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Abstract. We prove that an effective, analytic action of a connected Lie group G on
an analytic manifold M becomes free on a comeager subset of an open subset of M when
prolonged to a frame bundle of sufficiently high order. We further prove that the action of
becomes free on a comeager subset of an open subset of a submanifold jet bundle over M
of sufficiently high order, thereby establishing a general result that underlies Lie’s theory
of symmetry groups of differential equations and the equivariant method of moving frames.

1. Introduction.

The analysis of prolonged transformation groups on jet bundles is of fundamental
importance in Lie’s theory of symmetry groups of differential equations and differential
invariants, cf. [16, 19], and in Cartan’s method of moving frames, [7, 9] and its equivariant
generalization, [8, 14, 18]. However, despite its long pedigree, a number of basic issues in
this subject remain unresolved.

A key question that arises in the moving frame construction is whether the prolonged
transformation group action is free on submanifold jet bundles of sufficiently high order.
(See Definition 2.2 for basic terminology.) It has been known for some time, [16, 17],
that a smooth Lie group action that is locally effective on subsets becomes locally free on
a dense open subset of a sufficiently high order jet bundle. Until recently, in all known
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examples, such transformation group actions became, in fact, free on such a dense open
subset of a possibly higher order jet bundle. This observation was thus conjectured to hold
in general by the second author. However, recent results of the first author demonstrate
that this conjecture is false in general for both smooth, [2], and analytic, [3], actions, but
true for algebraic actions, [1]. The frame bundle conjecture is true for smooth actions of
connected Lie groups with compact center, [4]. The goal of this paper is to prove a version
of the freeness conjecture for analytic actions of connected Lie groups. For simplicity, we
restrict our attention to global group actions here, although extensions to local actions
are straightforward. Furthermore, in view of [5], these results can be further extended to
C∞ actions. We will also prove an analogous result for prolonged group actions on higher
order frame bundles.

We begin in Section 2 by introducing basic terminology and constructions for Lie group
actions and their prolongations to submanifold jet bundles, using [16] as a basic reference.
Section 3 contains several required lemmas concerning abelian Lie groups. Section 4 is
devoted to the study of meager subsets of topological spaces and their behavior under
maps. Section 5 states and proves our first main result, Theorem 5.3, that a connected
analytic effective Lie transformation group acts “generically freely” when prolonged to a
frame bundle of sufficiently high order, meaning that the action is free on those fibers sitting
over a comeager subset of an open subset of the base manifold. In Section 6 we present
a key technical lemma that if a local diffeomorphism fixes the n jets of all submanifolds
passing through a point z ∈ M , then it has the same k jet as the identity map for some
smaller k upon which n depends. In the final section, we prove, in Theorem 7.1, a similar
freeness result for prolonged connected, analytic, effective group actions on submanifold
jet bundles, except here the freeness is established on a comeager subset of an open subset
of a sufficiently high order jet bundle.

Basic notation: Throughout, R will denote the real numbers. We will work over the
real number field, although our results apply equally well to complex group actions on
complex manifolds. We use Z to denote the integers, N = {n ∈ Z |n ≥ 0 } for the natural
numbers, and N+ = {n ∈ Z |n ≥ 1 } = N \ {0} for the positive integers.

2. Prolonged Group Actions on Jet Bundles.

Let G be an r-dimensional Lie group acting smoothly on a smooth, meaning C∞,
m-dimensional manifold M . The identity element of G is denoted by e. We use G◦ to
denote the connected component of the group G containing e, so that G is connected if
and only if G = G◦. The action of G on M is denoted by z 7→ g · z for g ∈ G and z ∈M ,
and we let g:M →M be the diffeomorphism defined by the group element g ∈ G, so that
g(z) = g · z.

If S ⊂ M , we let g · S = { g · z | z ∈ S } be its image under the group element g ∈ G.
Thus, S is G-invariant if and only if G · S :=

⋃
g∈G g · S = S. The orbits are the minimal

non-empty G-invariant subsets of M , and the action is transitive if M is the only orbit.
Most Lie group actions of interest in applications of moving frames are transitive, although
our results apply equally well to intransitive actions.
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Definition 2.1. The stabilizer or isotropy subgroup of a subset S ⊂M is

GS = StabG(S) = { g ∈ G | g · S = S } . (2.1)

In particular, if S = {z} is a singleton, we write Gz for G{z}. Further, the global stabilizer

of S is the subgroup

G∗S =
⋂

z∈S

Gz = { g ∈ G | g · z = z for all z ∈ S } (2.2)

consisting of group elements which fix all points in S.

Definition 2.2. The group G acts

• freely if Gz = {e} for all z ∈M ;

• locally freely if Gz is a discrete subgroup of G for all z ∈ M , or, equivalently, all the
orbits of G are r-dimensional submanifolds of M ;

• effectively or faithfully if G∗M = {e};

• effectively on subsets if G∗U = {e} for every nonempty open subset U ⊂M ;

• locally effectively if G∗M is a discrete subgroup of G;

• locally effectively on subsets if G∗U is a discrete subgroup of G for every nonempty open
subset U ⊂M .

Note also that, for analytic actions on connected manifolds, (locally) effective implies
(locally) effective on subsets, which is not the case for C∞ actions.

Remark : While the subset S = { z ∈ M | dimGz = 0 } ⊂ M where the Lie group
acts locally freely is necessarily open, the same cannot, in general, be said of the subset
S∗ = { z ∈ M | Gz = {e} } ⊂ M where the action is free. An elementary example is the
action (x, y, z) 7−→ (x+ t, y+ tz, z)mod 1 of the Lie group G = R on M = S1 ×S1 ×S1 ≃
(R/Z)3. This action is locally free everywhere, but is free only on the tori with irrational
z ∈ (R \ Q)/Z. Thus, the subsets where the action is free and not free are both dense
in M . This example can be easily adapted to an action of R on R3 with similar freeness
properties by use of the Hopf fibration by tori.

Let us fix an integer 1 ≤ p < m = dimM . Let Jn = Jn(M, p) denote the nth order
(extended) jet bundle on M defined by p-dimensional submanifolds N ⊂ M under the
equivalence relation of nth order contact at a common point, cf. [16]. We are not assuming
that M itself has any sort of bundle structure, but if M = E → X is a fiber bundle
over a p-dimensional base manifold X , then the nth order jet bundle JnE of sections of E
forms a dense open subbundle of the submanifold jet bundle Jn(E, p) traced out by those
p-dimensional submanifolds that intersect the fibers of E transversally. Our results apply
equally well in both contexts.

Since any (local) diffeomorphism Φ of M preserves contact between submanifolds, it
induces a (local) diffeomorphism of the nth order submanifold jet bundle Jn, called its

nth order prolongation, and denoted by Φ(n): Jn → Jn. We will be concerned with the
prolonged actions on Jn of Lie groups G acting on M . The basic stabilization theorem
of Ovsiannikov, [19], rigorously stated and proved in [16], proves local freeness of the
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prolonged action on an open subset of a sufficiently high order jet bundle; the following
version appears in [17; Theorem 4.2].

Theorem 2.3. Let G be an r-dimensional Lie group that acts smoothly and locally

effectively on subsets of M . Then, for r ≤ n ∈ N, the prolonged action is locally free on

a dense open subset ∅ 6= V n ⊂ Jn whose intersection with each fiber V n|z = V n ∩ Jn|z,
z ∈M , is both dense and open therein.

