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A general method for finding evolution equations having infinitely many symmetries or flows which 
preserve them is described. This is applied to the Korteweg-{je Vries, modified Korteweg-{je Vries, 
Burgers', and sine-Gordon equations. 

The intense research activity of the past ten years 
surrounding the Korteweg-de Vries (KdV) equation 
was initially motivated by the discovery of an infinite 
series of conservation laws. 1 Noether's theorem shows 
that for a partial differential equation in Lagrangian 
form (which the KdV equation can be put into) there is 
an intimate connection between one-parameter symmetry 
groups of the equation2 and conservation laws. 3 This was 
mysterious since the KdV equation possessed only a 
four -parameter symmetry group. However, it was 
noticed that the higher order analogs of the KdV equation 
discovered by Gardner4 could be reinterpreted as 
"higher order symmetries" of the equation,5 shedding 
some light on the mystery. Thus the more immediate 
object of interest becomes the symmetry groups, or, in 
more traditional terminology, the evolution equations 
whose flows preserve the KdV equation. The advantage 
of this point of view is that the symmetry groups can 
be systematically found, as in Theorem 1, in contrast 
to the ad hoc methods used to discover conservation 
laws. A recursion formula due to Lenard4 for the higher 
order KdV equations is generalized here to provide a 
method for the construction of infinite series of higher 
order symmetries of more general evolution equations. 
In particular, we derive in Example 4 an infinite series 
of flows, all of which preserve Burgers' equation. 
(These symmetries however do not give rise to conser­
vation laws since Burgers' equation cannot be placed in 
Lagrangian form. The precise relationship between 
symmetries and conservation laws shall be discussed in 
a future paper. ) The methods employed here are differ·· 
ential algebraic in nature, in the same spirit as the 
recent work of Gelfand and Dikil. 6 The calculations pre­
sented in this note will be formal; rigorous mathematical 
statements and proofs shall appear elsewhere in a more 
complete exposition. 

Let R{u} denote the algebra of polynomials in the vari­
able u and its derivatives with respect to a single inde­
pendent variable x. Given a polynomial PE R{u}, let {p} 
denote the differential ideal generated by P; it consists 
of all polynomials of the form 'f,QkDk P, where D = d/ dx, 
the total derivative. For convenience we abbreviate 

Let T be the vector space of all formal polynomial 
partial differential operators acting on R{u}; in other 
words, T consists of all operators of the form 
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where PI E R{u}. Here the sum is over all multi-indices 
I=(io, iu ... ,il) with l=O, 1,2,"', and 0I=o~ootl'ooOll. 
T contains the total derivative operator 

d ~ 

-d =D= 6U I+1o .. 
X 1.0 • 

(1 ) 

Since T acts on R{u}, we make T into an algebra by de­
fining the product of D, D' E T to be 

D ·D'(p)=D[D'(p)] PER{u}. , 
Using Leibnitz' formula, if D = 'f,PIoI and D' = 'f,Q JO J' 
then 

D·D'=6PI 6 (M1)OMQJ'OI+J_M' 
I,J O~M~I\J 

Moreover, T is a Lie algebra with bracket 

[D,D']=DD'-D'D. 

Now let 

V:R{u}- T 

be the map defined by 
~ 

V(p) =J"2j,IJi p. 0 j' 

(2) 

(3) 

Note that in Ovsjannikov's terminology, 2 V(p) is the 
oo-prolongation of the vector field p. o/au, in the case 
P is a polynomial in u alone. 

Given a differential polynomial KE R{u}, consider the 
evolution equation 

ll t =K(u). (4) 

If we make the assumption that (4) is locally uniquely 
solvable for arbitrary smooth initial datau(x,O)=f(x), 
then there is an induced flow on C~(1R), 

Kt[j(x)]=u(x,tl, fE C~(IR), 

where u(x,t) is the solution of (4) with initial dataf. If 
P E R{u} is another polynomial, then we say that the flow 
generated by P preserves the flow generated by K if 

Ps[R\IJ)] = Kt[P.(f)] 

for all fE C~(IR) and all s, tE IR where the equation is 
defined. 

