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Abstract. Direct reductions of partial differential equations to systems of ordinary
differential equations are in one-to-one correspondence with compatible differential con-
straints. The differential constraint method is applied to prove that a parabolic evolution
equation admits infinitely many characteristic second order reductions, but admits a non-
characteristic second order reduction if and only if it is linearizable.

1. Introduction.

One of the most useful methods for determining particular explicit solutions to partial
differential equations is to reduce them to ordinary differential equations (which are pre-
sumably easier to solve) through a suitably inspired ansatz. The classical Lie method for
finding group-invariant solutions, first described in full generality in [7], generalizes and in-
cludes well-known methods for finding similarity solutions, travelling wave solutions, and
other basic reduction methods. For example, the solutions which are invariant under a
one-parameter symmetry group of a partial differential equation in two independent vari-
ables can be found by solving a reduced ordinary differential equation. In [1], Bluman and
Cole extended Lie’s reduction method to include nonclassical symmetry groups, where the
invariance of the partial differential equation is only required on its intersection with the
invariant surface condition characterizing the group-invariant functions. An alternative
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direct reduction method was proposed by Clarkson and Kruskal, [2], where a systematic
approach for determining ansatze which reduce the partial differential equation to a single
ordinary differential equation was developed and subsequently applied to many partial dif-
ferential equations arising in a wide variety of physical systems. It was then realized that
the direct approach is included in the nonclassical method, [6], although the latter slightly
more general owing to a restriction on the type of ansatz allowed, [12]. More recently, in a
study of blow-up of solutions to nonlinear diffusion equations, Galaktionov, [3], proposed a
generalization of the direct method, which he called the method of “nonlinear separation”,
in which the ansatz involves two different functions of the similarity variable, and the
partial differential equation reduces to a system of ordinary differential equations for the
two unknown functions. One can readily envision extending Galaktionov’s method to even
more unknown functions, although at present I am unaware of any significant examples.

Earlier, Philip Rosenau and I, [14], [15], showed how (almost) all known reduction
methods, including the classical and nonclassical methods, partial invariance, separation of
variables, etc., can be placed into a general framework. The general formulation requires
that the original system of partial differential equations be enlarged by appending addi-
tional differential constraints (called “side conditions” in our work), such that the resulting
overdetermined system of partial differential equations satisfy some form of compatibility
condition. Special cases of this approach appear in the earlier work of Yanenko, [20], and
Meleshko, [9], and more recent extensions appear in the work of Vorob’ev, [18], [19]. For
example, in the classical and nonclassical methods, the differential constraint is the invari-
ant surface condition, and its compatibility with the partial differential equation implies
that the ansatz based on similarity variables (group invariants) reduces the equation to
an ordinary differential equation. Methods based on the Riquier—Ritt theory of overdeter-
mined systems of partial differential equations, [16], and differential Grébner bases, [8],
can then, at least in principle, be effectively used to analyze these systems, and thereby
determine classes of useful, compatible differential constraints.

This paper is devoted to a systematic study of the relationship between the higher
order direct method of Galaktionov, and the method of differential constraints. The main
result is that a partial differential equation admits a direct reduction to a system of k
ordinary differential equations for k& unknown functions of a single “similarity variable” if
and only if an associated ktP order differential constraint is compatible with the equation.
The constraint itself is not a general kt® order partial differential equation, but, rather, a
parametrized kth order ordinary differential equation written in a more general coordinate
system. Thus, one can analyze reductions of the partial differential equation to (systems
of) ordinary differential equations using either a direct analysis based on the Clarkson—
Kruskal approach, or an analysis of the compatibility of the differential constraints. In
answer to the obvious question of which of the two methods is more effective to use in
practice, I have found that, based on computational experience, the Clarkson—Kruskal
direct method appears to be easier to implement than the constraint method for first or-
der reductions. However, second and higher order reductions appear to be more readily
determined using the differential constraint method. In section 3, we illustrate how to ef-
fectively implement the constraint method by proving the striking result that a parabolic
evolution equation of the particular form uw, = u,, + P(x,u,u,), which includes Galak-
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tionov’s original example, admits a second order direct reduction with similarity variable
not equal to the time t if and only if the equation is equivalent, via a change of variables,
to either a linear equation, or to a forced Burgers’ equation, which in turn is linearizable
through a transformation of Hopf—Cole type. Thus, the Galaktionov reduction example,
which uses ¢ as the similarity variable, cannot, except for these very special equations,
be extended to more general similarity variables. On the other hand, any second order
evolution equation admits infinitely many second order direct redutions whose similarity
variable is t. The differential constraint method used to prove these two results is easily
applicable to a wide variety of equations, the required calculations being very reminiscent
of those needed to solve the determining equations for the symmetry groups of the system
of partial differential equations, [13].