The existing proofs of Theorem 2.3 all rely on infinitesimal techniques, and thus cannot
be easily extended to remove the “local” caveat. A primary goal of this paper is to state
and prove a global counterpart to Theorem 2.3 for analytic actions of connected Lie groups,
which appears as Theorem 7.1 below.

Example 2.4. To see that freeness does not necessarily hold globally, consider the
one-parameter group Lie group action

(x, y) 7−→
(
x, u+ tf(x)

)
, t ∈ G = R, (x, u) ∈M = R2,

where f :R → R is an analytic function which has a zero of order k at the point xk ∈ R

for k = 1, 2, 3, . . . , and so that xk → ∞ as k → ∞. Such a function can be constructed
using a Weierstrass product expansion, cf. [6; p. 194]. Let Jn = Jn(M, 1) be the curve
(one-dimensional submanifold) jet space. Then G acts trivially on the fiber Jn|(xk,u)

for

all k > n. On the other hand, G does act freely on the dense open subset of Jn that omits
the fibers over these points.

A related, non-analytic example, suggested by J. Pohjanpelto, [21], shows that a
smooth action can fail to be free on entire fibers of the submanifold jet spaces of arbitrarily
high order:

Example 2.5. Let M = R×S1 be a cylinder, with coordinates (x, u), where we use
the additive structure on S1 = R/Z, so that u is taken modulo 1. Let f :R → S1 be a
smooth function with 0 < f(x) < 1 for all x, and such that f(x) is not constant on any
open subinterval I ⊂ R. Consider the one-parameter transformation group

(x, u) 7−→ (x, u+ tf(x)mod 1), t ∈ G = R, (x, u) ∈M = R× S1.

The orbits are the one-dimensional vertical circles Sx0
= {x = x0 } ≃ S1. The isotropy

subgroup of a point (x, u) ∈M is

G(x,u) = { t = n/f(x) | n ∈ Z } ⊂ G = R.

Thus, the action is locally free everywhere onM , and also locally effective on subsets since
we assume that f(x) is not constant on open subintervals.

Local coordinates on the nth order curve jet bundle Jn = Jn(M, 1) are given by
(x, u, u1, . . . , un), where uk correspond to the kth order derivative of u with respect to x,

viewing the curve as the graph of a function† u = h(x), where h:R → S1. Keep in mind

† Thus, we are ignoring curves C ⊂ M with vertical tangents. Or, equivalently, we are

viewing M = R× S1
→ R as a circle bundle, and restricting our attention to the jet bundle JnM

of sections.
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that, while u is a coordinate on the circle S1, the derivative coordinates uk for k ≥ 1 take
values in R. The prolonged action on Jn is thus given by

(x, u, u1, . . . , un) 7−→
(
x, u+ tf(x)mod 1, u1 + tf ′(x), . . . , un + tf (n)(x)

)
.

Consequently, if f ′(x0) 6= 0 for some x0 ∈ R, the action is free at the 1 jets (x0, u, u1) ∈
J1 |Sx0

, and hence also at all (x0, u, u1, . . . , un) ∈ Jn |Sx0
. More generally, if 0 = f ′(x0) =

f ′′(x0) = · · · = f (k−1)(x0) = 0 while f (k)(x0) 6= 0, the action remains locally free on

Jn |Sx0
for 0 ≤ n ≤ k− 1, but is free on Jℓ |Sx0

for any ℓ ≥ k. Thus, if f ′(x) has a zero of

infinite order at x0, so f
(k)(x0) = 0 for all k ≥ 1, then the action remains only locally free

on Jn |Sx0
for any order n ≥ 0, and hence never becomes free on such fibers.

Let us call a jet z(n) ∈ Jn locally regular if G acts locally freely at z(n). Let V n ⊂ Jn

denote the open subset containing all locally regular jets. According to Theorem 2.3,
V n 6= ∅ provided n ≥ r = dimG. The singular subset Σn := Jn \ V n is an algebraic
subvariety of Jn defined by the vanishing of a (generalized) Lie determinant, [16, 17].

Definition 2.6. A p-dimensional submanifold S ⊂ M is totally singular at a point

z ∈ S if, for all n ∈ N, its nth order jet at Z is singular: jnS|z ⊂ Σn. A totally singular

submanifold is one all of whose points are totally singular.

Theorem 2.7. Suppose G acts analytically. An analytic submanifold S is totally

singular at a point z0 ∈ S if and only if its stabilizer subgroup GS does not act locally

freely on S at z0.

This result, along with a smooth counterpart, is proved in [17], which also contains a
Lie algebraic characterization of the totally singular submanifolds as (unions of) orbits of
suitable subgroups of G.

Example 2.8. Consider the (special) Euclidean group SE(3) = SO(3)⋉R3 consisting
of all rigid motions — rotations and translations — acting on space curves C ⊂M = R3.
The totally singular curves are the straight lines, which is a consequence of Theorem 2.7.
Indeed, the Euclidean stabilizer GL ⊂ SE(3) of a straight line L ⊂ R3 is two-dimensional,
consisting of all translations in the direction of the line and all rotations having the line as
axis. Since 2 = dimGL > dimL = 1, the group GL does not act locally freely on L, and
so Theorem 2.7 implies that the prolonged action of SE(3) can never be free on the jets of
straight lines of any order.

One important application of the freeness of prolonged group actions is to the Cartan
theory of moving frames, as extended by the second author and M. Fels, [8, 18]. If G acts
on M , an nth order (left) moving frame is defined as a smooth G-equivariant mapping
ρ :U → G for some open U ⊂ Jn, meaning that

ρ(g · z(n)) = g · ρ(z(n)) (2.3)

for all z(n) ∈ U and g ∈ G such that g · z(n) ∈ U . All classical moving frames, e.g., those in
[7, 9], fit naturally into this equivariant framework, which enables one to systematically and
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algorithmically extend the classical theory to general smooth Lie group actions. One easily
proves that such a moving frame map exists if and only if G acts freely and regularly† on
an open subset of the jet bundle. Therefore, once we are assured that the prolonged group
actions are free on V n ⊂ Jn, we can construct a locally equivariant nth order moving frame
in a neighborhood of any regular jet z(n) ∈ Jn. Only the totally singular submanifolds fail
to admit an equivariant moving frame of any order.

3. Abelian Groups.

Our results rely on some basic lemmas about abelian Lie groups. Given a Lie group
G, let

Z(G) = { h ∈ G | hg = gh for all g ∈ G }

denote its center . Recall that G◦ denotes the connected component of G containing the
identity element e.

Lemma 3.1. If Z ⊆ Z(G) is a closed subgroup of the center of a connected Lie

group G, then Z/Z◦ is finitely generated.

Proof : Replacing G by G/Z◦ and Z by Z/Z◦, we may assume that Z is a discrete
subgroup. Replacing G by its universal cover and replacing Z by its preimage in the
universal cover, we may assume that G is simply connected. Then Z is isomorphic to the
fundamental group of the Lie group G/Z. Since every connected Lie group is homotopy
equivalent to a maximal compact subgroup, [10], it follows that the fundamental group of
any Lie group is finitely generated. Q.E.D.

Lemma 3.2. Let Y be an abelian Lie group such that Y/Y ◦ is finitely generated. If

X is a closed subgroup of Y , then X/X◦ is finitely generated.

Proof : Replacing X by X/X◦ and Y by Y/X◦, we may assume that X is discrete.

