Vi1
HOW TO FIND THE SYMMETRY GROUP OF A

DIFFERENTIAL EQUATION

Peter J, Olver

Before app'lying group-theoretic methods to the construction
of the bifurcation equations of some system of partial differential
equations, it is of course necessary to know a group of symmetries
of the equations in question. In this chapter we describe a useful,
systematic computational method for flndlng the group of symmetries
of a given system of partial differential equations. This method
essentially dates back to the original investigations of Sophus Lie;
other modern treatments of this materiai may be found in references
[2] and [5]. The groups under consideration will be local Lie groups
transforming Eoth the independent and dependent variables of the
differential equations. Thus‘,r we will leave aside any questions on
the discrete symmetries of the equation. The reason for this
restriction is to take full advantage of the infinitesimal methods

available in Lie group theory. For simplicity, we will work in




Fuclidean spaces although many of the results hold equally well
for differential equations on manifolds. (See [4]for a rigorous

exposition. )

1. Local Transformation Groups

Definition 7.1. A local group of transformations acting on

n . . .
IR consists of a Lie group G, an open set V, with

{e} xR C V CGXR", and a smooth (C°) map &:V ~ R,

. satisfying the conditions
. n
i) ®(e,x) = x for xe IR
ii) @(g, (h,x)) = &(g-h,x)
whenever g,he G, xe¢ R”, and (h, %), (g, iﬁ(h-,AX)),r(g- h,x) e V.

(In other words, this equation holds whenever both sides make sense.)

¥ v=GX ]Rn; then the group action of G is global. In
generélv,' however,' for each x ¢ ]Rn,r only those group elements in
a neighborhood of e in G (depending on x) can transform x.
Examples of local transformation groups Whoéé action cannot be
globalized arise naturally as symmetries of partial diZferential
equations. Note further that the action of the group is not restricted

to be linear.
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Associated with a local transformation group are its

n
infinitesimal generators. These are vector fields on IR defined

as follows: Let A; denote the Lie algebra of G. Given o e ‘g- s

let exp({te) be the one-parameter subgroup of G generated by uw.
The corresponding infinitesimal generator on R™ is the vector

field () whose value at x ¢ R” is

ole)| = - & (exp(ta), x) . (7.4)

x lt=0

If x= (Xi, cee ,Vx ) are coordinates on IRn, we shall adopt the
. n :

differential-geometric notation

1 0 n 0
=8 (=) g T FEF) 5
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i - . -
for vector fields on IR . Thus if B(exp(ta), x) = (& (t,x), ..., @n(t,x)),_
then the infinitesimal generator has coordinate functions

i d i ' ) T .. —
£(x) = 2 (t,X)! . Conversely, given a vector field v ,

as above, the one-parameter local group of transformations generated

cte
by v is found by solving the system of ordinary differential equations

dxi/ dt
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. : n . o .
Vector fields on IR can also be viewed as first-order partial

differential operators (derivations) which act on srnooth functions

F IRn-—>IR:
— 1 or n oxr
VE() = £ () g e 87 () o
‘ 1 “n .

- RN
Given two vector fields v and w, the Lie bracket is the vector field

. N, ) . .. el s
[viw] = vw -~ wv ,

where we are viewing the vector fields as derivations. The map ¢
from the Lie algebra to vector fields defined by (7.1) preserves the

Lie bracket:

o(le, Bl) = le(a), o(B)] .

Thus the infinitesimal generators of a local transformation group form
: n .
a finite-dimensional Lie algebra of vector fields on IR . Conversely,

: n -
given a finite-dimensional Lie algebra of vector fields on IR ,

Frobenius' theorem (cvf. [3] or [8]) says that there is a'local trans-
formation group whose infinitesimal generators are precisely the
vector fields in question. We are thus justified in viewing local
transformation groups and Lie algebras of vector fields as equivalent
concepts. In practice, to find the symmetry group of a differential
equation;; the infinitesimal generators will in fact be calculaited, | this

being much easier to accomplish.




