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In [3], Harvey Brown states:

One of the most remarkable methodological trends in modern physics has
been the a priori use of symmetry principles to constrain the action principles
of the non-gravitational interactions in quantum electrodynamics (QED) and
particle physics.

In other words, the starting point of a modern physical theory is to postulate the relevant
physical symmetries, and then construct an invariant variational principle (Lagrangian)
whose Euler–Lagrange equations form the field equations whose solutions determine the
associated physics. However, the theory of differential invariants, [10, 11], implies that
there are infinitely many inequivalent invariant Lagrangians that could be employed for
this purpose. What is not addressed is the question I pose in [12]:

How does this affect the resulting physics governed by the ostensibly different
field equations? . . . So, either the underlying physics is, in some rather
vague and as yet undefined sense, “the same”, in which case choosing the
simplest invariant Lagrangian makes sense on purely practical grounds, or,
more worryingly, the two physical theories are different, which then begs
the question as to which invariant variational problem describes the correct
physics — how does one decide among an infinite range of possibilities?

The following note begins with a very preliminary investigation into this issue in the
simplest possible case: the one-dimensional classical free particle. It ends with a new
result characterizing divergence invariant Lagrangians and some speculation as to their
role in fundamental physics.
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Let us consider the variational principle for the one-dimensional free particle†

I[u ] =

∫
1

2
u2
t dt, (1)

where the independent and dependent variables t, u ∈ R are scalars, and we use subscripts
to denote derivatives. The Euler–Lagrange equation is simply

utt = 0. (2)

Consider the one-parameter group of Galilean symmetries

(t, u) 7−→ (t, u+ ε t), ε ∈ R. (3)

The prolonged action is

ut 7−→ ut + ε, utt 7−→ utt, . . . . (4)

The Lagrangian is not strictly Galilean invariant since

1

2
u2
t 7−→ 1

2
(ut + ε)2 = 1

2
u2
t + ε ut +

1

2
ε2.

However since the additional terms are a total t derivative,

ε ut +
1

2
ε2 = Dt

(
ε u+ 1

2
ε2t

)
,

the Lagrangian is divergence invariant, [10]. The corresponding Noether conservation law
is

Dt(tut − u) = tutt = 0. (5)

The fundamental differential invariants, [10, 11], of the Galilean group (3) are‡

t, v = ut −
u

t
, utt, uttt, . . . , (6)

where, because t is fixed, the invariant differential operator is simply Dt. Note in particular
that

Dtv = utt −
ut

t
+

u

t2
= utt −

v

t
.

Let us “invariantize” the Lagrangian in (1), and consider the variational principle

J [u ] =

∫
1

2
v2 dt =

∫
1

2
(ut − u/t)2 dt, (7)

† The mass of the particle plays no role for now, and will be ignored for simplicity.

‡ These are easy to find directly, but the method of moving frames, [4, 7], can be effectively
used in more complicated situations.
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which, because it is expressed in terms of the differential invariants times the invariant
“volume form” dt, is strictly invariant under the Galilean group (3), as can be easily
checked directly. Since

1

2

(
ut −

u

t

)2

= 1

2
u2
t −

uut

t
+

u2

2 t2
= 1

2
u2
t −Dt

(
u2

2 t

)
,

the variational problems (1, 7) are equivalent and lead to the same free particle Euler–
Lagrange equation (2). This alternative strictly invariant variational principle can, in fact,
be found in Noether’s original paper [9; p. 245]; see also [3; eq. (9)].

Now, according to Lie’s Theorem, [8] — see also [11; Theorem 7.27] — the most
general strictly Galilean invariant variational problem has the form

K[u ] =

∫
F (t, v, utt, uttt, . . . , unt) dt =

∫
F (t, ut − u/t, utt, uttt, . . . , unt) dt (8)

where unt denotes the n
th derivative of u with respect to t, and F is an arbitrary function,

assumed sufficiently smooth for later purposes. Let us study the case when F = F (v)
depends only on v. The Euler–Lagrange equation is

E = −DtF
′(v)−

F ′(v)

t
= −F ′′(v) vt−

F ′(v)

t
= −F ′′(ut−u/t) utt+

B(ut − u/t)

t
= 0, (9)

where
B(v) = v F ′′(v)− F ′(v).

