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Early explorers of the new continent of quantum mechanics soon discovered the vast regions
inhabited by the followers of the group theoretical teachings, or “Gruppenpesten” as they came to
be called. Within these regions, a more remote kingdom, first tentatively contacted around 40 years
ago, and now the focus of active exploration, is populated by the practitioners of the mystical art of
hidden symmetry groups, applied to to quantum mechanical systems. In this brief overview, I will
concentrate on two particularly active provinces in this new land — the Lie algebraic and so-called
“quasi-exactly solvable” principalities. This “travel guide” is not meant to be complete, or impartial,
but will, I hope, motivate the casual tourist to immediately book an extended expedition to these
scenic lands. A more comprehensive guide book, including many additional sights and physical
applications not discussed here, was recently written by Ushveridze, [69]. Shorter, useful overviews
can be found in the review chapter by Turbiner, [65], and our survey paper [32]. I should also
mention that the allied principality of spectrum generating algebras is surveyed in [1,36]. Finally,
I must acknowledge the essential contributions provided by my fellow explorers, Niky Kamran and
Artemio González-López. Without their tireless efforts, inspiration, and devotion to detail, much of
this newly discovered territory would still be just a blank on the map.

I shall begin with a brief description of the basic customs of these two principalities. A differential
operator or Hamiltonian H is is said to be Lie algebraic if it lies in the universal enveloping algebra
of a finite-dimensional Lie algebra g, which is spanned by first order differential operators

Ja =

d∑

i=1

ξai(x)
∂

∂xi
+ ηa(x), a = 1, . . . , r. (1)

In particular, a second-order differential operator is Lie algebraic if it can be written as a constant
coefficient quadratic combination

H =
∑

a,b

cabJ
aJb +

∑

a

caJ
a + c0. (2)

Note that if J ∈ g, then the commutator [J,H], while still of the same Lie algebraic form (2), is not
in general a multiple of H, so that g is a “hidden symmetry algebra” of the Hamiltonian.

A Lie algebra of differential operators g is called quasi-exactly solvable if it possesses a finite-
dimensional representation space N ⊂ C∞ consisting of smooth functions; this means that if ψ ∈ N
and Ja ∈ g, then Jaψ ∈ N . A differential operator H is called quasi-exactly solvable if it lies in the
universal enveloping algebra of a quasi-exactly solvable Lie algebra of differential operators. Clearly,
the module N is an invariant space for the Hamiltonian H, i.e., H(N ) ⊂ N , and hence H restricts
to a linear (matrix) operator on N . We will call the eigenvalues and corresponding eigenfunctions
for the restriction H |N algebraic since they can be computed by linear algebra. If the algebraic
eigenfunctions are normalizable, meaning that they lie in the appropriate Hilbert space, e.g., L2,
then the corresponding “algebraic eigenvalues” provide part of the point spectrum of the differential
operator.
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Example. The simplest example of a quasi-exactly solvable operator that is not exactly solvable
is the one-dimensional Schrödinger operator:

H = −D2
x + V (x) (3)

with the anharmonic oscillator potential

V (x) = ν2x6 + µνx4 + [µ2 − (4n+ 3)ν]x2. (4)

Here µ, ν is an arbitrary real constants, and n ≥ 0 is a nonnegative integer. This Hamiltonian can
be written in Lie algebraic form

H = −J0J− + 2νJ+ + 2µJ0 − (n+ 1)J− + (2n+ 1)µ (5)

with respect to the Lie algebra gn ≃ sl(2,R) which is spanned by the first order differential operators

J− = x−1Dx + νx2 + µ, J0 = xDx + νx4 + µx2 − n, J+ = x3Dx + νx6 + µx4 − 2nx2.

This Lie algebra admits the (n+ 1)-dimensional representation space N spanned by the functions

ψk(x) = x2k exp
[
− 1

4
νx4 − 1

2
µx2

]
, 0 ≤ k ≤ n.

Therefore, the Hamiltonian (3) maps N to itself; indeed, as one can readily check,

Hψk = −2k(2k − 1)ψk−1 + µ(4k + 1)ψk + 4ν(k − n)ψk+1.