Let π: Y → Y/Y ◦ be the canonical projection. Then X̂ = π(X) is a subgroup of a finitely
generated abelian group, and is therefore finitely generated. Moreover, the kernel K of

π̂ = π|X :X → X̂ is a discrete subgroup of Z(Y ◦), and hence, by Lemma 3.1 is also finitely
generated. Thus, X itself is finitely generated. Q.E.D.

Recall that g is called a torsion element if gn = e for some 0 6= n ∈ Z. A group is
called torsion-free if it contains no torsion elements. The rank of an abelian group A is
defined as the largest integer r ≥ 0 such that the additive group Zr is isomorphic to a
subgroup of A.

Lemma 3.3. Let A ⊆ B ⊆ C be subgroups of a finitely generated abelian group C.
If C/A and C/B are both torsion-free and have the same rank, then A = B.

† The action is called regular if its orbits form a regular foliation. We will not address this
global regularity condition here.
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Proof : Let χ:C/A→ C/B be the canonical map. Our assumption on C/A and C/B
being torsion-free abelian groups having equal rank combined with the surjectivity of χ
immediately implies that χ is an isomorphism. Q.E.D.

The next result is the descending chain condition (DCC) for “co-torsion-free” sub-
groups of abelian Lie groups.

Proposition 3.4. Suppose A1 is an abelian Lie group such that A1/A
◦
1 is finitely

generated. Let A2, A3, . . . be closed subgroups of A1 such that A1 ⊇ A2 ⊇ A3 ⊇ · · · .
Suppose that A1/Ak is torsion-free for all k ∈ N+. Then there exists n ∈ N+ such that

An = An+1 = An+2 = · · · .

Proof : Lemma 3.2 implies that Ak/A
◦
k is finitely generated for all k. Furthermore,

dimA1 ≥ dimA2 ≥ · · · ≥ 0, and hence there exists d ∈ N and m ∈ N+ such that, when
m ≤ k ∈ N, we have dimA◦

k = d, and hence A◦
k = A◦

m. Replacing each such Ak by
Ak/A

◦
k = Ak/A

◦
m, we may assume that Ak is a countable discrete group for k ≥ n. Let

rm be the rank of Am, and let sk be the rank of Am/Ak. Since sm ≤ sm+1 ≤ · · · ≤ rm,
we may choose an integer n ≥ m such that sn = sn+1 = · · · . The result then follows from
Lemma 3.3. Q.E.D.

4. Meager Sets.

In this section, we establish some general facts about meager subsets of topological
spaces and their behavior under maps. The results are stated in very general form, but
our motivational examples are the higher order frame bundles and submanifold jet bundles
associated with a smooth manifold. Basic topological definitions and facts can be found
in the standard reference [12].

Let X be a topological space. We say that a subset A ⊆ X is interior-free in X if
X \ A is dense in X , i.e., if the interior in X of A is empty. Note that, for any base B of
the topology on X ,

[ A is interior-free in X ] if and only if [ for all U ∈ B, (U ⊆ A) ⇒ (U = ∅) ].

Let A be the closure in X of A. For any open subset U of X , we say A is X-dense in U
if U ⊆ A. We say that A is somewhere dense in X if there exists a nonempty open subset
U of X such that A is X-dense in U . We say that A is nowhere dense in X if A is not
somewhere dense in X . Note that:

[ A is nowhere dense in X ] if and only if [ A is interior-free in X ].

Definition 4.1. Let X be a topological space and let S ⊆ X . The subset S is said
to be meager in X if there exists a sequence A1, A2, . . . of nowhere dense subsets of X such
that S = A1 ∪ A2 ∪ · · · .

Note that S is meager in X if and only if there exists a sequence C1, C2, . . . of interior-
free closed subsets of X such that A ⊆ C1 ∪C2 ∪ · · · . That is, a set is meager in X if and
only if it is in the σ-ideal generated by the interior-free closed subsets of X .
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We further say that

• S is nonmeager in X if S is not meager in X ;

• S is comeager in X if X \ S is meager in X ;

• X is meager-in-itself if X is a meager subset of X ;

• X is nonmeager-in-itself if X is not meager-in-itself.

For any A,B ⊆ X , the statement “A ≡ B in X”, means that (A \B) ∪ (B \A) is meager
in X . By the phrase “for essentially all x ∈ X”, we will mean “there exists a comeager
subset S ⊆ X such that, for all x ∈ S”.

A topological space X is said to have the Baire property if every nonempty open subset
of X is nonmeager in X , and hence, in particular, if nonempty, X is nonmeager-in-itself.
A Polish space is a separable completely metrizable topological space; any Polish space
has the Baire property. In particular, any manifold is Polish.

For any S ⊆ X , we say that S is almost open in X if there exists an open subset U of
X such that S ≡ U in X , while S is almost closed in X if there exists a closed subset C of
X such that S ≡ C in X . Thus, “almost open” is another way of saying that a set has the
Baire property. The boundary of any closed set is interior-free and closed, so any closed
set is ≡ its interior, and, therefore, is almost open. Thus, any almost closed set is also
almost open, and it follows that the complement of any almost open set is again almost
open. The collection B of almost open subsets of X is therefore closed under complement.
Since B is also closed under countable union, we see that B is a σ-algebra, namely that
generated by the open sets and meager sets. In measure theory, the σ-algebra generated
by open sets and null (measure zero) sets is the σ-algebra of measurable sets, and B is the
Baire categorical analogue. That is, “almost open” is the Baire categorical analogue of
“measurable”. For this reason, “Baire measurable” is sometimes used instead of “almost
open”. Construction of sets that are not almost open requires some version of the Axiom
of Choice, [23, 24].

Absoluteness of nowhere dense and meager

Let V ⊂ X be an open subset with the subspace topology inherited from X , and let
Z ⊆ V .

Lemma 4.2. [ Z is somewhere dense in X ] ⇐⇒ [ Z is somewhere dense in V ].

Proof : Let Z be the closure in X of Z. Then Z ∩ V is the closure in V of Z.

To prove =⇒ : Choose a nonempty open subset U of X such that Z is X-dense in
U . Then ∅ 6= U ⊆ Z, and so, as U is open, ∅ 6= U ∩Z ⊆ U ∩ V ⊆ Z ∩ V . Therefore, Z is
V -dense in U ∩ V , and hence is somewhere dense in V .

To prove ⇐= : Choose a nonempty open subset U of V such that Z is V -dense in U .
Then ∅ 6= U ⊆ Z ∩ V . Since U is open in V and V is open in X , we see that U is open
in X . Therefore, Z is X-dense in U , and hence somewhere dense in X . Q.E.D.

Lemma 4.2 says that “nowhere dense in X” is the same as “nowhere dense in V ”.
Since a meager set is, by definition, a countable union of nowhere dense sets, we deduce:

Corollary 4.3. [ Z is meager in X ] ⇐⇒ [ Z is meager in V . ]
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Open map preimages of small sets are small

Let X and Y be topological spaces. Let f :X → Y be continuous , meaning that the
preimage of any open subset V ⊂ Y is an open subset U = f−1(V ) ⊂ X , and open,
meaning that it maps open subsets U ⊂ X to open subsets V = f(U) ⊂ Y .

Lemma 4.4. Let C be an interior-free closed subset of Y . Then its preimage f−1(C)
is an interior-free closed subset of X .

Proof : Because f is continuous, and C is closed in Y , then f−1(C) is closed in X .
Because f is open, and C is interior-free in Y , then f−1(C) is interior-free in X . Q.E.D.