Since, when written in terms of v, the Euler–Lagrange equation (9) is separable, we can
integrate once:

∫
F ′′(v)

F ′(v)
dv = −

∫
dt

t
, and hence F ′(v) =

1

c t
,

for some integration constant c ∈ R. On any interval where F ′′(v) 6= 0, we can use the
Inverse Function Theorem to solve the latter equation for

v = ut −
u

t
= G(ct), where G(x) = F ′−1(1/x).

The resulting first order ordinary differential equation for u is linear, and its general solu-
tion is

u(t) = t
(
a+H(ct)

)
, where H ′(x) =

G(x)

x
, (10)

and where a is a second integration constant. In particular, for Noether’s variational
principle (7), F (v) = 1

2
v2, so that G(x) = 1/x, H(x) = −1/x, and so

u(t) = a t− 1/c = a t+ b, where b = −1/c,

recovering the standard linear motion of a free particle. The nonlinear motion (10) induced
by the alternative Galilean-invariant Lagrangian is mathematically quite different, and
there is no obvious relationship between the two, neither mathematical nor physical.
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Of course, (3) is just a one-parameter subgroup of the full Galilean group, which also
includes the translations in both t and u:

(t, u) 7−→ (t+ a, u+ ε t+ b), a, b, ε ∈ R. (11)

The translations do not affect the prolonged action, which coincides with (4), and the
above calculation shows that the free particle Lagrangian is strictly invariant under the
translations, but divergence invariant under the Galilean boost. On the other hand, the
alternative Lagrangian (7) is strictly invariant under the Galilean boost, but only diver-
gence invariant under the translations. (The latter can be checked either infinitesimally
— see below — or directly using the group transformations (11).) The conservation laws
corresponding to the two independent translation symmetries are

Dt(ut) = utt = 0, Dt

(
1

2
u2
t

)
= ututt = 0, (12)

the first representing conservation of momentum, and the second conservation of energy†.
Since ut = a is constant, the Galilean conservation law (5) implies that the motion is linear
in time: u = at+ b.

For the full Galilean group (11), the differential invariants are utt, uttt, . . . , and hence
Lie’s Theorem says that the most general strictly Galilean-invariant variational problem
takes the form

K̃[u ] =

∫
F (utt, uttt, . . . , unt) dt. (13)

In particular, there are no non-constant strictly Galilean-invariant first order Lagrangians

and the preceding “invariantization” trick does not work!

The latter result can be easily proved directly without invoking Lie’s Theorem. As in
[10, 11], a Lagrangian L(t, u, ut, . . . ) is strictly invariant under a connected transformation
group G if and only if

pr v(L) + LDtξ = 0 (14)

for all infinitesimal generators v = ξ ∂x + ϕ∂t of G, where pr v denotes its prolongation
to jet space. In the case of the Galilean group (11), a basis for the prolonged infinitesimal
generators is provided by

pr v1 = ∂t, pr v2 = ∂u, pr v3 = t∂u + ∂ut
. (15)

Thus, a first order Lagrangian L(t, u, ut) satisfies the infinitesimal invariance condition
(14) if and only if

∂L

∂t
=

∂L

∂u
=

∂L

∂ut

= 0,

and hence L must be constant.

† Recall that we are ignoring the mass parameter here.
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On the other hand, it is still possible to modify the free particle Lagrangian to obtain
a family of higher order Galilean divergence-invariant Lagrangians of the following form:

K̂[u ] =

∫ [
1

2
mu2

t + f u+ F (utt, uttt, . . . , unt)
]
dt, (16)

where we can regard the constant m ∈ R as the mass parameter and, in the case of New-
tonian mechanics, the constant f ∈ R as a uniform external force. (More generally, f/m
represents the constant acceleration a force-free body experiences in a Galilean invariant
theory that violates Newton’s first law of motion.) The Lagrangian is strictly Galilean
invariant if and only if m = f = 0. If F depends nonlinearly on the nth order derivative
unt, the corresponding Euler–Lagrange equation has order 2n, and its solutions appear to
have very little to do with physical free particle motion.