Example 7.2. Let G = IR with coordinate t,and consider the

following action on IR

X Y
-ty 7 Aty

)

o(t;x,y) = (3

Here V= {(t;x,y): t<y for y>0 and t>y for y<0}. The

reader should check that ® does satisfy the conditions of Definition

7.1. Also, this action is not global, i.e. ,7 cannot be defined for all
t e IR. The infinitesimal generator of the group action is

d ) 29

e Bt: s = s —

dt t=0 (&, ) =V ox Ty oy

Indeed, as can easily be checked, the coordinate functions satisfy the

ordinary differential equations

. | 2
dx/dy = Xy dy/dt =y

In the sequel we will often use the simplified notation of
denoting @(g,!x) by gx.  Also, an elemeﬁt o« of the Lie algebra will
be identified with the vector fiela it defines on ]Rn; and the map ¢
will be suppressed.

: m
Now, a function F: ]Rn -~ IR is called a G-invariant function

if for all xe R, F(gx) = F(x) whenever gx is defined. Similarly,

a subset S T R"” is called a G-invariant subset if for every X e S, 

gx ¢S whenever gx is defined. Note that if ¥ is a G-invariant
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function, all the level sets of F, {x:F(x)= c}, are G-invariant

sets. However, if a set S is a subvariety given by the vanishing
of a function, i.e., S={x:F(x) =0}, and S is G-invariant, it
does not necessarily .f.ollow that F is a G»invariaﬁt functioéa Thus
the Asymmetry’ group of a single level‘ set of a function (meaning the

"largest group of transformations® leaving the level set invariant)

will in general contain more symmetries than the symmetry group

of the function. The next theorem gives iniinitesimal criteria for

the invariance of a function or subvariety.

Theorem 7.3. SupApose "G is a connected Lie group of

. . ' n - n-
transformations acting on IR, such that for each xe R

G, = {g: gx is defined} is also cqnnecéed. Let E‘:an >R bea

differential function whose Jacobian matrix is of maximal rank

everywhere.

i) F is a G-invariant function if 2nd only if

oF(x) = O | (7.2)

for every infinitesimal generator o of G and every x ¢ IR .

ii) The subvariety S = {x:F(x) = 0} is G-invariant if and

only if (7.2) holds for every infinitesimal generator o and for

‘every X e S.




Proof. First the second statement will be proven. The

necessity of (7.2) follows from differentiating the equation
F(exp(ta)x) = 0 o e"} s X€ S,

with respect to t and setting t= 0. To prove sufficiency,v if the
Jacobian of F at %, has maximal rank then by the implicit function

theorem we may locally change coordinates so that ¥ has the form

F(Xi’””xn) = (Xi"“’xm)"

Thus S={(0,...,0,x s xn)} .  The infinitesimal condition

m+d’ "
(7.2) implies that o, when restricted to S, has the form

]

a_ ., (x)
m+1i axmf(-i

subgroup exp(te) obtained by integrating the requisite system of

oo, t o.'n(x) g—;—_ , xXe S. Thén the one-parameter
n

o.d. e.'s obviously leaves S locally invariant. Hence for each

X € S;- there is a neighborhood ﬁx of 0 in ‘} such that for o« NNXy
exp(a)x ¢ S. Now exp: /(3-'~> G maps a sufficiently small neighbor-
hood of 0 in Lgf hoineomorphically onto a neighborhood of e in G,
[8.;.“pa_ge '103]. Thus for each x ¢ S, there is a neighbqrhood NX

of e in G (depending continously on x) such that whenever g e NX 9
gx € .S, Finally,r to show S is G-—invariant’,r given X e S, let

Hx = {ge G :gxis defined and gxe S}. Itis easy to show that HX

is open and also if g e clos I—IX, then g-x is not defined. This




implies, by the connectedness of Gx’ that Hx =G and hence

bd
S is indeed G-invariant. To prove part i), it suffices to note
that F is invariant if and only if every level set of F is invariant.
Therefore part ii) implies part i).