Lemma 4.5. If Z is a meager subset of Y , then f−1(Z) is a meager subset of X .

Proof : Choose a sequence C1, C2, . . . of interior-free closed subsets of Y such that
Z ⊆ C1 ∪ C2 ∪ · · · . Then, by Lemma 4.4, f−1(C1), f

−1(C2), . . . is a sequence of interior-
free closed subsets ofX such that f−1(Z) ⊆ f−1(C1∪C2∪ · · · ) = f−1(C1)∪f

−1(C2)∪ · · · ,
proving that f−1(Z) is meager in X . Q.E.D.

Small sets contain few fibers

Lemma 4.6. Let U and V be topological spaces. Let g:U → V be continuous, open,

and onto. Let P be an interior-free closed subset of U . Then there exists a dense open

subset W ⊂ V such that g−1{w} 6⊆ P for all w ∈W .

Proof : Since P is interior-free in U , its complement U \ P is dense in U and hence
W := g(U \ P ) is dense in V . Since P is closed in U , it follows that U \ P is open in U ,
and thus W is open in V . Finally, given w ∈ W , choose u ∈ U \ P such that g(u) = w.
Then u ∈ g−1{w} \ P , and hence g−1{w} 6⊆ P , as desired. Q.E.D.

When fibers of small sets are small, generically

From here on in this section, X and Y will be topological spaces, with X second
countable. Let f :X → Y be continuous and open. For all y ∈ Y , let Xy := f−1{y},

and give Xy the subspace topology inherited from X . For all S ⊆ X and y ∈ Y , let

Sy := S ∩Xy.

Lemma 4.7. Let Q be an interior-free closed subset of X . Then Qy = Q ∩ Xy is

interior-free and closed in Xy = f−1{y} for essentially all y ∈ Y .

Proof : First, since Q is closed in X , it follows that Qy is closed in Xy for all y ∈ Y .

If B is a countable base for the topology on X , then {Uy = U ∩ f−1{y} |U ∈ B } is a base

for the topology on Xy. It therefore suffices to prove that (Uy ⊆ Qy) ⇒ (Uy = ∅) for

essentially all y ∈ Y and all U ∈ B. As B is countable, we may interchange “for essentially
all y ∈ Y ” and “for all U ∈ B”. Let U ∈ B be given, so V = f(U) is open in Y . Give U and
V the subspace topologies inherited from X and Y , respectively. Because f is continuous
and open, it follows that g = f |U :U → V is continuous, open, and surjective. Since Q is
an interior-free, closed subset of X , and since U is open in X , it follows that P := Q∩U is

9



an interior-free, closed subset of U . So, by Lemma 4.6, choose a dense open subset W ⊂ V
such that g−1{w} 6⊆ P for all w ∈ W . Then Z = V \W is an interior-free closed subset
of V , and hence meager in V . Corollary 4.3 then implies that Z is meager in Y .

It therefore suffices to prove, for all y ∈ Y \ Z, that (Uy ⊆ Qy) ⇒ (Uy = ∅). We

assume, for a contradiction, that both Uy ⊆ Qy and Uy 6= ∅, and so y ∈ V = f(U). So,

since g−1{y} = U ∩ f−1{y} = U ∩ Xy = Uy ⊆ Qy ∩ U ⊆ Q ∩ U = P , we deduce that

y /∈W . Thus y ∈ V \W = Z, which contradicts the fact that y ∈ Y \ Z. Q.E.D.

Lemma 4.8. Let Z be a meager subset of X . Then Zy = Z ∩Xy is meager in Xy

for essentially all y ∈ Y .

Proof : Choose countable sequence Q1, Q2, . . ., of interior-free closed subsets ofX such
that Z ⊆ Q1 ∪Q2 ∪ · · · , whence Zy ⊆ Q1

y ∪Q
2
y ∪ · · · for all y ∈ Y . Lemma 4.7 implies that

each Qj
y is interior-free and closed in Xy for essentially all y ∈ Y and all j ∈ N. Q.E.D.

Lemma 4.9. Let f :X → Y be continuous and open, where X is second countable

and Y has the Baire property. Assume, for all y ∈ Y , that Xy = f−1{y} is almost open in

X . Let R be an almost open subset of X . If Ry = R ∩ Xy is meager in Xy for essentially

all y ∈ Y , then R is meager in X .

Proof : Choose a meager subset Z ⊂ Y such that Ry is meager in Xy for all y ∈ Y \Z.

As R is almost open in X , choose an open subset U of X such that R ≡ U in X . Then
S := (R \U)∪ (U \R) is meager in X , and it thus suffices to show that U = ∅, and hence
R = S. By Lemma 4.8, we can choose a meager subset T ⊂ Y such that Sy = S ∩ Xy is

meager in Xy for all y ∈ Y \ T . Let V := f(U), which is open in Y since f is open. We

claim that V ⊆ Z ∪T , which implies that V is also meager in Y . But V is also open in Y ,
hence V = ∅, which implies U = ∅ as desired.

To prove the claim, let y ∈ V be given. We assume that y /∈ Z ∪ T , and seek a
contradiction. Since y ∈ Y \Z and y ∈ Y \T , both Ry and Sy are meager in Xy, so Ry∪Sy

is meager in Xy. It follows that Sy = (Ry \Uy)∪(Uy \Ry) where Uy = U ∩ Xy ⊆ Ry∪Sy is

thus also meager in Xy. On the other hand, since U is open in X , it follows that Uy is open

in Xy, which is itself almost open. Together these imply Uy = ∅. However, y ∈ V = f(U),

so Uy 6= ∅, which is a contradiction. Q.E.D.

Remark : Thanks to our colleague Karel Prikry for explaining that there exists a func-
tion h : R → R whose graph is nonmeager in R2, [22]; see also [20; Theorem 15.5, p. 57].
This demonstrates the necessity of the assumption in Lemma 4.9 that R be almost open.
Without that assumption, letting R be the graph of such an h and f be the projection
map (x, y) 7→ x from R2 → R would provide a counterexample.

The next result is motivated by the Kuratowski-Ulam Theorem. An equivalent result
appears as Theorem A.1 in Appendix A of [15].

Theorem 4.10. Assume that X and Y are both Polish. Let R ⊆ X . Then the

following are equivalent: (i) R is meager in X . (ii) R is almost open in X and Ry is

meager in Xy for essentially all y ∈ Y .

10



Proof : The empty set is open, so any meager set is almost open. Thus Lemma 4.8
implies that (i) ⇒ (ii). Vice versa, since f is continuous, it follows that Xy is closed in X

for all y ∈ Y . Any closed subset of a Polish topological space is Polish, and hence Xy is

almost open for all y ∈ Y . Therefore, Lemma 4.9 implies that (ii) ⇒ (i). Q.E.D.

When preimages are meager

Lemma 4.11. Let f :X → Y be continuous, open and surjective and let S ⊆ Y .

Assume that Xy = f−1{y} is a nonmeager-in-itself for all y ∈ Y . Then the following are

equivalent: (i) S is meager in Y . (ii) f−1(S) is meager in X .

Proof : Lemma 4.5 implies that (i) ⇒ (ii). To prove that (ii) ⇒ (i), we assume that
Z := f−1(S) is meager in X . Lemma 4.8 implies Zy := Z ∩ Xy is meager in Xy for

essentially all y ∈ Y . Then W := { y ∈ Y |Zy is nonmeager in Xy } is meager in Y , so it

suffices to prove that S ⊆ W . Let y ∈ S be given. Then Xy = f−1{y} ⊆ f−1(S) = Z,

hence Zy = Z ∩Xy = Xy. But Xy is nonmeager-in-itself, and hence y ∈W . Q.E.D.

