conditions

- O 0w
@ _—— — ) — 2" = k° =1,...,n 38
S (e gt ) =k A=l (38)
where k!, ... k" are constants. Any solution 7(z) of equations (38) will generate an

infinity of solutions to the full closure conditions (37), with ¢,, arbitrary, and ¢, =
>4 Cark®. The case k% = 0 and g semi-simple was investigated in [25]. Although
the simplified closure conditions can be explicitly solved for such Lie algebras,
with the exception of s0(3), their solutions are found to generate quasi-exactly
solvable Schrodinger operators that are not normalizable, and hence of limited use.
Note that even when the simplified closure conditions do not have any acceptable
solutions, the full closure conditions (37) may be compatible and may give rise to
normalizable operators.

Consider, in the first place, the Lie algebra g ~ s[(2) @ s[(2) of type 11 spanned
by the first-order differential operators

™=0, T*=90, T°==xd, T*=yd

=9, 75 = :L‘an—n:v, 7% = y28y—my,

Yy

where n, m € N. The particular choice

21 0 00 1
120 010
(6)2003000
ab 000 3 0 0}
01 0011
1 00 011

(ca) = (0,0, ~(1+4n), —(1+4m),0,0), = F+m’+n?,
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of Lie algebraic coefficients lead to a quasi-exactly solvable Hamiltonian with Rie-
mannian metric

gt =42+, ¢ =1+ +yY), ¢ = (1+y)2+y),
which has complicated curvature, and potential

(I1+2n)(3+2n) (14 2m)(3+2m)

4y = —® — _
v 4 1+ 22 14 y?
_ 1741297 -yt 4 20y(6 4 5y) | 5B+ 2ey)(1 +y*)(2 +y7)
3+£2+y2 (3+I2+y2)2 :

A second interesting solution is

(Cab) =

—_ 0O O -
O~ OO R =
cooNno o
coxwo oo

(c,) = (0,0,—2n,—8m,0,0), cg = —n — 4m.
The Riemannian metric 1s
gll — (1 + x2)2’ g12 — (1 + IQ)(I _|_y2)’ g22 — 4(1 + y2)2’

which has zero curvature. The potential V' = 0 also vanishes. The coordinate
transformation

1 1
r=—— (4 arctan x — arctan y) , y= B) arctan y, (39)

2V3

maps the whole plane onto a bounded rectangle, so this example describes the
physical situation of a free particle confined to a bounded rectangle. The algebraic
eigenfunctions have the form

where P is a polynomial of degree less than or equal to n in z and less than or
equal to m in y, and we re-express z,y using (39).

The Lie algebra of type 15 provides a realization of s{(3,R) in terms of first-order
planar differential operators, given by

leﬁx, T223y7 T?’:J;ax’ T4:y@x7

T = 220, + zyd, — nz, T® = 2yd, + y28y —ny,
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with n € N admits the finite-dimensional module consisting of polynomials of total
degree in = and y less than or equal to n. The quasi-exactly solvable Hamiltonian

Ho= (1) 4 (17)" +2(17)" +2(1%) "+
+ T+ 77T + T2T% + T3T? + (3 + 2n) (T° + T°)
has contravariant metric coefficients

gt =21+ p)+1, P =wy(l+p), =01 +p) +1,

where p = 1+2(2?+y?), whose Gaussian curvature k = —2p is negative everywhere.
The potential is given by

14 + 24n + 8n? + (22 + 24n + 8n?)p

4V = -3p — 1 ?
14 3p— (74 16n + 8n%) + i1

If we look for solutions of the Schrodinger equation depending only on the “radial”
coordinate p, we end up with an effectively one-dimensional Schrodinger operator

2
—H = 4(p—1)(p* +1) j—pz—F (6—4n)p2+(8n+4)p—4n—2] dip—l— [(n?—n)p—n®—n].
which does appear among the list of purely one-dimensional quasi-exactly solv-
able Hamiltonians, albeit with a different cohomology parameter. The question of
whether the class of one-dimensional quasi-exactly solvable Schrodinger operators
can be significantly enlarged via looking at reductions of two-dimensional quasi-
exactly solvable Hamiltonians remains unanswered.
Next let g be the noncompact Lie algebra of type 24 for r = 1, spanned by

™=9, 71°=9, T°==20, T*'=z0

y} x) y} T5 = yayi (40)

and
T° = 2%09, + zyd, —nx, where n € N.