2. Compatibility and Reduction.

For the most part, we will concentrate on the simple case of a single second order
partial differential equations in two independent and one dependent variables, but our
results can be straightforwardly generalized to arbitrary higher order systems of partial
differential equations. Consider a partial differential equation of the form

A(ajvt7u?“m?“t?“mx?“xt?“tt) =0, (1)

where z,t are independent variables and u = f(z,t) the dependent variable. The differen-
tial equation admits a direct reduction if there exist functions z = ((z,t), u = U(x,t,w),
such that the Clarkson—Kruskal ansatz

u(z,t) = Uz, t,w(z)) = U(x,t,w(((x,t))), (2)

reduces (1) to a single ordinary differential equation for w = w(z). The ansatz (2) includes
as a special case the classical method of Lie, [7], for finding group-invariant solutions to
the partial differential equation (1) under a one-parameter symmetry group, in which case
((x,t) is the similarity variable. Note that U is not uniquely determined since we can
incorporate any function of the similarity variable ( into w.

As was shown by Levi and Winternitz, [6], and Nucci and Clarkson, [12], there is
a simple correspondence between direct reductions and nonclassical symmetries of the
Bluman and Cole type, [1]. Let v = 7(z,t)0, + &(x,t)0, be any vector field such that
v(¢) =0, i.e., ((z,t) is the unique (up to functions thereof) invariant of the one-parameter
group generated by v. (Note that v is only determined up to an overall functional multiple
— for example, if 7 # 0 we can divide through by 7 and replace v by the simpler vector
field v =0, + o(x,t)0,.) Applying v to the ansatz (2), we find

Tu, +&u, = 17U, + (U, =V (z, t,w). (3)

On the other hand, assuming U,, # 0, we can solve (2) for w = W (z, ¢, u) using the Implicit
Function Theorem. (We avoid singular points, and note that if U, = 0, the ansatz would
not explicitly depend on w.) Substituting this into the right hand side of (3), we find that
if u has the form (2), then it satisfies a first order quasi-linear partial differential equation
of the form

v(u) = 7(x, t)u, + &(z, t)u, = o(x,t,u). (4)
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Conversely, suppose u satisfies an equation of the form (4). Assuming v # 0, we let
z = ((z,t) be the unique (local) invariant of v, and define y = n(x,t) so that v({) = 0,
v(n) = 1. Thus, the (y,2) coordinates serve to rectify the vector field, v = d,, and (4)
reduces to a parametrized first order ordinary differential equation

Uy = w(y,z,u). (5)

Fixing y,, the general solution to the initial value problem for (5) with u(y,, 2) = w(z),
say, has the form u = U(y, z,w(z)). Replacing y and z by their formulas in terms of x,t
leads us to the conclusion that u satisfies a direct reduction type ansatz. We have therefore

proved:

Proposition 1. There is a one-to-one correspondence between ansatze of the direct
reduction form (1) with U, # 0 and quasi-linear first order differential constraints (4).

Solutions u = f(x,t) to (4) are just the functions which are invariant under the one-
parameter group generated by the vector field

w = 7(z,t)0, + &{(,t)0, + p(x,t,u)0,. (6)

Note in particular that w generates a group of “fiber-preserving transformations”, meaning
that the transformations in z and ¢ do not depend on the coordinate u.

In the direct method, one requires that the ansatz (2) reduces the partial differential
equation (1) to an ordinary differential equation. In the nonclassical method of Bluman
and Cole, one requires that the differential constraint (4) which requires the solution to
be invariant under the group generated by w be compatible with the original partial
differential equation (1), in the sense that the overdetermined system of partial differential
equations defined by (1), (4), has no integrability conditions.

Theorem 2. The ansatz (2) will reduce the partial differential equation (1) to a
single ordinary differential equation for w(z) if and only if the overdetermined system of
partial differential equations defined by (1), (4), is compatible.