Corollary 4.12. Assume that X is Polish and that Y is T1. Let S ⊆ Y . Then the

following are equivalent: (i) S is meager in Y . (ii) f−1(S) is meager in X .

Proof : By Lemma 4.11, it suffices to show, for all y ∈ Y , that Xy = f−1{y} is

nonmeager-in-itself. As f is continuous and surjective, and Y is T1, it follows that Xy is

nonempty and closed. Since any closed subset of a Polish topological space is Polish, and
hence Baire, it follows that Xy is nonmeager-in-itself, as desired. Q.E.D.

5. Generic Freeness on Frame Bundles.

LetM be a m-dimensional connected analytic manifold. For n ∈ N, let πn:F
(n) →M

denote the nth order frame bundle over M , cf. [13]. Any local diffeomorphism Φ:M →M

has an induced action on F (n), called its nth order frame bundle prolongation. We are
interested in the freeness of the frame bundle prolongations of Lie group actions on M .

It turns out that there are examples of smooth, [2], and analytic, [3], effective trans-
formation groups that, in each frame bundle, are not free on any nonempty open set.
The main result in this section, Theorem 5.3, asserts that freeness does occur “generi-
cally” meaning on the entire fibers of F (n) sitting over a comeager invariant subset of a
nonempty open invariant subset of M . This indicates that construction of a counterex-
ample is complicated. It involves the development of a transformation that has a dense
but meager set of periodic orbits whose return maps have arbitrarily high order agreement
with the identity. This kind of “threading the needle” is found in [2] and [3].

Let D = D(M) be the pseudo-group of all local analytic diffeomorphisms ofM . Given

z ∈ M and n ∈ N, let D(n)
z ⊂ D denote the subgroup containing those diffeomorphisms

that fix z to order n.

Lemma 5.1. For any integer 1 ≤ k ≤ n, the quotient group D(k)
z /D(n)

z is torsion-free.
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Proof : By inspection of the Taylor series, D(n)
z /D(n+1)

z is seen to be isomorphic to

the additive Lie group RN where N = m
(
n+m−1

n

)
. Therefore, D(k)

z /D(n)
z is a (nilpotent)

extension of torsion-free groups, and hence torsion-free. Q.E.D.

Theorem 5.2. Let G be a connected Lie group acting analytically and effectively

on a connected manifold M . Let z ∈M and let Gz be its stabilizer subgroup. Then there

exists an integer n ∈ N+ such that the homomorphism Gz → D(0)
z /D(n)

z is injective.

Proof : For all k ≥ 0, let G(k)
z be the kernel of the homomorphism Gz → D(0)

z /D(k)
z ,

whereby

G(0)
z ⊇ G(1)

z ⊇ G(2)
z ⊇ · · · . (5.1)

By analyticity and effectiveness, we conclude that
∞⋂

k=0

G(k)
z is trivial. To show that G(n)

z

is trivial for some n ≥ 0, it suffices to show that the sequence (5.1) stabilizes. Fix ℓ ∈ N+

such that G(k)
z is discrete for all k ≥ ℓ. Let µ0 ∈ F (ℓ)|z be a fixed frame of order ℓ at the

point z. Let ε = π(e) ∈ G/G(ℓ)
z denote the image of the identity e under the canonical

map π:G→ G/G(ℓ)
z . There is a Gz-equivariant injection of G/G(ℓ)

z into F (ℓ)|z which sends

ε to µ0. It follows that G(ℓ+1)
z fixes ε to order 1, and so its action on the tangent space

T (G/G(ℓ)
z )|ε is trivial. This implies that the adjoint representation AdG(ℓ+1)

z on the Lie

algebra g of G is trivial, and therefore G(ℓ+1)
z is contained in the center of G.

Lemma 3.1 implies that G(ℓ+1)
z /(G(ℓ+1)

z )◦ is a finitely generated abelian group. For

any integer k ≥ ℓ + 1, the quotient G(ℓ+1)
z /G(k)

z injects in D(ℓ)
z /D(k)

z , which, according

to Lemma 5.1, is torsion-free; therefore, G(ℓ+1)
z /G(k)

z is itself torsion-free. Proposition 3.4

implies that the sequence (5.1) stabilizes. Q.E.D.

We can now state and prove our main result concerning freeness of group actions on
higher order frame bundles.

Theorem 5.3. Let G be a connected real Lie group that acts analytically and

effectively on a connected analytic manifold M . Then there exist

• an integer n ≥ 0,

• a nonempty G-invariant open subset U ⊂M , and

• a closed G-invariant meager subset Z ⊂M ,

such that the prolonged action of G is free on the G-invariant subset π−1
n (U \ Z) ⊂ F (n)

contained in the frame bundle of order n sitting over the comeager subset U \ Z ⊂M .

Remark : Replacing M by an open submanifold thereof, we see that the conclusion of
the theorem holds in a neighborhood of any z ∈M , although the order of freeness n may
vary from point to point. Note that U \Z is not necessarily open; indeed, in the examples
constructed in [2, 3] the meager set Z where G does not act freely is dense in U .
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Proof : For all k ∈ N, let Mk denote the G-invariant subset consisting of all z ∈ M

such that Gµ = {e} for all µ ∈ π−1
k {z} ⊂ F (k). Theorem 5.2 implies

∞⋃

k=0

Mk =M . By the

Baire Category Theorem, fix an integer n ≥ 0 such thatMn is nonmeager inM . Because G

and F (n) are σ-compact, the Arsenin-Kunugui Uniformization Theorem, cf. [11; Theorem
35.46(ii), p. 297], implies that Mn is a Borel subset of M , and is therefore almost open
in M . That is, there is an open subset V ⊂M as well as meager subsets Z ′, Z ′′ ⊂M , such
that Mn = (V \Z ′)∪Z ′′. Since Mn is nonmeager in M , we see that Mn 6⊆ Z ′′, so V 6= ∅.
Thus Z0 = V \Mn ⊆ Z ′ is meager in M , and so g · Z0 is meager in M for all g ∈ G.

Let ∆ ⊂ G be a countable dense subset. Then Z = ∆ · Z0 =
⋃

g∈∆ g · Z0 is meager

in M . We claim that Z = G · Z0. Since Z = ∆ · Z0 ⊆ G · Z0, we need only prove that
G · Z0 ⊆ Z. In other words, given g ∈ G and z ∈ Z0, we need to show that g · z ∈ Z.

The orbit map ψz:G → M given by ψz(g) = g · z is continuous, and so, since V is
open in M , it follows that Hz := ψ−1

z (V ) ⊂ G is a nonempty open subset containing e.
By density of ∆ in G, choose δ ∈ ∆ ∩ g ·H−1

z , so that h = δ−1g ∈ Hz. Since z ∈ Z0 =
V \Mn ⊆M \Mn and M \Mn is G-invariant, it follows that h · z ∈M \Mn. In addition,
h · z = ψz(h) ∈ ψz(Hz) ⊆ V , hence h · z ∈ V \Mn = Z0. Then g · z = δ · h · z ∈ ∆ ·Z0 = Z,
thus establishing our claim that Z is G-invariant.