This Lie algebra admits the finite-dimensional module A" spanned by the monomials
z'y) with i + j < n. The Lie algebraic coefficients

0

(Cab) =

OO OO O
o O OO~ O
O = O O
OO kRO oo
O = O = OO
_ o O O O O

(Ca): (0707_277"0’_1_2“;0), 60:n2+n—|—1,
give a quasi-exactly solvable operator with flat Riemannian metric

gll — (1 + .1‘2)2, g12 — Jiy(l + 172)’ g22 — (1 + .1‘2)(1 + y2).
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Flat coordinates are given by

Y

V1+ 22’

which maps the plane to an open infinite strip (—w/2, 7/2) x R. The potential in
these coordinates is

Z = arctan z, y = arcsinh

V(z,y) = ech? g.

(n+1)(n+2)

5 s
which is simply a Poschl-Teller potential in y. The algebraic eigenfunctions take
the form -

P(Z,y) = % P(tanz,sec  sinh ),
cosh y

where P(z,y) is a polynomial of total degree at most n in (x,y). Notice that this
potential, the preceding zero potential, and, indeed, all other flat potentials that we
have found satisfy a conjecture of Turbiner: any quasi-exactly solvable Hamiltonian
on a flat manifold in more than one dimension is necessarily separable. However,
we do not know whether this conjecture holds in general.

Finally, let g be a general Lie algebra of type 24, spanned by the first-order
differential operators (40), T° = 229, + rayd, — nx, and T°%" = &'*19,, i =
1,...,r — 1. The module N is spanned by the monomials 2’y with i + rj < n,
j<l. FormeN, A B >0, the Schrodinger operator with metric

gt = Az + B, ¢ =(1+m)Azy, g¢*2 = (Az? + B)" + A(1 +m)?y?,
and potential

B MAB(1 4+ m)*(Az? + B)™
=" (Az2 + B)Hm + AB(1 + m)2y?’ m<r#Amtl),

is normalizable and quasi-exactly solvable with respect to g, provided that the
parameter A is large enough. The metric in this case has constant negative Gaussian
curvature Kk = —A. Furthermore, since the potential V' does not depend on the
cohomology parameter n, the above Hamiltonian is ezactly solvable. Moreover,
the potential is also independent of r, hence we have constructed a single exactly
solvable Hamiltonian which is associated to an infinite number of inequivalent Lie
algebras of arbitrarily large dimension.
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TABLE 1

FINITE-DIMENSIONAL LIE ALGEBRAS OF VECTOR FIELDS IN C2

Generators

{0, }
{0, 20, }
{0,,20,,2%0,}
{0,,0,}
10;,0,,20, + ayd,} a#0
10,0, 20,,y0,}
{04, 0,, 29, — y0,,y0,, xd, }
{04,0,,20,,y0,,29,,y0, }

- y,z(?x,ﬁax}
10,0y, 29,,y0,, z20,}

T Yy
{0,,08
104, 0,,29,,y0,, x%0,, y28y}

{0, + 90,20, + yﬁy,;ﬂ@x + yzﬁy}

{0,,2z0, — yﬁy,mzax - myﬁy}

{0, 20,,y0,, z%0, — zyd, }
{04, 0y,29,,y0,,%0,,y0,,
x?0, + zyd,, zyd, +
{&u(2)d,, ..., & (2)0,}
{€1(2)0y, ... &, (2)0,,y0,}
{0,,2°¢*0, | 0<i<r}
{3£,y6y,xie”6y [0<i<r,}

y’0,}

10, 0,,29, + ayd,, zd,,... ,z"9,}

{9,,0

x Yy

{0.,0

z) Yy

z%0 270, }

Yo

{9,,0

x Yy

:vzﬁy,... , 270, }

z0,, . .. ,xr—lay, 2, + (ry +2")9,}
z0,,x0,,y0,, xzﬁy, e
{0, 0,,220, +ryd,,xd,, z?0, + rzyd,,

270, }

20,,20,,y0,, mzax + rzyd,,

Structure Label
C E
h, C1
sl(2) C4
C? D1
C x C? C8,D3
h, @ b, C3
sl(2) x C? A3
gl(2) x C? A2
gl(2) ChH
50(2) @ by C6
s((2) @ sl(2) C7
s1(2) c9
sl(2) B61
al(2) B62
s((3) Al
c Bal
CxC Ba?2
CxC Bf1,D2
C?xCr BB2,C2
h, x C"H Byl,2
hy, x C Bv3
(h,®C) x C"tt By4
sl(2) x CH1 Bé3
gl(2) x C"t1 Bé4
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In Cases 16 and 17 we assume r > 1. In Cases 18 and 19, » = > r,, and the
exponents A belong to some finite set A. In cases 20-24, we assume 7 > 1.
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TABLE 2