(In the sequel, when G is a connected group of transforma-
tions, it will be implicitly assumed that all the GX‘S are connected
so as to avoid restating this technical condition. )

In practice, if the vector fields o, = > ozk(x) 8/8}{ )

i 1 k
i=4,...,1, form a basis of the Lie algebra and

F(x) = (Fi(x), o ,Fm(x)) then the infinitesimal criterion of (7.2)

is just
o ; - ,
k oF i=4,...,1
> e (x) e =0, ) ’ (7.2%)
k=1 1 Tk J = 15...,M .

In the second case of the theorem,i these equations only need hold

1
when F (x) = ...= F

x) = 0. Thus determining the
invariance of a subvariety under a connected group reduces to a
routine verification of condition (7.2'). For nonconnected Lie groups,

one must further check that at 1east one =lement in each connected

component leaves the subvariety invariant.
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Example 7.4. Consider the same local group of transformations

as in example 7.2. First consider the function F(x, y) = x/y.
Then applying the infinitesimal generatoxr to ¥ shows

0 2 9 X
oy — A W ioA,
S fhr ) e
hence ¥ 1is an invariant function, as may easily be checked. There-
fore the sets {(x,y):x=cy } for any constant ¢ are invariant.

Secondly, consider the function Fi(x,y) = xv. Then -

o 2 9 ‘ 2
il e =
(xy 55 vy %y xy
so F'! is not an invariant function. However, the subvariety

2
{(x,vy): xy = 0} is invariant since if =xy = 0, then 2xy = 0., This

may again be verified directly from the definition of G.

2. Groups and Differential Equations.
Suppose we are considering a system of partial differential

equations, SV,V in p independent variables (X1 oo oy Xp) = x and

1 q, '
q dependent variables (u’,..., uq) = u. Let X = RY, with
coordinates x, be the space representing the independent variables,

and let U = RY

, with coordinates u represent the dependent
variables. The solutions u = f(x) of S will be identified with

their graphs; which are certain p-dimensional submanifolds in the
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cartesian product space‘ X X U. A symmetry group of S will be
a local group of transformations G acting on vX X U in such a way
that "G transforms solutions of S to other solutions of S.% Note
that we are allowing arbitra,ry; nonlinear transformations of both
the independent and dependent variables in G, »

To proceed ri'gor.ously,‘ we must first explain exactly how
thé group G transforms functions. Given a function u = i(x),
defined in a neighborhood N of a point X € X, let
T = {(x,£(x)): x ¢ N} be the graph of f. If T' is relatively coz{n-
pact in X X U, then, for g sufficiently close t;) the identity, the
set gI' = {g(x,u): (x,u) ¢ I'} 1is defined. The set‘ ¢" is not
necessarily the graph of some other function. However, since G
acts céntinﬁously and e leaves T’ unéllanged ,A by possibly shrink-
ing N we can find a neighborhood of e in G such tkat for every
g in this neighboriﬂood, gI' is defined and is the graph of some

_ new function U = gof(%"),r called the transform of f by g.

U | U

A | |
, g . : gl
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The explicit construction of the transformed function gf

follows. Suppose the transformation g is given by
g{x,u) = (2,60, ¥ (x0) = (%10,
The graph gI' is given by the parametric equations

¥ = 5 bofl) = B (X960,

P
u

11

*Ifg(x,f(x))k = Efgo(l.x )(x) .

(Here I is the identity function on X.) To find g-f, we must
eliminate x from these equations. For g sufficiently close to e,

using the inverse function theorem we can locally solve for x:

x = [ 0 (1301 (%)

Substitution into the second equation yields

gf = [wo(lxHlolz ofrxn]™" | (7.3)

o o

whenever the second factor is invertible.

Example 7.5. Let p=g= i,. so X=U=R. Let G= S1 be .

>
the rotation group acting on X X U & IR, so the transformations

in G are given by
(%,4) = (xcos® - usin®, xsin® + ucos8)

for 0< 0 < 2w. Therefore
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A
£
oy
1

= xcos® - usin® ,

ke
Z
!

xsin® + ucos®

Consider the linear function f(x) = ax+b. . Note that if 0 is
sufficiently large, the graph of { will be rotated so that it is

vertical and is no longer the graph of a function.. Now

1
I

X x(cos® - asin®) - bsing ,

2 o 1))

—~
u

1
it

wg(x, £(x)) x(acos® + sinB) + bcos @ .