Thus, the restriction H |N reduces the Schrödinger equation Hψ = λψ to a tridiagonal matrix
eigenvalue problem. This enables us to determine n + 1 eigenvalues λ0, . . . , λn and corresponding
eigenfunctions ψ0(x), . . . , ψn(x) ∈ N using purely linear algebraic methods. Note finally that the
resulting algebraic eigenfunctions will be L2 normalizable provided either ν > 0, or ν = 0 and µ > 0.

A short history of our subject would seem in order at this point in our tour. The study of Lie
algebraic and quasi-exactly solvable Hamiltonians has its origins in the work of Goshen and Lipkin,
[35], from the late 1950’s, and Barut and Bohm, [6], and Dothan, Gell–Mann, and Ne’eman [18,9],
in the 1960’s. Applications of spectrum generating algebras to scattering theory, and to nuclear and
molecular spectroscopy began in the late 1970’s with the work of Iachello, Levine, Alhassid, Gürsey,
and collaborators, cf. [2–4,36]. By the middle of the 1980’s, Shifman, Turbiner, and Ushveridze,
[58,60,67,69], had introduced the basic definition of quasi-exactly solvability. My own interest in
the subject began with a provocative lecture given by Raphael Levine, [39], at the Institute for
Mathematics and its Applications, Minnesota, in 1987. The classification problems raised by Levine
seemed ideally suited to the equivalence methods that Niky Kamran and I were developing at that
time. A couple of years later, we had the good fortune to also enlist Artemio González-López in
this enterprise, and the resulting collaboration proved to be extraordinarily fertile, as evidenced by
our collective papers, [25,27–33,37].

One of the principal research goals has been to obtain and classify new and physically important
examples of quasi-exactly solvable Schrödinger operators. In the one-dimensional case, complete
results are known. The real and complex classifications are identical: Up to equivalence, there
is essentially just one family of one-dimensional quasi-exactly solvable Lie algebras of first order
differential operators, indexed by a single quantum number n ∈ N. The symmetry algebra can
be identified with the spin n representation of a central extension of the unimodular Lie algebra
sl(2,R), namely the degree n multiplier representation of the projective group action on the space
of polynomials of degree at most n.

Theorem. Every (non-singular) quasi-exactly solvable Lie algebra of differential operators on

the line is isomorphic to a sub-algebra of one of the Lie algebras gn, n = 0, 1, 2, 3, . . . spanned by the

first order differential operators

gn : J− = Dz, J0 = zDz −
1

2
n, J+ = z2Dz − nz, 1. (6)



As described in [41,27,28], the parameter n can be assigned a Lie algebra cohomological inter-
pretation. The fact that the Lie algebra (6) is quasi-exactly solvable only for non-negative integral
values of n is the simplest manifestation of the general phenomenon of quantization of Lie algebra
cohomology.

Substituting (6) into the Lie algebraic form (2) of the Hamiltonian, we conclude that all quasi-
exactly solvable spectral problems are, in the canonical z coordinates, particular cases of Heun’s
equation, [52]. However, to date no-one has connected the results obtained through the Lie algebraic
approach with the more classical special function theoretic results for Heun’s equation. In general,
the physical coordinate x is related to the canonical coordinate z in (6) via a change of variables. The
associated Schrödinger operators (3) are found by applying a suitable gauge transformation so as
to eliminate the first derivative terms. (This is always possible in one dimension, but not in higher
dimensions, where the first derivative terms correspond to magnetic fields.) For the anharmonic
oscillator potential (4), we use

z = x2, µ(z) = exp
[
− 1

4
νx4 − 1

2
µx2

]
.

as gauge factor to place the Lie algebraic operator (5) into physical form. (We have omitted an
overall factor of 1

2
on the resulting Lie algebra generators.)

Example. The exactly solvable harmonic oscillator H = −D2
x + x2 can be written in the usual

Lie algebraic form H = −J1J2 + 1, where

J1 = Dx − x, J2 = Dx + x (7)

are the raising and lowering operators, which, along with their commutator 1

2
[J1, J2] = 1 generate

the Heisenberg algebra. However, this particular Lie algebra of differential operators is not quasi-
exactly solvable, since it does not admit any finite-dimensional representation space consisting of
smooth functions ψ(x).