Proof: The proof is based on the method introduced in [14] for studying nonclassical
and more general reductions of partial differential equations. Let y = n(x,t),z = {(x,t),
and v = w(x,t,u) be rectifying coordinates for the vector field w = 0,. Then the dif-
ferential constraint takes the simple form v, = 0 in these coordinates, leading to the
simplified ansatz v = v(z), which is just (2) rewritten in the (y, z,v) coordinates. Rewrite
the differential equation (1) in these coordinates,

~

A(y7 z? /U, vy? vz? Uyy? v

=0.

yz) Uzz)

Now, if v satisfies the constraint v, = 0, then the equation reduces to

Ay, z,v,0,v,,0,0,v_.) =0,

)y Yz
which will be an ordinary differential equation for v as a function of z if and only if, apart
for an overall factor, it is independent of y. To remove this ambiguity, we solve for v, _,

v, = F(y,z,v,v,v,,v,,v,.) (7)
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The reduction
Ver = F(y,Z,’U,O v 070>7

s Uz

is equivalent to a single ordinary differential equation if and only if F(y, z,v,0,v,,0,0) is
independent of y.

On the other hand, the compatibility condition between (7) and the constraint v, =0
is found by a simple cross differentiation:

0= Vyow = DyF = Fy + vav + vnyvy + vyszz + vynyvyy + vyyszyz.

This will be satisfied, and hence the overdetermined system will be compatible, if and
only if it vanishes as a differential consequence of the constraint v, = 0, which means
F,(y,2,v,0,v,,0,0) = 0. The equivalence of the two conditions is now clear, and the

theorem is proven. Q.E.D.

Thus, there is a one-to-one correspondence between direct reductions of the partial
differential equation (1) and compatible first order quasi-linear differential constraints.
The general nonclassical method, which allows arbitrary point transformation symmetry
groups, so that £ and 7 in (6) can also depend on wu, is similarly equivalent to the more
general, (but much harder to deal with) ansatz

u=U(z,t,w(z)) =U(z,t,w(((z,t,u)). (8)

We have thus rederived the well-known connection between the Bluman-Cole nonclassical
method and the Clarkson-Kruskal direct method, [6], [12].

In Galaktionov’s generalization of the direct method, one makes a more general ansatz

u(z,t) = Uz, t,w,(2), wy(z)) = U(a:,t,wl(C(x,t)),w2(((a:,t))), (9)

depending on two unknown functions w;,w,, depending on the similarity variable z =
((x,t), and requires that it reduce the partial differential equation (1) to a coupled system
of ordinary differential equations for w,(z) and wy(z). The generalization of the ansatz
(9) to more than two functions is clear, but, to keep the exposition simple, we will usually
restrict our attention to a second order direct reduction here. In general, we define the order
of a direct reduction ansatz to be the number of (independent) functions of the similarity
variable, so that the original Clarkson-Kruskal ansatz has order one. The second order
analogue of the equivalent first order constraint (4) is obtained as follows. As above, (9),
let v =170, +£0, be a vector field with ((x,t) as its invariant function. If we differentiate
the ansatz (9) twice with respect to v we find equations of the form

v(u) =V(z,t,w,w,), (10)

~

V2(u) = V(z,t,wy,w,), (11)
where

V(’LL) = 7-ut + Eumv

V() = V(V(W) = Py + 27€uyy + Py + (14 €y + (76 + €6, D)
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Assuming that the 2 x 2 Jacobian determinant of U,V with respect to w,, w, is nonzero,
we can use the Implicit Function Theorem to solve (9), (11), for

wy = Wi(x, t,u,v(u)), wy = Wy(x,t,u, v(u)). (13)

(If the Jacobian determinant is identically zero, then the constraint will be of the form
u = ﬁ(m, t, F(x,t,wy,w,)), and so is actually a first order constraint for the combination
w = F(x,t,w;,w,).) Substituting (13) into (11), we conclude that u satisfies a second
order differential equation of the form

vi(u) = ®(x,t,u,v(u)). (14)

If we substitute the explicit formulae (12) for the derivatives of u with respect to v, we see
that the constraint (14) looks like a second order quasi-linear partial differential equation,
but it is really just an ordinary differential equation in disguise. This fact becomes clear in
the rectifying (y, 2) coordinates for v = d,, in terms of which (14) reduces to a parametrized
second order ordinary differential equation

u,, =V (y, z,u,u,). (15)

Thus, the ansétze of the form (9) correspond to a particular types of quasi-linear second
order differential constraints.

Conversely, the general solution to a differential constraint of the form (14), or, in the
rectifying coordinates, (15), is found by solving the initial value problem for (15) with initial
data u(yy, z) = wy (2), u, (Yo, 2) = wy(2). The solution has the form u = Uy, wy(2), wy(2)).
Replacing y and z by their formulas in terms of z,t¢ leads us to the conclusion that
satisfies an ansatz of the form (8). We have therefore proved the analogue of Proposition 1
in the second order case. The nth order generalization of this result is proved by analogous
methods.