Whenever cos® - asin® # 0, in particular for 8

sufficiently close to 0, the first equation is solvable for x, and

X+ bsinb
cos B - asin®

Thereifore the transform of f by 6 Vaccording to formula (7.3) is

the linear function

Gf(%') _ 8inB + acos® i b
"~ cosB - asin® cos B - asin®
Definition 7. 6. Given a system of partial differential

equations, in p independent and g dependent Variables; a symmetry
group is a local group of transformations G acting on ‘X X U such
that whenever u = f(x) is a local solution of this system, and for

each g such that g-f is defined, then & = gf(X) is also a solution

of the system.




For example, 'in the case of the heat equation E the
group of translations in the spatial variable (x,rt,b‘u) b= (x+ A, t, u)
is a symmetry group since f(x+ K»,rt) is a solutiop of the heat
equation whenever f(*c, t) is. Another example is provided by the
group of Chapter 4 leaving the Navier-Stokes equations invariant.
The ultimate goal of this chapter is to provide a readily verifiable

criterion which will enable us to check whether or not a given group

is a symmetry group of a given system of equations, and also find

the symmetr roup, meaning "the largest local group of symmetries, ¥
Y y p g g g P y s

of the equations. The criterion will be infinitesimal; in direct analogy
with the (.':riterion of invariaﬁce of algeb‘araic equations of.Theor'ern'
7.3. In fact, Whgn we finish constructing an appropriate méchinery,
we will be able to directly invoke Theorem 7.3 to prove invariance.
The key step; is to construct spaces repreéenting the various
derivatives present in our system} of partial differential equations
and then concretely "realize“‘the system of equationé as a éu’bvariety‘
of such a spaée. (This construction is a greatly simplified version
oif the construction of “je£ bundles® in the differential-geometric
theory of partial differential equétions; cf[4] oxr [7].) Now for a

iven function of p independent variables, there are
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ptk~1" '
pk = ( ) different k-th order partial derivatives, which

k

we denote by
P
9 J

i j
9%, -+ Ox P
- 7p

.. ,jp)., each ji is a nonnegative integer, and

ZJ = j1 tToo.. jp = k., Then given a function f:X — U; so
2 £ . £ Z
u” = {(x), there are q. p, different numbers up = SJ_f (x) for

£=1,...,9 2J =k which give all the k-th order derivatives of f.

q
Liet Uk = IR Pk » with coordinates u§ as above, be the space

representing all these k-th order derivatives. Let

K) _

U( UX U, X... XU, bethe space representing all partial

1 k
derivatives of functions f£:X - U of order < k. Thusg given a

function f:X - U, there is a corresponding function -

. B ..
pr(k)f: X = U( ), called the k-th prolongation of £, whose graph is

given by the equations
u_ = ?)‘_)_f"Z (x) .

J
In other words; the value of pr(k)

f(x) is a vector whose
q+ q_p{L ...t qpk entries are the values of f and its partial deriva-
tives of order £ k at the point x, Another way of looking at

pr(k)f(x) is that it represents the Taylor polynomial of degree k of

f at x, since the derivatives determine the Taylor polynomial and



. k
vice versa. (The total space X X U( ) is called the k-jet space

of X X U, and the k-th prolongation of f is also called the k-jet
(k)

of f in differential geometry.) We will use the symbol u to

: k ' k 2
denote points in U( ), so the entries of u( ) are the u_'s.

J
A system of partial differential equations in p independent

and g dependent variables is given by m equations of the form
. K ,
Al(x,u( )) =0, i=1,...,m.

Therefore, we may identify the system of equations with a subvariety
k | |

SA C XX U( ) given by the vanishing of a smooth function

arx x o™ o Rr™, e,

k)) = 0}

s, = {6, oM A, ol

Then a solution of these equations is just a smooth function £: X - U,r
" :
_such that A(x, pr( )f(x)) = 0. In other words, the graph of the

k-th prolongation of f lies en’cirelvy within SA .