The harmonic oscillator can, however, be written in quasi-exactly solvable Lie algebraic form, in
two distinct ways. The “even” quasi-exactly solvable form is

H = −J−J0 + J− + 2J0 + 1,

where
J− = x−1Dx + 1, J0 = xDx + x2, (8)

generate a two-dimensional nonabelian Lie algebra having finite-dimensional representation space
Nn spanned by the functions x2je−x2/2, 0 ≤ j ≤ n. The “odd” quasi-exactly solvable form is

H = −J−J0 − J− + 2J0 + 3,

where
J− = x−1Dx − x−2 + 1, J0 = xDx + x2 − 1. (9)

The associated finite-dimensional representation space N̂n is spanned by the functions x2j+1e−x2/2,
0 ≤ j ≤ n. Note that, in both cases, the Hamiltonian admits an invariant subspace of arbitrarily
large dimension; the corresponding algebraic eigenfunctions are the usual even and odd states for the
harmonic oscillator. Both Lie algebras (8) and (9) are mapped under a suitable gauge transformation
to the two-dimensional subalgebra spanned by Dz and zDz of the Lie algebra (6) for every value

of the quantized cohomology parameter n. In the realm of quasi-exactly solvability, this is the
hallmark of an exactly solvable problem— that, in physical coordinates, it has no dependence on the
quantized cohomology parameters, and hence admits invariant representation spaces of arbitrarily
large dimension.

The complete classification of Lie algebraic and quasi-exactly solvable differential operators in
one dimension appears in [60,37]. A wide variety of classical potentials, including the Gendenshtein



and Morse potentials, [20], the Pöschl-Teller potentials, [50], the Natanzon potentials, [16], and
others can be obtained in this manner. A curious omission is the Coulomb potential; however,
as shown by Shifman, [54,56], and generalized by Auberson, [5], these and others can be obtained
using the so-called Sturm representation for the Schrödinger equation. See Fushchych and Nikitin,
[24], and Zhdanov, [79], for connections with the theory of conditional or nonclassical symmetry
methods. A full solution to the normalizability problem for the quasi-exactly solvable operators
in one dimension, based on methods from classical invariant theory, was given in [30]. Bender,
Dunne, and Moshe, [8], give a striking application of higher order WKB methods, based on the
semiclassical approximation, to characterize the border between the algebraic and non-algebraic
parts of the spectrum of quasi-exactly solvable problems.

Another class of potentials that admit exact formulae for the eigenfunctions, but are not in the
Lie algebraic class of quasi-exactly solvable problems are the multi-soliton or reflectionless poten-
tials. These can be obtained from the one soliton or Pöschl-Teller potential through a series of
Darboux-Crum or Bäcklund transformations, [17], which can also be reinterpreted within Witten’s
supersymmetric quantum mechanics, [72]. The Lie algebraic structure of the original potential be-
comes a Lie algebra of pseudo-differential operators for the transformed potential, although the
classification procedure now becomes much more complicated. Details of this construction and ap-
plications appear in Shifman, [55], and Ushveridze, [69]. Extensions to periodic finite gap potentials
were applied to quantum spin systems by Zaslavskii and Ulyanov, [78].

Dutra and Filho, [19], show how to use a realization of the hidden symmetry algebra sl(2,R)
by higher order differential operators to obtain polynomial potentials of degree 10. The general
classification of quasi-exactly solvable Lie algebras of higher order differential operators is wide
open, although apparently very difficult. For example, the classification of abelian Lie algebras of
differential operators lies in the domain of classical results due to Burchnall and Chaundy, [12–14],
and requires the use of general theta functions on abelian varieties to effect a complete solution!
The solution includes a classification of all multi-soliton and finite gap potentials, and has played
an important role in the study of the Korteweg-deVries equation, [46,38,71]. The two-dimensional
nonabelian algebras give rise to Painlevé transcendent potentials and similarity reductions of soliton
equations, [70].