Proposition 3. There is a one-to-one correspondence between direct reduction an-
satze of order n,

u(z,t) =Ul(x,t,w(2),...,w,(2)), z = ((z,t), (16)
and nth order differential constraints of the form
vi(u) = ®(z,t,u, v(u),...,v" 1 (u)). (17)

The analogue of Theorem 2 can now be easily guessed. The proof, though, is more
complicated, since, in contrast to the first order case, we cannot automatically reduce a
second order constraint to the simple form u,, = 0 through a clever change of coordinates.
(This is because not every second order ordinary differential equation can be linearized by
a point transformation; see [17] and [5] for explicit necessary and sufficient conditions for
effecting such a linearization.)

Theorem 4. The ansatz (16) will reduce the partial differential equation (1) to a
coupled system of n distinct ordinary differential equations for w,(z),...,w, (z), if and
only if the overdetermined system of partial differential equations defined by (1), (17) is
compatible.



Proof: For simplicity, we only prove Theorem 4 for second order reductions/con-
straints. As in the proof of Theorem 2, we begin by introducing rectifying coordinates
y =n(z,t), z = ((x,t), the vector field v, so the differential constraint takes the form (15).
Rewrite the original differential equation (1) in these coordinates,

~

A(Y, 2, Uy Uy Uy Uy Uy 5 ) = 0. (18)

Substitution of the ansatz (9), which is now u = U(y, 2, w,(2),wy(2)), into the partial
differential equation (18) leads to an equation of the form

Yy’ “yzo

H(y, z, wy, wy, w], why, wy,wy) = 0. (19)

Lemma 5. Equation (19) reduces to a pair of ordinary differential equations for
wy(2), wy(z), if and only if
H, =AH+ BH,, (20)

for functions A, B depending on y, z, and w,,w, and their derivatives.

Remark: The two ordinary differential equations for w,,w, will be independent pro-
vided H, # CH for some function C. However, this does not guarantee that the two
equations form a normal system for wy, w,; for example, they might define an overdeter-
mined system of ordinary differential equations for some combination W (z, w,w,). Such
technical complications can be avoided by assuming that a particular 2 x 2 Wronskian
matrix is nonsingular. For example, if

_Hwi/ Hwé/
H

" "
yw;y Ywy

det #0,

then the system is a normal second order system for w,, w,. Similarly, if Hwi’ = ng =0,

while = =
det ‘Hy N # 0,
wl wa

then the equation reduces to a normal first order system of ordinary differential equations
for wy,w,. Thus, by analyzing the resulting system, or the function H itself, one can
ensure that the system of ordinary differential equations for w,, w, is normal, and so we
will not comment further on this technical complication.

Proof: For each fixed value of y, (19) will determine a ordinary differential equation
(usually of second order) for w, (2), wy(2). Moreover, every y derivative of H, i.e., H, =0,
H,, =0, etc., will have the same property. Now, if w; and w, are to satisty only two
ordinary differential equations, then exactly two of these infinitely many conditions can be
independent. This implies, in particular, that H,, must vanish as a direct consequence of
the conditions H = 0 and H, = 0, which implies that an identity of the form (20) holds.

Conversely, suppose that H satisfies (20), which we now regard as a linear, homoge-
neous second order ordinary differential equation for H as a function of y, with z, w,, w,,
etc. entering as parameters. Choose y, so that the two equations

/ / " "\ — / / " 1
Fy (2w, wy, wh, wy, wi, wy) = H(Yg, 2, Wy, W, W, Wh, Wy, wy) )

0
. e

/ / 17 "N — / / 1 i
Fy (2, wy 5 wo, wy, wy, wy, wy) = Hy(y07 2, Wy, Wy, W, Wa, Wy, W) )
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are independent, and hence define a pair of ordinary differential equations for w, (z), wy(2).
Assuming the reduction is of order two, this will always be possible, since otherwise we
would have an identity of the form H, = AH, which, by the method used below to analyze
(20), will imply that the equation reduces to a single ordinary differential equation for
some combination w = W (y, z, w,, w,), which implies that the original ansatz was really a
first order reduction for the single unknown w. By linearity, the solution to (20) then has
the form
H=FHY + F,H®,

where H(M) | H®2) are functions of y, 2, w,, w,, w}, wh, w!,wy, and form a fundamental set
of solutions with initial conditions HW|, =1, HM| =0, H?| =0, H|, = 1.
Therefore, if w,, w, solve the system (21), then H = 0 for all y, as desired. Q.E.D.