{6 prt i)} € s

Now suppose G is a local group of transformations acting
on the space X X U, There is an induced local action of G on the

k
space X X U( ), called the k~th prolongation of G, and denoted by
” :
(k).

pr This prolonged action is such that the

transform of the derivatives of a function is the derivatives of the




transformed function, the latter being defined by (7.3). Moxe

(k) ) (k)

rigorously, given (x,u e X X U""’, choose a smooth function

JJ

f defined in a neighborhood of x such that SJfﬂ(x) = U . (Such

a choice is always pcssible,r for example f might be the finite

(x),

Taylor polynomial at x corresponding to u

£
u

fg) = > =e-0 )
> T

Then for ge G sufficiently close to the identity the function g.f

o o

is defined in a neighborhood of (:?f,'ﬁ) = g(x, u)v by formula (7.3).

We then define

(k)

k
pr g-(X,U,

where the coordinates of U are
o ,Q f P :
= . f 2) . : 7.4
6y = oyen (%) . (7.4)

It is a straightforward matter to check that this definition is inde- |
: . : , L&)
pendent of the choice of function f to represent the point (x,u‘ ).

The formula (74:), when expanded using (7.3), will define the pro-

longed group action. |

Example 7.7. Let Uv,vX,rG be as in example 7.5, Note first that

Uki\: IR with coordinate u representing the k-th derivative of a

function f(x). Thus




pr i) = (1), 210, .., i)

We proceed to construct the first prolongation. of the rotation group Siu

% % 4
Let (x",u ,uX) e X XU X U1 =X XU( ) Choose the linear Taylor

polynomial
*® *, K & S
flx) =u + (x-xJu = u -xu Foxut
x : x
as a representative of (x ,u ,uX), so that f(x") = u" , f}(x") = u_

According to the calculations of example 7.5, the transform of f by

a rotation through an angle 6 is the function

_ * * ® %
sin® + u cos6 u =X U.X
Ao xX ~e
0 f(X) = T % + " o
cosfB - u sin8 cosB - u sin 6
X
sk LS % . :
Now X = x cosf® -u sinf, so
% o & *
U = 6-f(%X) = x sin6 + u cos6,

as we already knew. Moreover,

*®
sin® + u cosB
x

S

Qo= (en)(%) = -
cos 6 - uX sin 8

1
Therefore the prolonged action pr( )S on X X U(i) is given by

1

- 8in® + u cos B
X

pl‘( )8» (X,VU., uX) = (xcos ® - usinB,xsin® + ucos A,
x

which is defined whenever

]8] < larc cot u
=X

: . .
cos B - u sinb




Note that even though S

(1)
1

is a global transformation group, its

1
prolongation pvr is only a local transformation group. The
infinitesimal generator of the prolonged group action is found by

differentiating the last equation with respect to 6 and setting

6 = 0, This yields

(Here and in the sequel we will occasionally use BX to denote

8/0x, etc.)

Theorem 7.8. Suppose A =0 is a system of p.d.e.'s with

(k)

corr'esponding subvariety SA CXXU"'. Suppose SA is invariant

(k)

under pr' 'G for some group G actingon X X U. Then G is a

symmetry group of the system as in Definition 7.6,

Proof. Suppose u = f(x) is a local solution. This means

that the graph l“f(k), of pf(k)f lies entirely inside SA. Now for

g ¢ G suchthat g.f is defined, the graph I"(gf) of pr( )(g-f is

(x), (1)

just the transform of the graph of pr under pr ‘g, i. ea;

(1) LK)

RO
- PT S £

gf
(k)

This is just a restatement of formula (7.4) defining pr' ’g. Now -

since S, is invariant under p]i:(lf)cr,r the graph of pr(k)(

A g g-f) lies

entirely within SA' But this is just another way of saying that g-.f

is a solution of A = 0. This completes the proof.
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Given an infinitesimal generator o of a one-parameter sub-

group exp(ta) of G, define the k-th prolongation of « to be the

infinitesimal generator of the prolonged one-parameter subgroup

e

exp(ta); i.e.,

prepta)]. (7.5)
£=0 |

Combining Theorem 7.8 and Theorem 7.3, we get the following
infinitesimal criterion for G to be the symmetry group of a system

of p.d.e.’s.