Theorem 1. Let P,KE R{u}. Then the flow generated 
by P preserves the flow generated by K if and only if 

(5) 

Condition (5) refers to the partial differential algebra 
R{u} consisting of polynomials in u and its partial de­
rivatives with respect to both x and t; D t = d/ dt is the 
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total derivative with respect to t. To verify condition 
(5) it suffices to replace the variables aJ+Iu/aJxat in 
the left-hand side by DJK and equate the resulting 
expression to 0. In the special case that P is a poly­
nomial in u alone this result is well known; it is just 
the infinitesimal criterion of invariance of (4) under the 
one-parameter group with infinitesimal generator 
p. a/Ou. 2 Thus if P, K satisfy criterion (5) we shall say 
that P is an infinitesimal higher-order symmetry of K. 
Note that P=K trivially satisfies (5). 

by 

Next, define the map 

A:R{u}- T 

Note that 

V(P)K = A (K)P 

(6) 

(7) 

for P, KE R{u}. Let To be the subspace of T generated 
by the operator D, i. e. , the elements of To are opera­
tors of the form 'i~=oP.Di with Pi E R{u}. Note that To 
preserves ideals in Rtu}. 

Theorem 2: Suppose 0 E To satisfies 

[A(K) -Dp O]PE {u t -K} (8) 

for all P E R{u}, then K possesses an infinite series of 
infinitesimal symmetries 

K(j)=OJK, j=O, 1, 2, •••. 

Proof: By induction on j and Eq. (7) 

[ A(K) -Dt]K(J-l) E {Ut -K}. 

(9) 

Using'" to denote congruence modulo the ideal {u t - K}, 
condition (8) implies that 

( A(K) -DtJK(jl = ( A(K) -DtlOK(J-ll 

",O[A(K) -Dt]K(J-I) 

",0, 

thereby proving the result. 

An operator 0 E To that satisfies condition (8) will be 
called a recursion operator for K. Practically, to veri­
fy the condition that 0 be a recursion operator for K it 
suffices to (a) compute the Lie bracket in A{u}, (b) sub­
stitute DJK whenever the variable aJ+Iu/axial appears, 
and (c) equate the resulting coefficients of Dk for each 
power k to O. Thus (8) gives a useful criterion for 
determining when an evolution equation possesses an 
infinite number of symmetries. 

Actually, to apply Theorem 2 to any interesting equa­
tions, it is necessary to enlarge the class To to include 
more general recursion operators. In particular, we 
wish to allow recursion operators that involve the in­
verse total derivative D-I

• 7 The problem is that D-1 is 
not well defined on all of R{U}, so more care in the 
assumptions is needed to ensure that the conclusions of 
Theorem 2 still hold for these more general operators. 
A preCise statement of the generalization of this theo-
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rem will be deferred to the later rigorous exposition. 
In this note we shall be content to use condition (8) 
formally to find a few specific recursion operators. 

EXample 3: Consider the KdV equation 

(10) 

Here we reprove the result of Lenard that the operator 

o =D2 + iu + tuxD- I (11) 

is (formally) a recursion operator for K. Now 

A(K)=A=D3 + uD+u x ' 

Hence 

A·O =oD5 + ~UD3 + ¥u xD2 + (3u xx + iu2 )D 

+ Huxxx + uu) + t(uun + uUxx + U;)D-l 

and 

o . A =0 D5 +juD3 + lfuxD2 

+ (3u xx + iu2)D + (u xxx + uu,.), 

Therefore, 

[A,OJ = i(uxxx + uu) + t(u xxxx + uUn + u;)D_l, 

Furthermore 

[DpOJ = ~Ut + tuxtD-1
, 

so that condition (8) is verified. The infinite series of 
symmetries 

K(J)=OiK, 

when put into evolution form 

ut=K(jl(u) , 

are just the higher-order analogs of the KdV equation. 4 

Example 4: Consider Burgers' equation 

ut""B(u)=uxx+uux ' (12) 