Using the definition of H, we find (20) has the form
D;A=AA+BD,A, whenever  u = U(y, z,w,,w,), (22)

where g, B are obtained by replacing w,, w,, and their derivatives according to (13), which,
in the y, z coordinates, takes the form

w, = Wy(y, 2,u,u,), wy = Wy(y, 2,u,u,),

and its derivatives. On the other hand, the partial differential equation (18) and the
differential constraint (15) will be compatible if and only if

D2A = AA+ B D_A, whenever u,, =V, (23)

vy

for functions Z, B. The equivalence of conditions (22), (23) relies on a simple lemma,
whose proof is left to the reader.

Lemma 6. Consider the ansatz u = U(y, z, w, (%), wy(2)), and the equivalent second
order differential constraint Uy, = U(y, z,u,uy). A function P depending on vy, z,u, and
derivatives of u vanishes when w = U if and only if it vanishes when we substitute the
constraint u,, =V and all its derivatives.

This completes the proof of our basic Theorem 4. Q.E.D.
Example 7. Galaktionov’s simplest example, [3], is the parabolic equation
Uy = Uy +ug + 0, (24)
which arises in the study of heat propagation. He proved that the ansatz
u(z,t) = wy(t) + wy(t) cosx, (25)
reduces (24) to the first order planar dynamical system
w) = w? + w3, Wy = 2w, Wy — Wy, (26)
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The resulting solutions are of great value in studying the blow up of general solutions to
(24), where the standard methods based on similarity solutions (of which there are none)
fail.

The similarity variable is ¢, and the differential constraint corresponding to (25) is
u,, — (cotx)u, =0, (27)

which has the equivalent first order form

u, — u2 —u? — (cot 2)u, = 0. (28)
The compatibility condition for the overdetermined system (24), (28), is found by differ-
entiating (24) with respect to t and (28) twice with respect to x and eliminating the third
derivative u,,,. The result is easily found to vanish as a direct consequence of the two
equations, and so, as guaranteed by Theorem 4, the overdetermined system is compatible.

Remark: In Galaktionov’s approach, one begins by making the more general nonlinear
separation ansatz u = wy(t) + w,(t)v(z), and then finds that only very special functions
v(z) — namely translates of the cosine — will render the resulting equation solvable.
Another nonlinear separation ansatz, namely u = U(w,(z;) + wy(zy)) where w; and w,
are functions of different similarity variables z; = {;(z,t), z, = (5(z,t), was considered by
Miller and Rubel, [11], in a recent analysis of Laplace—Beltrami equations on Riemannian
surfaces. These and similar reductions are governed by particular types of third order
differential constraints.

Finally, we investigate whether one might reasonably allow more general types of dif-
ferential constraints. The problem here is that, if one allows completely general constraints,
there are always infinitely many, although their determination is problematic. This state-
ment is not as surprising as it might appear at first if one considers compatible zeroth
order constraints. A zerot! order differential constraint takes the form w = f(z,t), and
is compatible if and only if f is a solution to the partial differential equation (1), so that
any differential equation trivially admits infinitely many compatible first order constraints;
however, they cannot all be found without having already solved the equation! Therefore
it is not so surprising that the equation admits infinitely many differential constraints of
arbitrary order. However, the constraints are not necessarily of the required form (17) for
the direct reduction approach, and so may be of little help for finding explicit solutions to
the partial differential equation. We outline a proof of this result in the case of first order
differential constraints.

Theorem 8. A second order partial differential equation admits infinitely many
compatible first order differential constraints

Qz,t,u,u,,u,) = 0. (29)
Proof: Consider the case when the equation is an evolution equation
u, = K(x,t,u,u,,u,,)
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first, which we rewrite in the more convenient form

u = P($7t7u7um7ut>' (30)

xrxr

We also assume that the constraint (29) can be solved for
u, = F(z,t,u,u,). (31)
The integrability condition between (30) and (31) is found by comparing the expressions
for u,.,. Differentiating (31) and using the equation (30), we find
Uy, = X(z,t,u,u,, F(l)) = ﬁxF, uy =Y (x,t,u,u,, F(l)) = ZA)tF,

where we use the modified total derivative operators
D,=9, +u,d,+Ld,, D,=0d,+Pd, +X0,,

and where P = P(z,t,u,u,, F') is obtained by replacing u, in P according to (31). There-
fore, R
Upor = Az, t,u,uy, F®?) = D X, (32)

is a function depending on the variables z, ¢, u, u, and second order derivatives of F' with
respect to these variables, whose explicit form could be readily computed if desired. On
the other hand, differentiating (30) gives an alternative expression