FINITE-DIMENSIONAL MODULES FOR LIE ALGEBRAS OF VECTOR FIELDS

Monomials? Generators Rules

1. No mie)‘xg(y) (i, A 9)— (i—1,X9),

2. Yes 2'g(y) (i,9) — (i—1,9)

3. Yes g(y)

4. No giyf Ao thy (1,5, A, 1) — (1= 1,5, 2, 1), (i, 5 — 1, A, )
5. aeQt ety (3,5) — (i —1,7), (5,5 — 1)

6. Yes by (i,7) — (i—1,5),(3,5 — 1)

7. Yes Zy] 0<i+j3<n

8. Yes ;l‘ly] 0<i+j<n

9. Yes Y ety 0<j<n,

10.  Yes Y 0<j<n

11. Yes 1

12. No (z—y)F "R, <; ks Z) 0<k<2n

13. Yes iy 0<i<n,nes

14. Yes iy 0<i<n,nes

15. Yes 1

16. No ¥g(z) (G,9) — (G—1,9-&)

17. Yes ¥o(z) (G,9) — (G —1,9-&)

18. No z'yl eH® (i,5,0) — (i = 1,5,p), (i +7y,5— L, u+A)
19. Yes 2l et (4, 1) — (i— 1,5, 1), (i+7y,5— L+ )
20. r<aeQt ziy (1,7) — (i —1,5),(i+7rj—1)
21. Yes 2ty (i,j) — (i—1,7),(i+rj—1)
22. Yes zly (i,7) — (i =1,5),(i+rj—1)
23. Yes 1

24. Yes 1
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TABLE 3

COHOMOLOGIES FOR LIE ALGEBRAS OF VECTOR FIELDS

Dimension Representatives
0
%) 20, + h(y), h ¢ M
00 20, + h(y), 2?8, +2zh(y)
dim(M/DivM) < oo 0, + h(z,y), h, € M, h # ¢, with ¢, € M
0(agQ7),lor0(axeQ) r@x—i—ayay—}—claciyj or 3y+clmiyj
0OM#0), 2(M=0) 20, +cy, Yo, +cy
OM ALY, LM={1}) 0, +2, 90, +cp, w0,+c”
0O(M#0), 1 (M=0) zd, +cy, yo, +e¢
1 z0, + ¢, x23x + 2c,2
1(M#£0), 2(M=0) xd, +c;, %0, + 2,2, yo, + ¢y
2 z0, + ¢, x23w + 2c, x, yay + ¢, y23y + 2cyy
1 2°0, + y*0, + ci(z —y)
1 z%0, — zyd, + ey 2
0(leM), 1(1¢gM) 20, +cy, Yo, +2¢
1 xd, + ¢, 2%, + zyd, + 3c 2, y0, + ¢q, 2yd, + y23y + 3¢,y
" +k, k<oo &(2)0, + fi(2)y
0 yd, + f(x)
< 00 rke)‘xﬁy + cj‘y}kmi'*kyje)‘x
1 yo, +c,z"

0(eg@Q),1or0(xe@) I@x—i—ayay—}—clriyj, or
&0y + ety k>1>0

0O(M#0), 1 (M=0) 20, +(ry +2"y)0, + ¢
0O(M#0), 2(M=0) 20, + ¢y, Yo, +ey
1(r>2) 220, + ryd, + cq, x?0, + reyd, +cix

2(r=2) 29, +yd, +c;,x0, + cy, z20, + 22y0, + 2c;z + 24y, mzﬁy + 2¢qx
1(M#0), 2(M=0) 20, + ¢q,y0, + ¢y, 2?0, + rayd, + (2¢) + rey)
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TABLE 4

QUASI—EXACTLY SOLVABLE LIE ALGEBRAS OF DIFFERENTIAL OPERATORS

Quantization condition Module

0

0

h=-2 n>0, {#'g(y) |i<n,g €5}
0

0

0

0

0

e=-% n20 el i <mj < m,)
c=-% n>0, {z'y |i<n,j<m}
o=-2¢=-2 nm>0, {z'y |i<n,j<m}

¢ =121 {(x_y)m+%—kR;n,n<zi’Z> 0§k§2m+n,m65}
0

0

cg=-%, n>0, {z'y’ [i+j<n}

0

0

0

0

0

0

0

¢, =-n, n>0, {e'y |i+rj<n,j<l}
e =-2 ¢,=0, n>0, {e'y |i+rj<n,j<l}

'In case 12, there is no positivity restriction on n, and S = {m | m > maz(0,—n)} is a finite
set of integers.
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