We show that B possesses the recursion operator 

O=oD+~u+~uxD-l. (13) 

Here 

A(B)=oA=oD2 + uD + u x ' 

Hence 

A ·0 = D3 + ~2 D2 + ("" + ~u2)D + 32(U + uu ) ~x Xx x 

and 

Therefore, 

[A OJ=.!.(u +uu )+.!.(u +Ul' +u2 )D-1 
, a xx x 2 xxx "'xx x • 

Furthermore 

[DpO] == ~Ut + ~UxtD-l, 

which proves condition (8) formally. Therefore, we have 
an infinite sequence of flows 

u
t 

=0 B(J)(u) =!)iB(u) 

all of which preserve the flow given by Burgers' equa-
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tion. The first few of these flows are 

Ut = B(O)(u) = Uxx + ltlt", 

u t = B(1)(u)=u"xx + ~{Uxx + ~u; +~u2ur' 

Ut = B(2)(U) =U"xxx + 2uu xx" + 5u"u xx 

+ ~2uxx + 3uu; + iu3u", 

+ ~U2U"xx +¥UU"u xx + !fu~ 

+ ~U3uxx + !fu
2
u; + fe,u4u". 

(14) 

Example 5: Finally, we consider the modified KdV 
equation 

(15) 

which is known to also possess infinitely many conserva­
tions laws. In fact, the original proof of the existence 
of infinitely many conservation laws of the KdV equation 
ut = K(u) stemmed from the remarkable transformation 
of Miura8 relating the two equations. Explicitly, if 

v = u2 + /lu", where)l = -r.::6 , 

then 

(/lD+ 2u)[u t -K(u)]=vt -K(v). 

Let us assume_for the moment that K possesses a recur­
sion operato:r.:,O an_d ,that furthermore the higher-order 
analogs u t = KCj) =OjK are related to the higher -order 
analogs of the KdV equation by the same formula, 

(jJD + 2u)[ut - i?fjl(U)] = v t - K(j)(v). 

We conclude that the recursion operator 15 must be 
related to the recursion operator 0 of K by the formal 
operator equation 

(jJD + 2u)·15 =0· (/lD + 2u). 

A straightforward calculation shows that for this to hold, 

(16) 

The last term in (16) is the operator which takes a poly­
nomial P E: ~{u}, multiplies it by u, then applies D-I

, and 
flnally multiplies the result by tu". We shall check that 
o is indeed a recursion operator for i? We have 

A (K) = A = D3 + l/2 D + 2uu . 
r 

Note that 

D- I • U = uD-I _ D-I • uxD- I . 

Hence 

u.D-I'uA=uu n2+u3u _uD-I '(uD2+U2U) ... x- x x x x 

and 

= uU"D
2 

- u;D + (u 3u" + u "u,,) 

- uxD- I 
• (u xxx + u2u) 

A • u n- l
• u = [u n 3 + 3u D2 + (3u + u 2u )D x- x xx xxx x 

1214 

+ (u xx,," + u 2u"x + 2uu;)] • D- I • U 

= UUp2 + (2u; + 3uu,,)D + (3uu""" + 4u"uxx 

+ u 3u,,) + (u,,""" + u 2u xx + 2uu;)D-I • u. 
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Hence 

[A,tup-I'U]=2(uu" +u2)D+2(uu +uu) 
x x xxx x xx 

Therefore, 

+ t(uxxrx + u2u"r + 2uu;)D- I • u 

+ tuxD-I • (u + u 2u ) xxX' x • 

[A,D] = ~(ur"r + u 2u ) + Hu + u 2u x xxxx xx 

+ 2uu;)D-I. u + tUrD-I. (U rxx + u 2u). 