= B(z,t,u,u,, F?) = D,P. (33)

umxt

Equating the two formulas for u_,,, we conclude that the differential constraint (31) will be
compatible with the equation (30) if and only if the function F(z,t,u,p) satisfies a single

(complicated) second order partial differential equation, namely A = B. Generically,
we can solve for F . say, and so, if the equation is analytic, the Cauchy-Kovalevskaya

Existence Theorem will guarantee the existence of infinitely many solutions.

The proof for a general second order partial differential equation (1) is similar. Indeed,
expressing the constraint in the form (31) and differentiating, we can find formulas for
u,, and u,, solely in terms of z,t,u,u,,u;,u,,. Substituting these into (1) reduces it
to an equation of the form (30) once we solve for u,,. This completes the proof of the
theorem. Q.E.D.

3. Evolution Equations.

In this section, we investigate the second order direct reduction method for the par-
ticular example of a second order evolution equation

u, = K(z,t,u,uy,u,,). (34)

Assume first that the similarity variable is not z = t, i.e., is not characteristic. Then

the associated vector field can be taken in the reduced form v = 0, + &(x,t)d,, and the
constraint (14) has the form

gy + 26u, + 2y, + (& +EE ) u, = O(x,t, u,u, + Euy). (35)
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The compatibility of (34) and (35) is most easily determined if we first solve (1) for the
second derivative (assuming the equation is of truly second order)

u,, = Pz, t,u,u,,u,). (36)

xT

Therefore, we can eliminate the variable u,, from the constraint equation (35) by replacing
it by P. In order to simplify the explicit formulas, it is helpful to generalize the constraint,
and consider one of the more general form

uy = Q(z, t,u,uy,u,,) = alz, t)u,, + Bz, t,u,u,, u,), (37)

which, by the preceding remark, includes those leading to direct reductions of order 2.
Cross-differentiating (36), (37) leads to the compatibility conditions

D?P = D?(au,, + B). (38)

To analyze the compatibility condition (38), we replace the second and third order deriva-
tives Uy, Uy, Uppws Uprrs Uppes Uy, DY their expressions obtained from (36), (37), and
their derivatives, namely,

umxw = Da:P7 umxt = DtP7 uxtt = Dm(au:ﬂt + B)’ uttt = Dt(au:ﬂt + B)’ (39)

each of which can, in turn, be rewritten in terms of the remaining variables, which are
x,t,u,uy, u,, and u,,. The result of substituting into (38) will be an equation which
depends on z,t,u,u,,u, is a fairly arbitrary manner, but which is a polynomial in the
second order derivative variable u,,. Analysis of the coefficients of the powers of u,,
will provide powerful necessary conditions for the existence of such reductions. We will

illustrate the method in a particular case below.
On the other hand, if the similarity variable is characteristic, so {(x,t) = t, then the
vector field can be taken to be v = 0, and hence the constraint (14) has the simpler form
Uy, = Pz, t,u,u,). (40)

xrx

Now, using (36), we can eliminate u,, from the constraint equation (40), and so such
reductions are associated with a first order constraint

P(x,t,u,u,,u,) = ®(x,t,u,u,). (41)

Assuming P, # 0, any first order constraint can be rewritten in the form (41). Therefore,
as a consequence of Theorem 8, we find that there are infinitely many compatible con-
straints of this type, and so the equation (34) admits an infinite number of second order
direct reductions in which t is the similarity variable! The analysis of these reductions is
complicated, being governed by the solutions to the second order partial differential equa-
tion obtained by equating (32) and (33), and so one is forced to impose additional forms
on the ansatz (9), such as that of Galaktionov, in order to pin down reductions which can
be practically and explicitly analyzed.

The method of determining the compatibility of the system (34), (37) is very rem-
iniscent of the methods for computing symmetry groups of differential equations. One
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uses conditions involving higher order derivatives which don’t appear in the original func-
tions (in this case u,,) to deduce restrictions on the form these functions take in their
dependence on some of the lower order derivatives. Substituting these expressions into
the compatibility conditions leads to a new set of restrictions and so on. With enough
computational stamina and/or ingenuity one can effectively determine the complete set of
compatible second order differential constraints of the form (37). Here, for simplicity, we
shall illustrate this technique with a particular class of equations, of the form

Up = Uy — H(m,t,u,ux), (42)
and prove the following remarkable result.