Consider the nonempty G-invariant open subset U = G · V ⊂M . It remains to show
that the G-action on π−1

n (U \Z) ⊂ F (n) is free, i.e., that U \Z ⊆Mn. Let u = g ·v ∈ U \Z
with g ∈ G and v ∈ V . Since u 6∈ Z = G·Z0, we must have v ∈ V \Z0 = V \(V \Mn) ⊆Mn.
Finally, G-invariance of Mn implies u = g · v ∈Mn. Q.E.D.

6. Jets of Submanifolds and Diffeomorphisms.

We now turn our attention to submanifold jet bundles, referring back to Section 2 for
basic terminology. The goal of this section is to prove a key lemma that states that if a local
diffeomorphism fixes the n jets of all (or, in fact, a particular class of) submanifolds passing
through a point z ∈M , then the diffeomorphism must have the same k jet as the identity
map at z, for some (smaller) k depending on n. The proof relies on a detailed analysis of
Taylor expansions. To explain the basic idea, we first treat the simplest case: curves in
the plane. The general result will then follow by a fairly straightforward adaptation of the
univariate calculations.

The Planar Case

Let

Φ(x, u) = (ϕ(x, u), ψ(x, u)), (x, u) ∈ R2, (6.1)

be a local diffeomorphism of M = R2 such that Φ(0, 0) = (0, 0). In particular, we denote
the identity diffeomorphism by 11(x, u) ≡ (x, u). Given n ∈ N+, suppose Φ fixes the n jets
at the origin of a family of curves defined by elementary monomials:

Cd
a =

{
(x, u)

∣∣ u = axd
}
, where d ∈ N, a ∈ R, (6.2)

meaning that

Φ(n)(jnC
d
a |0) = jnC

d
a |0. (6.3)

13



Note in particular that jd−1C
d
a |0 = 0. Our goal is to prove that if (6.3) holds for certain

values of d and for all a ∈ I ⊂ R, an open subinterval, then, for some (smaller) k ∈ N+,
depending on n and d, the k jet of the diffeomorphism Φ at the origin is the identity jet:

JkΦ|0 = Jk11|0, or, equivalently, Φ ∈ D
(k)
0 . (6.4)

We use standard “big O” notation, so that given n ∈ N+ and smooth real-valued
functions f, g defined in a neighborhood of x = 0,

f(x) = g(x) + O(n) means f(x) = g(x) + xnh(x)

for some smooth h(x) and all x in some neighborhood of x = 0. Similarly,

f(x, u) = g(x, u) + O(n) means f(x, u) = g(x, u) +
n∑

i=0

xiun−ihi(x, u)

for smooth hi(x, u) and all x, u in a neighborhood of the origin. Thus, condition (6.4) is
equivalent to

ϕ(x, u) = x+O(k + 1), ψ(x, u) = u+O(k + 1). (6.5)

Observe that the diffeomorphism (6.1) preserves the n–jet at the origin of a curve
given by a graph of a smooth function h:R → R, namely,

C = {u = h(x)} with h(0) = 0,

provided
ψ(x, h(x)) = h

[
ϕ(x, h(x))

]
+O(n + 1).

Thus, condition (6.3) is equivalent to

ψ(x, axd) = aϕ(x, axd)d + xn+1h(x, a), (6.6)

where h depends smoothly on a and on x near the origin.

Lemma 6.1. Let 2 ≤ ℓ, n, d ∈ N and 0 ∈ I ⊂ R an open subinterval. If (6.6) holds
for n ≥ (ℓ− 1)d and all a ∈ I, then

xdψ(x, u) = uϕ(x, u)d +O(ℓ+ 1). (6.7)

Proof : Let cij denote the coefficient of the monomial xiuj in the Taylor expansion of

the bivariate function
F (x, u) := xdψ(x, u)− uϕ(x, u)d

at the origin. Replacing u 7−→ axd and dividing by xd produces

ga(x) := x−dF (x, axd) = ψ(x, axd)− aϕ(x, axd)d. (6.8)

The monomial cij x
iuj in the Taylor expansion of F (x, u) at x = u = 0 is mapped to

cij a
jxi+(j−1)d in that of ga(x) at x = 0, and thus, condition (6.6) implies that

cij = 0 whenever i+ (j − 1)d ≤ n. (6.9)
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Moreover, by our hypothesis, if i+ j ≤ ℓ, then

i+ (j − 1)d ≤ (ℓ− 1)d ≤ n,

by hypothesis. Thus, (6.9) implies that all the Taylor coefficients of order ≤ ℓ in F (x, u)
vanish, thereby proving (6.7). Q.E.D.

Next, let us assume that condition (6.3) holds for the two curve families Cd
a and Cd+1

a

for some r ≥ 2 and all a in some interval containing 0. Assuming

n ≥ (ℓ− 1)(d+ 1), (6.10)

Lemma 6.1 implies that (6.7) holds and, in addition,

xd+1ψ(x, u) = uϕ(x, u)d+1 +O(ℓ+ 1). (6.11)

Multiplying (6.7) by x and subtracting from (6.11) yields

uϕ(x, u)d
[
ϕ(x, u)− x

]
= O(ℓ+ 1). (6.12)

Now write

ϕ(x, u) = αx+ βu+O(2), ψ(x, u) = γ x+ δu+O(2),

where the local diffeomorphism condition requires

αδ − βγ 6= 0. (6.13)

Then, provided ℓ ≥ d+ 2, the lowest order terms in (6.12) are

u(αx+ βu)d
[
(α− 1)x+ βu

]
= 0.

This implies that β = 0, and hence, in view of (6.13), α = 1, which establishes (6.5) when
k = 1. Next, suppose, by induction on k, that we have proved

ϕ(x, u) = x+O(k), ψ(x, u) = u+O(k).

for some k ≥ 2. In particular,

ϕ(x, u) = x+

k∑

i=0

cix
iuk−i +O(k + 1)

for some c0, . . . , ck ∈ R. Assuming

ℓ ≥ k + d+ 1, (6.14)

the terms of order k + d+ 1 in (6.12) are

k∑

i=0

cix
i+duk+1−i = 0,
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which implies all ci = 0 and hence ϕ(x, u) = x + O(k + 1). Substituting this result into
(6.7), we deduce that ψ(x, u) = u + O(k + 1), and therefore (6.5) holds. Recalling the
inequalities (6.10, 14), we find that the preceding induction step remains valid provided

n ≥ (ℓ− 1)(d+ 1) ≥ (k + d)(d+ 1). (6.15)

We have thus proved the desired result:

Lemma 6.2. Let 2 ≤ k, d ∈ N. If the diffeomorphism (6.1) satisfies

Φ(n)(jnC
d
a |0) = jnC

d
a |0, Φ(n)(jnC

d+1
a |0) = jnC

d+1
a |0, (6.16)

for (k + d)(d+ 1) ≤ n ∈ N and all a in some interval containing 0, then Φ ∈ D
(k)
0 .

The General Case

The proof of the multidimensional version of Lemma 6.2 proceeds in a similar fashion.
We use the notation (x, u) = (x1, . . . , xp, u1, . . . , uq) for coordinates on M = Rm with

m = p+ q. The graphs of functions u = h(x) are thus p-dimensional submanifolds S ⊂M .
Let

Φ(x, u) = (ϕ(x, u), ψ(x, u)) =
(
ϕ1(x, u), . . . , ϕp(x, u), ψ1(x, u) . . . , ψq(x, u)

)
(6.17)

be a local diffeomorphism of Rm such that Φ(0, 0) = (0, 0). Again, 11 denotes the identity
diffeomorphism, so 11(x, u) ≡ (x, u).