In particular, there is a two parameter family of divergence-invariant first order Lag-
rangians that are not strictly invariant, obtained by setting F = 0:

K̂1[u ] =

∫ [
1

2
mu2

t + f u
]
dt. (17)

One can replace the free particle term by Noether’s Lagrangian (7), producing the alter-
native family

K̃1[u ] =

∫ [
1

2
m(ut − u/t)2 + f u

]
dt, (18)

with the same properties. In both cases, the corresponding Galilean-invariant Euler–
Lagrange equations are

mutt = f, with quadratic solutions u(t) =
f t2

2m
+ at+ b, (19)

provided m 6= 0. The three associated Noether conservation laws are

Dt(mut − f t) = mutt − f = 0,

Dt

(
1

2
mu2

t − f u
)
= ut(mutt − f) = 0,

Dt

(
m(tut − u)− 1

2
f t2

)
= t(mutt − f) = 0,

(20)

representing, as before, conservation of momentum and energy, along with the quadratic
dependence of the motion on time.

In view of these considerations, an interesting question arises. Given a variational
symmetry group, how can one characterize the most general divergence-invariant Lagran-
gian, and under what conditions does an equivalent strictly invariant Lagrangian exist?
These questions are answered using the machinery of the (invariant) variational bicomplex,
[1, 2, 7, 14], as follows.

We shall work at the infinitesimal level, using results in [10]. Thus, let v be a
generalized vector field and vQ its evolutionary representative. According to Proposition

5.52 and the identity (5.86) in [10], a Lagrangian L is (infinitesimally) divergence invariant
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under v — in the language of [10], v is a variational symmetry — if and only if vQ is also
a variational symmetry and hence satisfies

E
[
pr vQ(L)

]
= pr vQ

[
E(L)

]
+D∗

QE(L) = 0, (21)

where D∗
Q denotes the adjoint of the Fréchet derivative of Q. As in [2], we will refer to

vector fields satisfying (21) as distinguished symmetries of the Euler–Lagrange equations.
The identity (21) is used to prove Theorem 5.53 in [10], which states that every variational
symmetry is a symmetry of the Euler–Lagrange equations. (The converse is not valid, the
most common counterexamples of non-distinguished symmetries being the generators of
groups of scaling transformations.)

We have thereby established a basic lemma:

Lemma 1. A Lagrangian L is divergence invariant under a generalized vector field

v if and only if v is a distinguished symmetry of the Euler–Lagrange equations E(L) = 0.

The next step is to reformulate this result using the invariant Euler–Lagrange complex,
[1, 2, 7, 14]. Let g be a Lie algebra of prolonged (generalized) vector fields acting on jet
space and hence on the differential forms thereon. A differential form ω is g-invariant if
and only if all its Lie derivatives vanish:

v(ω) = 0 for all v ∈ g. (22)

In particular, g-invariance of a Lagrangian form λ is equivalent to strict invariance of the
associated variational problem, while g-invariance of the associated Euler–Lagrange source
form E(λ) encodes the fact that the generators of g are distinguished symmetries of the
Euler–Lagrange equations, and hence, by Lemma 1, the Lagrangian form is divergence
invariant. The difference between strict and divergence invariance of the Lagrangian is
thus prescribed by the cohomology class of the Euler–Lagrange source form.

More precisely, let H∗(E
g
) denote the cohomology of the g-invariant Euler–Lagrange

complex, denoted by E
g
. By definition, a g-invariant form is closed if its differential

vanishes; it is exact if it is locally the differential of a g-invariant form. In particular, a
source form is closed if it is (locally) an Euler–Lagrange source form for some variational
problem, and it is exact if it comes from a g-invariant Lagrangian form. Thus, as a
consequence of Lemma 1, we deduce our main result.