Theorem 9. If the parabolic equation (42) is compatible with a differential con-
straint of the form (37), then the equation is equivalent, under a change of variables
v = @(x,t,u), to either a linear partial differential equation or to an equation of Burgers’
type

v, = v,, +vu, + h(z,t). (43)

Note that the Burgers’ equation (43) can itself, be linearized by the Hopf-Cole trans-
formation
v = 2(logw),, (44)

so that w satisfies the linear equation
w, = w,, — h(z, t)w. (45)

Corollary 10. If a parabolic equation of the form (42) admits a second order direct
reduction with respect to a non-characteristic similarity variable, then the equation can
be linearized using via a change of variables and/or a Hopf-Cole transformation.

Remark: The linear and Burgers’ type equations are also distinguished by the fact that
any equation of the form (42) which possesses a generalized symmetry of order five or more,
or even a formal symmetry of rank five or more (and, in particular, a recursion operator),
is necessarily equivalent to such an equation; see [10]. I do not know whether there is a
deep connection between the higher order direct reduction method and the existence of
formal symmetries and/or recursion operators. For example, an interesting speculation
is whether the only general second order evolution equations admitting a second order
reduction are those possessing higher order symmetries, of which there are two further
inequivalent canonical forms:

2 2

u, = (u“u, + cxu+ du),, u, = (u “u,), + 1.

Proof of Theorem 8.
To analyze the compatibility conditions (38), it is useful to introduce the modified
total derivative operators:
=0, +u,0,+ P9, +wu,0, +X0,

(46)
=0, +u0, + uma% + Q@ut + Yauzt,

D,
D,
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whose coefficients are given as the values of the associated derivatives of u when evaluated
on solutions to the overdetermined system (42), (37):

Uy, =P =u,+ H(z,t,u,u,),
uy = Q = ou,, + B(x,t,u,u,,u,),
umxt =X = ﬁtP = Q + Ht +utHu + uxtl—‘]ugC
= (oz—i—Huz)uxt + C(x, t,u,uy, u,),
Uy =Y = D,Q = aX + ayu,, + B, +u,B, + PB, +u,B,,
— (a2 +aH, +oa,+ But) Uy + E(z, 6 u,uy,uy).

Note that if F(z,t,u,u,,u;,u,,) is any function, then, as remarked earlier, on solutions
to the overdetermined system, the total derivatives D, F' and D, F reduce to functions de-

pending only on z, ¢, u, u,, u,, u,,, which are given explicitly as f)xF and ﬁtF , respectively.
In particular, the integrability condition (38) reduces to

Z=W, where Z=D,X, W=D,Y. (48)

We now analyze Z and W in (48) using the explicit formulas (46), (47). First, the
coefficient of u2, in (48) is found to be

H =B

Ugp Uy Ut
Differentiating with respect to u,, and recalling that H does not depend on this variable,
we deduce that B is a quadratic function of u, of the form

B=1H,

=3 qu+Kut+L, (49)

u

where K and L depend on x,t,u,u,. Substituting (49) into (47), (48), and using the fact
that the dependence of B on u, is now fixed, we find that the coefficient of u?u_, in the
resulting equation is

H =2H

1
27 UgUg Uy Ug Ug Ug

which implies that H is a quadratic function of u,. Therefore, our preliminary analysis
has demonstrated the following.

Lemma 11. Ifthe parabolic equation (42) is compatible with a differential constraint
of the form (37), then it necessarily has the form

u, = u,, — Ru2 — Su, — T, (50)
where R, S, T depend only on x,t,u.

At this point we could continue the direct analysis of the integrability conditions
for equations of the form (50). However, the computations rapidly become extremely
complicated, it becomes important to recognize that a straightforward change of variables
can be profitably used to map the equation (50) to a simpler, more readily analyzed form.

13



Lemma 12. Any equation of the form (50) can, through a change of variables of the
form u — @(z,t,u), be mapped to one without the quadratic term in u,, i.e., with R = 0.