Let D = (D1, . . . , Dq) ∈ (Np)q be a collection of multi-indices, with entries Dσ =
(dσ1 , . . . , d

σ
p ) ∈ Np for σ = 1, . . . , q. Let |Dσ | = dσ1 + · · · + dσp . Define the minimum and

maximum orders of D as

min ordD = min
{
|D1 |, . . . , |Dq |

}
, max ordD = max

{
|D1 |, . . . , |Dq |

}
. (6.18)

Given 1 ≤ i ≤ p, 1 ≤ σ ≤ q, let D̃σ
i ∈ (Np)q be the collection obtained by adding 1 to the

ith entry of Dσ only, and so its (τ, j)th entry is dτj + δτσδ
i
j , where δ is the usual Kronecker

symbol. Note that min ord D̃σ
i ≥ min ordD, while max ord D̃σ

i ≤ max ordD + 1, with

equality in the latter case if and only if max ordD = |Dσ |.

Given a = (a1, . . . , aq) ∈ Rq, we abbreviate a q-tuple of elementary monomials by

axD =
(
a1x

D1

, . . . , aq x
Dq )

=
(
a1x

d1
1

1 · · ·x
d1
p

p , . . . , aq x
d
q

1
1 · · ·x

dq
p

p

)
. (6.19)

Consider the corresponding p-dimensional “monomial submanifolds”†

SD
a =

{
(x, u)

∣∣ u = axD
}
=

{
(x, u)

∣∣ uσ = aσ x
Dσ

, σ = 1, . . . , q
}
⊂M. (6.20)

Note that SD
a passes through the origin, where

jℓS
D
a |0 = 0 for 0 ≤ ℓ < minordD. (6.21)

The multidimensional version of Lemma 6.2 is:

† No summations are implied by the repeated indices.
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Lemma 6.3. Let 2 ≤ k ∈ N, and let D ∈ (Np)q with d = max ordD ≥ 2. Suppose‡

(k + d+ 1)(d+ 1) ≤ n ∈ N. (6.22)

Let 0 ∈ U ⊂ Rq be an open set. If the diffeomorphism (6.17) satisfies

Φ(n)(jnS
D
a |0) = jnS

D
a |0,

Φ(n)(jnS
D̃σ

i
a |0) = jnS

D̃σ
i

a |0,
for all

i = 1, . . . , p,

σ = 1, . . . , q,
a ∈ U, (6.23)

then Φ ∈ D
(k)
0 .

Proof : We begin with the analog of Lemma 6.1.

Lemma 6.4. Let 2 ≤ ℓ ∈ N, and let D ∈ (Np)q with d = max ordD ≥ 2. Suppose

ℓd ≤ n ∈ N. If, as a function of x,

xD
σ

ψσ(x, ax
D) = aσϕ(x, ax

D)D
σ

+O(n+ 1), (6.24)

for some 1 ≤ σ ≤ q and all a ∈ U , then, as a function of x, u,

xD
σ

ψσ(x, u) = uσϕ(x, u)
Dσ

+O(ℓ+ 1). (6.25)

Proof : Let cσIJ denote the coefficient of the monomial xIuJ in the Taylor expansion
of

F σ(x, u) := xD
σ

ψσ(x, u)− uσϕ(x, u)
Dσ

at the origin. Replacing u 7−→ axD and dividing by xD
σ

produces

gσa (x) := F σ(x, axD)/xD
σ

= ψσ(x, ax
D)− aσϕ(x, ax

D)D
σ

.

Under this transformation, the monomial cσIJ x
IuJ in the Taylor expansion of F σ(x, u) at

the origin is mapped to the following monomial in the Taylor expansion of gσa (x) at the
origin:

cσIJ a
JxI+JD−Dσ

where JD := j1D
1 + · · · + jqD

q. (6.26)

Thus, condition (6.24) implies that

cσIJ = 0 whenever 0 ≤ | I + JD −Dσ | ≤ n. (6.27)

(Note that every term in F σ(x, axD) has a factor of xD
σ

and hence cσIJ = 0 ab initio if
any entry of I + J D −Dσ is negative.) Moreover, the monomial (6.26) has order

| I + JD −Dσ | = | I |+

q∑

τ=1

(jτ − δστ ) |D
τ |.

‡ This inequality is slightly different than the univariate version, owing to the extra compli-
cations involving several multi-indices.
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Under the constraint | I | + | J | ≤ ℓ, the maximal such order is ≤ ℓd and is obtained† by
setting all iν = jτ = 0 except for jρ = ℓ where ρ is such that d = max ordD = |Dρ |.

Thus, assuming n ≥ ℓd, (6.27) implies that all the Taylor coefficients of order ≤ ℓ in (6.25)
vanish, proving the result. Q.E.D.

Turning to the proof of Lemma 6.3, the first condition in (6.23) implies (6.25) holds for

all σ = 1, . . . , q provided n ≥ ℓd. The corresponding condition for D̃σ
i yields, in particular,

xix
Dσ

ψσ(x, u) = uσϕ(x, u)
Dσ

ϕi(x, u) + O(ℓ+ 1), (6.28)

provided n ≥ ℓ(d+1). On the other hand, multiplying (6.25) by xi and subtracting yields

uσϕ(x, u)
Dσ[

ϕi(x, u)− xi
]
+O(ℓ+ 1). (6.29)

By the same inductive reasoning as in the planar case, using the assumed inequality (6.22),
we deduce that

ϕi(x, u) = xi +O(k + 1), i = 1, . . . , p.

Substituting this result back into (6.25) also implies

ψσ(x, u) = uσ +O(k + 1), σ = 1, . . . , q,

which establishes the lemma. Q.E.D.

Theorem 6.5. Let k, ℓ, n ∈ N+ satisfy

(k + ℓ+ 2)(ℓ+ 2) ≤ n. (6.30)

Given an ℓth order jet z
(ℓ)
0 ∈ Jℓ|z0 based at a point z0 ∈M , let Qn

0 := (πn
ℓ )

−1{z
(ℓ)
0 } ⊂ Jn.

Suppose that Φ:M →M is a diffeomorphism such that

Φ(ℓ)(z
(ℓ)
0 ) = z

(ℓ)
0 and Φ(n)(z(n)) = z(n) for all z(n) ∈ Qn

0 . (6.31)

Then Φ ∈ D(k)
z0

, i.e., JkΦ|z0 = Jk11|z0 .

Proof : Choose local coordinates onM such that z0 = 0 and z
(ℓ)
0 = 0. Then, under the

hypothesis of the theorem, Φ(n) fixes the n jets of all p-dimensional submanifolds S ⊂ M
passing through z0 = 0 such that jℓS|0 = 0, and hence, in particular, those given by

S = SD
a , as defined in (6.20), provided ℓ < min ordD, as in (6.21). Fix D so that

ℓ+ 1 = d = |D1 | = · · · = |Dq | = min ordD = max ordD,

and let U ⊂ Rq be open. Then

jnS
D
a |z0 , jnS

D̃σ
i

a |z0 ∈ Qn
0 whenever i = 1, . . . , p, σ = 1, . . . , q, a ∈ U,

and the conclusion follows immediately from Lemma 6.3. Q.E.D.

† If ρ = σ, this may not be the index that gives the maximal order, but the maximal order
bound remains valid in all cases.
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7. Generic Freeness of Prolonged Group Actions on Jet Bundles.