A classification of all quasi-exactly solvable Lie algebras of first order differential operators in
two complex dimensions was found in [27,28], based on Lie’s classification of transformation groups
in the plane, [40]; this was extended to the real plane in [29,33]. In every example, the condition of
quasi-exact solvability or possessing a finite-dimensional module requires that all of the cohomology
parameters which enter into our classification of Lie algebras of first order differential operators
must assume only a discrete (integral, half-integral, etc.) set of values. In the maximal cases, the
phenomenon of the “quantization of cohomology” has been given an algebro-geometric interpre-
tation, [25], based on the Borel–Weil–Bott theory of line bundles on algebraic surfaces. See also
[15] for some results on abelian algebras of higher order operators in two dimensions and [26] for
applications of a multi-dimensional generalization of the Darboux transformation.

In higher dimensions, complications arise because not every second order differential operator
is equivalent, under a gauge transformation, to a Schrödinger operator, and one must impose ad-
ditional “closure conditions” in order to ensure that there are no additional magnetic terms. In
[31,33,58,68,74], new examples of quasi-exactly solvable Schrödinger operators on both flat and
curved surfaces, were found, although a complete classification of all planar quasi-exactly solvable
operators appears to be very difficult. Turbiner conjectured that all flat space quasi-exactly solvable
Hamiltonians admit separation of variables. A proof of Turbiner’s conjecture in the case of elliptic
Hamiltonians, for which the Lie algebra arises from a planar imprimitive group action, was recently
found by R. Milson, [42], who also constructed a hyperbolic counterexample. Zaslavskii, [76,77], and
Kamran and Milson (personal communication) have studied quasi-exactly solvable operators with
magnetic terms.

Quasi-exactly solvable problems in higher dimensions are even less well catalogued. A major



difficulty is that there is no classification of general transformation groups acting in three or more
dimensions, so complete results are not available. My student, D. Richter, [51], has recently classified
Lie algebras of first order differential operators associated with a large class of transitive, primitive
Lie group actions in higher dimensions, and proved that quantization of cohomology also occurs
in all cases. Examples of quasi-exactly solvable many body problems can be found in [69] and in
[64,53,44]. Extensions to matrix-valued and supersymmetric differential operators can be found in
work of Shifman, Turbiner and Post [58,63,65,47], Brihaye and Kosinski, [11], and Finkel, González-
López, Kamran, and Rodŕıguez, [22,23]. Extensions to finite difference operators are discussed by
Turbiner, [63,65].

Closely related is recent work of Turbiner, Post, and van den Hijligenberg, [48,49,63], classifying
differential operators with polynomial invariant subspaces. Turbiner, [61–63], made the remark-
able discovery that all known families of classical orthogonal polynomials arise as eigenfunctions to
(higher order) quasi-exactly solvable differential operators. Coupled with the normalizability results
in [30], this leads to a complete solution to the “Bochner problem” in the second order case, namely
to characterize linear differential operators having an infinite sequence of orthogonal polynomial so-
lutions to its eigenvalue problem; see also [65]. Recently, Bender and Dunne, [7], have shown that the
quasi-exactly solvable wave functions appear as the generating functions of orthogonal polynomials,
whose zeros are the associated algebraic eigenvalues. In addition, the Lie algebraic approach can be
effectively used to understand orthogonal polynomials in multi-dimensional situations as well. See
[21,75], for additional results in this area.

Finally, I should mention that there are a wide variety of intriguing and potentially significant
applications to other contemporary physical theories. Connections with conformal field theory have
been developed in [34,45,57], Applications to quantum spin systems and tunneling phenomena are
discussed by Ulyanov and Zaslavskii, [73,66,78]. Braibant and Brihaye, [10], discuss applications
to sphaleron stability in the 1 + 1 abelian Higgs model. Applications to the Gaudin model arising
in electromagnetism and the Bethe ansatz method appear in Ushveridze, [69]. Again, Ushveridze’s
book, [69], should be consulted for a more complete guide to the further reaches of the realm.

This concludes our brief tour of the intriguing dominion of quasi-exactly solvability. The reader
is warmly invited to return to explore the region in more depth, and thereby help expand the already
wide boundaries of this fascinating land.
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[29] A. González–López, N. Kamran and P.J. Olver, “Lie algebras of vector fields in the real plane”,
Proc. London Math. Soc. 64, 339–368 (1992).
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