Proof: If v = p(x,t,u), then

r T

_ @qﬁ Qhu _ @) ,
gou gou gou

Uy = Upy = Py (ut = Ugy
Hence if we set ¢ = [exp (= [* R(z,t,a) du) du, S = 1o, S + ¢, T = 0, T + ¢,,, then

vt—vm—l—gvm—f—f:gou (ut—um—l—Rui—I—Sum—I—T),
proving the lemma. Q.E.D.

Therefore, without loss of generality, we can assume that our evolution equation has
the simplified quasi-linear form

uy = u,, — Sz, t,u)u, —T(x,t,u). (51)
Furthermore, according to (49), the differential constraint has the simplified form
uy = oz, t)u,, + K(x,t,u,u,)u, + Lz, t,u,u,). (52)

The coefficients of the various independent derivatives of u in the compatibility condition
(48) are now analyzed in order. First, the coefficient of w,u,, implies that K, = S,
hence K = S,u, + J(z,t,u). Using this, the coefficient of uZu,, implies S,, = 0, so
S = B(x,t)u+ y(z,t). The analysis now splits into two subcases depending upon whether
[ is zero or not.

Suppose first that 5 # 0. Then the change of variables u — fu + v + 2(5,/5), will
map equation (51), with S = Su + ~, to a simpler equation of the form

Uy = Uy, — U, — T(x,t,u). (53)

Moreover, the differential constraint (52) has K = u, + J(x,t,u). The resulting coefficient
of u u,, in (48) implies J, = —u— 3, so J = —iu?—Lau+k(z,t). Finally, the remaining

. . o 1 1 . .
coefficient of u,, requires that 7' = h(x,t) = 50, — 50, — aq, — Kk, is a function of x,t

only, and hence the equation reduces to the forced Burgers’ equation (43).

On the other hand, if 3 = 0, then we can rescale u — uexp (% [(x, 1) d:z:) to make
the coefficient of u, in (51) go away, so the equation takes the form u, = u,, — T (z,t,u),
in which case the differential constraint (52) has K = J(z,¢,u). The coefficient of u u,,
in the compatibility condition implies that J does not depend on u. The coefficient of u?
implies L = %T\uuui + Mu, + N, where M, N only depend on z,t,u. The coefficient of
w2u, then requires that T = u(z, t)u? + vz, t)u + p(z,t) is a quadratic polynomial in w.
The coefficient of u, u, shows M = —[2p, + (o + 2)u|u + o(x,t). Finally, the coefficient
of u?u, is 0 = 4u2, hence T is necessarily linear in u, and so the equation (51) must be
linear. This completes the proof of Theorem 9. Q.E.D.
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For linear evolution equations, the preceding methods will reveal that the equation
always admits infinitely many compatible linear constraints. However, not every such
constraint corresponds to a direct reduction using a non-characteristic similarity variable,
and the equations governing the possible reductions are quite complicated.

Theorem 13. A linear second order evolution equation admits infinitely many com-
patible second order constraints, all of which are necessarily linear.

Proof: A complete analysis of the compatibility conditions (48) proves that every
compatible second order constraint for a linear equation
u, = u,, + f(z,t)u, + g(x,t)u+ h(x,t), (54)

must necessarily be linear

= ala, g, + B, u, + (@, hu, + 0w, Hu+ (a, ). (55)
The resulting compatibility conditions are

a,, =0, — (2a+ fla, — f,a—206,+2f,,
Bow = By =28+ g)a, + fB, — 27, — (f + 9,)a + 2g,,
Yoz = Ve = 200 + f)og = frp =20, = (for + [ I+ 9)a = FiB = fov + fres (56)
Oy = 0p = 200 + g )y = 297, + [0, = (900 + 9F1 ) = 9,8 = 927 + G1»
Epw =& — 2(e + M), — 20y, + fe, — (hy + hf,)a—h, B —h,v— hé + ge + hy,.
The system (56) is of Kovalevskaya type for the coefficients «, 3,7,0d,¢, and therefore
admits infinitely many analytic solutions, [13]. Q.E.D.

If the linear constraint (55) arises from a second order reduction with noncharacteristic
similarity variable, then it must have the form (14),

vZi(u) = Az, t)v(u) + Bz, t)u + C(x, 1),

for some vector field v = 0, + {(x,t)0,, where we replace u,, by its value given by (54).

Therefore, the coefficients of (55) must have the form

a=-2, f=A-&, y=A—f& ¢, d=B-g& e=0C-he (57)

Substituting (57) into the compatibility conditions lead to an overdetermined system of
five partial differential equations for the four unknowns (, A, B, C. I have not been able
to successfully analyze this system in general, although particular cases could be handled
directly.
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