Theorem 2. Let p denote the number of independent variables. A divergence g-

invariant Lagrangian form λ is equivalent to a strictly g-invariant Lagrangian form if and

only if the cohomology class of its Euler–Lagrange source form vanishes:

0 =
[
E(λ)

]
∈ Hp+1(E

g
). (23)

A precursor of this Theorem can be found in [1]. Methods for computing the in-
variant cohomology spaces when the Lie algebra g consists of the infinitesimal generators
of either a finite-dimensional Lie group G or an infinite-dimensional Lie pseudo-group of
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projectable† transformations can be found in [2]. In the former case, it is proved that
Hp+1

g
(E) is isomorphic to the Lie algebra cohomology space Hp+1(g), cf. [6]. This result

was generalized to Lie groups of point transformations in [14], where algorithmic moving
frame methods are applied to implement the isomorphism. This, establishes the following
result.

Corollary 3. Let G be a connected Lie group of point transformations. Then

the condition Hp+1(g) = {0} is necessary and sufficient for every divergence-invariant

Lagrangian to be strictly invariant.

In particular, if dim g ≤ p, then Hp+1(g) = {0} automatically, and hence Corollary 3
applies. In the preceding example, there is one independent variable t, and hence p = 1.
Thus, in this situation, Noether’s “trick” of replacing the free particle Lagrangian with an
equivalent strictly invariant Lagrangian can be applied to any one-parameter symmetry
group, and hence divergence inequivalence is a multi-parameter phenomenon.

On the other hand, if g3 denotes the three-dimensional Galilean Lie algebra spanned
by (15), then it can be shown that H2(g3) = R

2, and hence there is a two parameter family
of non-zero cohomology classes, which correspond to the divergence invariant Lagrangians
(17), or, alternatively, (18). Theorem 2 implies that every divergence invariant Lagrangian
under the full Galilean group (11) is locally equivalent to one of the above form (16).

Example 4. An even simpler example is the abelian Lie algebra g2 spanned by the
first two vector fields in (15), generating the translations (x, u) 7−→ (x+ a, u+ b). In this
case, the differential invariants are ut, utt, uttt, . . . , while H

2(g2) = R, and hence there is a
one-dimensional space of divergence invariant Lagrangians that are not strictly translation
invariant. Indeed, it is not hard to see that every divergence invariant variational problem
has the form

I[u ] =

∫ [
f u+ F (ut, utt, . . . , unt)

]
dt, (24)

where f ∈ R and the second term is strictly invariant.

Example 5. A more substantial example is provided by combining the Galilean
group with the scalings of time and space, producing the five-parameter transformation
group

(t, u) 7−→ (λt+ a, µu+ ε t+ b), a, b, ε,∈ R, λ, µ ∈ R \ {0}. (25)

It is easily checked that this forms a symmetry group of the (unforced) free particle equation
(2). In addition, the particular scaling symmetries

(t, u) 7−→ (µ2 t, µu), µ ∈ R \ {0} (26)

† Projectable means that the transformations of the independent variables do not depend on
the dependent variables; in bundle-theoretic terms they are fiber preserving maps. All the group
actions considered here, and most of those arising in physics, are projectable.
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form a strict one-parameter variational symmetry group of both the standard Lagrangian
(1) and the Noether alternative (7). The corresponding conservation law is

Dt(uut − tu2
t ) = (u− 2 tut)utt = 0. (27)

On the other hand, the other scaling symmetries of the Euler–Lagrange equation are not
distinguished symmetries of the corresponding source form, and thus are not symmetries
of either Lagrangian, neither strict nor divergence. They act by rescaling the Lagrangian
by a non-unit factor. Thus, they fail to produce a conservation law, but instead according
to [13] — see also [10; Exercise 5.35] — lead to the following divergence identity:

Dt(uut) = uutt + u2
t = u2

t , (28)

which is valid on solutions to (2). Note that the right hand side is twice the Lagrangian,
i.e., twice the kinetic energy. Such scaling identities are used to establish Clausius’ Virial
Theorem that governs the behavior of the average kinetic energy of a system, [5].