We are now ready to prove our main result concerning the generic freeness of prolonged
group actions on higher order submanifold jet bundles.

Theorem 7.1. Let G be a connected Lie group that acts on a m-dimensional mani-

foldM analytically and effectively on subsets. Then, for sufficiently large n ∈ N+, there ex-

ists a nonempty G-invariant open subset of the nth order submanifold jet bundle, Wn ⊂ Jn,
and a G-invariant meager subset Zn ⊂ Jn such that the nth order prolonged action of G
on Wn \ Zn is free.

Proof : Let r = dimG. By Theorem 2.3, we can find a nonempty G-invariant dense
open subset V r ⊂ Jr such that the G-action on V r is locally free.

Next, given g ∈ G with induced diffeomorphism g:M →M , set

Ai
g :=

{
z ∈M

∣∣ g ∈ D(i)
z

}
for i ∈ N+. (7.1)

Further, let G× = G \ {e}, and define

Ai =
⋃

g∈G×

Ai
g, Bi =M \Ai. (7.2)

Observe that Ai
g ⊇ Ai+1

g , and hence Ai ⊇ Ai+1, Bi ⊆ Bi+1. Further, since h·Ai
g = Ai

hgh−1

for any h ∈ G, it follows that Ai and Bi are all G-invariant subsets ofM . By Theorem 5.2,
A0 ∩ A1 ∩ A2 ∩ · · · = ∅, hence B0 ∪ B1 ∪ B2 ∪ · · · = M . As M is Polish, we can find
2 ≤ k ∈ N such that, for all j ≥ k, the set Bj is nonmeager in M .

Recalling Theorem 6.5, we now claim that

n = (k + r + 2)(r + 2) (7.3)

satisfies the conditions described in the Theorem.

Claim 1 : The set of points in Jn where G acts freely, namely,

Sn =
{
z(n) ∈ Jn

∣∣Gz(n) = {e}
}
,

is nonmeager and G-invariant in Jn.

Proof of Claim 1 : The G-invariance of Sn is clear. We suppose that Sn is meager in
Jn, and seek a contradiction.

The canonical projection πn
r : J

n → Jr is continuous and open. Given z(r) ∈ Jr, let

Qn|z(r) := (πn
r )

−1{z(r)} ⊂ Jn, which has the subspace topology inherited from Jn. By

Lemma 4.8, Sn|z(r) := Sn ∩ Qn|z(r) is meager in Qn|z(r) for essentially all z(r) ∈ Jr.
Therefore,

T r :=
{
z(r) ∈ Jr

∣∣Sn|z(r) is nonmeager in Qn|z(r)

}

is meager in Jr.

Let π̂r
0 = πr

0 | V r:V r → M , which is continuous, open, and surjective. Since Bk is

nonmeager in M , Corollary 4.12 implies that Ur := (π̂r
0)

−1(Bk) is nonmeager in V r, and,
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by Corollary 4.3, also nonmeager in Jr. Thus, Ur \T r 6= ∅ and there exists z
(r)
0 ∈ Ur \T r,

meaning that Sn
0 := Sn|

z
(r)
0

is meager in Qn
0 := Qn|

z
(r)
0

. We set z0 = π̂r
0(z

(r)
0 ), so that

z0 ∈ Bk by construction. Since z
(r)
0 ∈ V r, its isotropy subgroup Γ := G

z
(r)
0

is a discrete

subgroup of G and hence countable. Clearly Γ · Qn
0 ⊆ Qn

0 . Moreover, Gz(n) ⊆ Γ for any

z(n) ∈ Qn
0 since πn

r (z
(n)) = z

(r)
0 . Given g ∈ Γ, let

Kn
g =

{
z(n) ∈ Qn

0

∣∣ g · z(n) = z(n)
}
.

Set Γ× = Γ \ {e}. Then

⋃

g∈Γ×

Kn
g =

{
z(n) ∈ Qn

0

∣∣ there exists g ∈ Γ such that g 6= e and g · z(n) = z(n)
}

=
{
z(n) ∈ Qn

0

∣∣Gz(n) 6= {e}
}
= Qn

0 \ Sn
0 .

Since Qn
0 is closed in Jn, which is Polish, it follows that Qn

0 is Polish, and therefore almost
open, and hence nonmeager-in-itself. Thus Qn

0 \ Sn
0 is nonmeager in Qn

0 . We can hence
choose g0 ∈ Γ× such that Kn

g0
is nonmeager in Qn

0 . Since K
n
g0

is also closed in Qn
0 , it is not

interior free in Qn
0 , so let K̂n

g0
6= ∅ be its interior in Qn

0 . For any K ⊆ Qn
0 , let σ(K) denote

the set of its limit points in Qn
0 . Because Q

n
0 admits a Cω-manifold structure under which

the prolonged action of g0 is analytic, we conclude that σ(K̂n
g0
) ⊆ σ(Kn

g0
) ⊆ K̂n

g0
⊆ Kn

g0
.

Thus, K̂n
g0

is both closed and open in Qn
0 and hence, since Qn

0 is connected, K̂n
g0

= Qn
0 .

Consequently, according to (7.3), the diffeomorphism Φ = g0 of M determined by

g0 satisfies all the hypotheses of Theorem 6.5, and hence g0 ∈ D(k)
z0

. Hence, by (7.1),

z0 ∈ Ak
g0

⊂ Ak. On the other hand, we already established that z0 ∈ Bk =M \Ak, which

produces our desired contradiction. End of proof of Claim 1.

Next, consider the closed subset

{
(g, z(n)) ∈ G× × Jn

∣∣ g · z(n) = z(n)
}
⊂ G× × Jn = (G \ {e})× Jn.

Under the projection mapping G× × Jn → Jn, its image is Jn \ Sn, which is thus an
analytic subset of Jn, and hence, by, e.g., [11; Theorem 21.6, p. 153], almost open in Jn.
Thus, its complement Sn is also almost open in Jn. Choose an open subset Wn

0 ⊂ Jn such
that Wn

0 ≡ Sn in Jn. As a consequence of Claim 1, Wn
0 is also nonmeager in Jn, and so

Wn
0 6= ∅. Let ∆ be a countable dense subset of G, and set Wn := ∆ ·Wn

0 6= ∅.

Claim 2 : G ·Wn
0 ⊆Wn.

Proof of Claim 2 : Let g ∈ G and z
(n)
0 ∈ Wn

0 be given. We wish to show that

g · z
(n)
0 ∈ Wn. Since the orbit map ψ

z
(n)
0

: g 7→ g · z
(n)
0 from G to Jn is continuous,

and Wn
0 is open in Jn, we can choose an open neighborhood H of e in G such that

H · z
(n)
0 ⊆Wn

0 . By density of ∆ in G, choose δ ∈ ∆ ∩ gH−1. Set h := δ−1 g ∈ H, so that

g · z
(n)
0 = δ · h · z

(n)
0 ∈ ∆ ·H · z

(n)
0 ⊆ ∆ ·Wn

0 = Wn, as desired. End of proof of Claim 2.

Claim 2 implies G ·Wn = G · ∆ ·Wn
0 = G ·Wn

0 ⊆ Wn, and so Wn is G-invariant.
Since ∆ is countable and Wn

0 ≡ Sn in Jn, we have Wn = ∆ ·Wn
0 ≡ ∆ · Sn = Sn in Jn.

Thus, Zn =Wn \ Sn is both G-invariant and meager in Jn, as desired. Q.E.D.
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