On the other hand, 

D t ·u"D-I·u=urtD-I·u + Up-I'U t + up-l·uDt • 

Hence 

[D t , D] =~UUt + tUxtD-I. u + tup-l. u t . 

Comparing the expressions for [A,15] and [D ,15] shows 
that condition (8) holds formally under the pl~usible 
assumption that U n- l • u and u D- l • (u + u2u ) define x- t x XX'X' x 
the same operator modulo the ideal {u t - K(u)}. We con-
clude that the flows 

u t = KIJ )(u) =15J K(u) 

all preserve the modified KdV equation. The first few 
of these flows are 

U t = KCO)(u) = u rxr + u 2u r , 

u t =KCI)(U)=uxxrxx + ~2urxr + ?juu.urx + ~u~ + ~U4ux' 

u t = K(2)(U) = u xxxxxxr + ~2uxxxxx + 14uu xu rxxx 

+ 21u2
1/ + ~uu U + ~u u 2 

X"'~x"x ;:I xx xxx "x xx 

Example 6. In this example we consider the sine­
Gordon equation 

U xt = sin u. 

This equation is already known to possess infinitely 

(17) 

many conservation laws and symmetry groups. 9 Although 
this equation does not belong to the class of evolution 
equations, we shall indicate how the methods used pre­
viously can be modified so as to rederive the symmetry 
groups of (17). The analog of Theorem 1 in this case is 
that the flow generated by a polynomial P E: R{u} pre­
serves the set of solutions of the sine-Gordon equation 
if and only if 

A(P)E {urt - sin u}, 

where A is the operator 

A=DDt - cos u. 

(18) 

In this case we call P an (infinitesimal) symmetry of the 
sine-Gordon equation. 

Suppose we can find operators 0 and 0' satisfying 

[AO-O'A]QE{U xt -sinu} (19) 

for any QE R{u}. Then condition (18) implies that OP is 
a symmetry of (17) whenever P is. In other wordS, 0 
would be a recursion operator for the sine-Gordon equa­
tion. However, since (17) is not an evolution equation, 
we are left with the task of finding one symmetry of (17) 
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in order to prove that there are infintely many sym­
metries. This is simplified by the observation that any 
partial differenital equation not explicitly involving the 
independent variable x or t is invariant under the flow 

This amounts to the statement that j(x + x, t) is a solu­
tion whenever j(x,t) is. [In our previous examples, if 
we apply the recursion operators to the polynomial u" 
the flow we derive is just that of the original equation. 
For instance, 

(20) 

Now consider the oper~tors 

[) = D2 + u; - u,D-1• ux,' [)' = D2 + u~ + uxp-l • ux' (21) 

We have 

and 

A[) = D3Dt - COSUD2 + u~DDt + uxUxPt + 2uxuxtD 

+ (u""u xt + uxuxxt - u; cosu) + (u x cosu 

- uxxt )D- 1 
• uxx - uxxD-1 • U""t - uxp-1 • uxxD t' 

[), A = D3Dt - COSUD2 + u;nDt + uxUxxDt + 2ux sinuD 

+ uxx sinu - u""D-1 • U x cosu - u""D-1• UxPt' 

where we have used the identity 

D-1·up=ux -D-1·uxx · 

Comparing these expressions verifies condition (18) 
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formally. We conclude that the flows 

Ut=[)k(U), k=O,1,2,'" 

are all symmetries of the sine-Gordon equation. The 
first few of these flows are 

ut =ux' 

ut = uxxx + ~u!, 

ut = uxxxxx + ~;uxxx + ~xu;x + iu;, 

ut = uxx""xxx + ifu;uxxxxx + 14uxuxxuxxxx + ¥uxu;xx 

+ ~u;xuxxx + ¥u;u xxx + ¥u!u:x + &u:. 
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