Let us finish by determining the structure of variational problems that admit the full
group (25). The Lie algebra g5 is spanned by the three Galilean infinitesimal generators
(15) along with the two prolonged scaling generators

pr v4 = t∂t − ut∂ut
− 2utt∂utt

− 3uttt∂uttt
− · · · ,

pr v5 = u∂u + ut∂ut
+ utt∂utt

+ uttt∂uttt
+ · · · .

(29)

Using either the method of moving frames [4], or a direct computation, one finds a complete
system of differential invariants,

I4 =
uttutttt

u2
ttt

, I5 =
u2
ttuttttt

u3
ttt

, . . . In =
un−3
tt unt

un−2
ttt

, (30)

for n ≥ 4, along with the fundamental (contact) invariant one-form and dual invariant
differentiation operator

ω =
uttt

utt

dt, D =
utt

uttt

Dt, (31)

the latter mapping differential invariants to higher order differential invariants. Thus, by
Lie’s Theorem, the most general strictly invariant variational problem has the form

I[u ] =

∫
F (I4, I5, . . . , In)ω,

where F is an arbitrary function of the basic differential invariants (30).

To check for divergence-invariant Lagrangians, we compute the Lie algebra cohomol-
ogy, finding H2(g5) = R. This implies that there is a unique, up to constant multiple,
divergence invariant Lagrangian that is not equivalent to a strictly invariant Lagrangian.
A moving frame-based computation using the methods in [14] is the easiest way to find
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the following third order representative†:

J [u ] =

∫
uttt log uttt − uttt

utt

dt, (32)

with invariant sixth order Euler–Lagrange equation

D2
t

(
uttutttt − u2

ttt

u2
ttuttt

)
= 0. (33)

One can verify directly that (32) is divergence invariant under (25), but is not equivalent
to a strictly invariant Lagrangian. Of course, this final example is a mere mathematical
curiosity, as such higher order variational principles presumably have very little relevance
to physics.

Let us close with a wild speculation that Theorem 2 may provide an answer (or at
least a partial answer) to the original question. Namely, we propose that variational prin-
ciples of physical relevance are distinguished by arising from nonzero cohomology classes of
the underlying physical symmetry group, or, equivalently, are based on divergence invari-
ant Lagrangians that are not equivalent to any strictly invariant Lagrangian. Of course,
this requires using the full physical symmetry group, as restriction to a subgroup, espe-
cially if it is just a one-parameter subgroup, may lead to an equivalent strictly invariant
variational principle of physical relevance, as we saw in our key example. According to
Theorem 2 and the identification with Lie algebra cohomology, Hp+1(E

g
) ≃ Hp+1(g), when

g is a finite-dimensional Lie algebra of infinitesimal point transformations, such variational
problems form a finite-dimensional space, whereas the strictly invariant variational prob-
lems depend upon an arbitrary function of the infinite family of independent differential
invariants which are of arbitrarily high order. In particular, if the relevant cohomology
space is one-dimensional, such a variational principle is unique up to constant multiple.
Furthermore, according to computations in [2], the relevant cohomology spaces continue to
be finite (and low) dimensional for a variety of nontrivial infinite-dimensional pseudo-group
actions of physical and mathematical importance. (On the other hand, if the cohomol-
ogy vanishes, there are no distinguished variational principles, and one must use other
criteria to characterize physically relevant invariant variational principles.) Thus, diver-
gence invariance or, equivalently, cohomological considerations may be fundamental to the
symmetry-driven formulation of physical theories. In this direction, it would be of great
interest to determine the cohomology for the infinite-dimensional group underlying the
standard model, although this will be a very challenging computation.

† The Lagrangian is only defined on the subset of jet space where utt 6= 0, uttt > 0, and
hence should be restricted to functions u = f(t) whose jet lies in this subset. Interestingly, the
Euler–Lagrange equation is less restricted, especially if one clears denominators after evaluating
the total derivatives.
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