(k)) -

Corollary 7.9.  Suppose Alx, u = 0 1is a system of A

p.d.e.'s (such that the Jacobian matrix of A hzs maximal rank

everywhere). Suppose G is a connected local transformation group

acting on X X U such that for every infinitesimal generator o

of G

- (k : : ‘ '
pr®ofag, o™y = 0 (7.6)

whenever A(X;u(k)) = 0. Then G is a symmetry groupl of the

equations A = 0,

Example 7.10. Let X., U,G be as in examples 7.5,7.7. Consider _

the first order ordinary differential equation

A = (u—X)uX + (utx) = 0.



1
Applying the infinitesimal generator of pr( )Si to this equation
yields
pr(i)a»A = (~ud +x8 + (i+uz)8 Mo -x)u + (u+x)]
X u X ux X
= U.X[(u—-:x;)\.lX + (u+x)]
= u A,
%
(1) : . :
Therefore pr' ‘w-A = 0 whenever A = 0, and condition {7.6) is

verified. Then Corollary 7.410 shows that if u = f(x) is any
solution of A = 0, then so is the rotated function U= 8-£(%).
Indeed, in polar coordinates x = rcos®, u= rsin®, the equation

A =0 becomes ‘
: dr/de = r ,

whose solutions are the spirals
&)
r = ce
Obviously, any one of these spirals, when rotated, is another spiral
of the same type. (For a discussion of the use of symmetry groups

of ordinary differential equations for finding solutions by quadratures,.

the reader should consult reference [2].)

Theorem 7.8 and Corollary 7.9 admit converses if we further
assume that the system of p.d.e.'s is "solvable for arbitrary initial

dats. " Then (7.6) becomes a necessary and suificient condition for

symmetry.




K :
Theorem 7.41  Suppose A(X,u( )) = 0 is a system of

partial differential equations in p independent variables Xpoooos xé

1
and g dependent variables u ,..., uq, such that the Jacobian matrix

of A has maximal rank everywhere. Suppose further that for any

point

(xo, u(gk)) €S

AT {(=, u(k)) : Ax, u(k)) = 0}C | X X U(k)

there is a solution u = f(x) defined in a neighborhood of %, such

Suppose G is a connected local transforma-

that uék) = pr(k)f(xo).

tion group acting on X X U = RrP x IRq, the space of independent

and dependent variables. Then G is a symmetry group of the system

if and only if for every infinitesimal generator o of G,

‘pr(k)a[A(X, u(k)

)] = 0 ' S (7.7)
whenever A(x, u(k)) = 0,

Proof We need only show the necessity of (7.7). In view of

- k\ -
Theorem 7.3, we must show that S, is invariant under pr( )G,_

A
since this will imply (7.7). Given (xo,ruék)) ¢ SA’ let u = £(x) be
: : (k) _ (&) ‘
a local solution with 4y = PT f(ho), For ge G suchthat g.f
is defined, ’
(k) (k) (%)

pr g - (Xo’ u’o ) = (Xo’ pr (gf)(XO)) € SA 3

since gf is also a solution. This proves the theorem.




3. The Prolongation Formula

In light of Theorem 7.11, the primary task remaining is to
find a formula for the prolongation of a vector field. Even though
the prolonged group action, as determined by (74), is exceedingly
complicated, we will find that the prolonged infinitesimal generato ré
are expressed relatively simply. First we need the concept of d t

total derivative.

Definition 7.12. Given a differentiable function

. ,
AX X U( ). IR, the total derivative D, (1 £i<p) is the function

DiA : X X U(k+i) IR such that, for any smooth function £f: X - U,
+ k)
D, AGe pr i) = & g, p: i)

(k)

In other words, DiA is just the derivative of A(x,u'’), treating

u as a function of x.

It is easy to check that

D =2 4 §q“ > M (7.8)
i ox. — ¢ T, Ji T : A
i =1 7J i ou
J
= (e i it 3 e i) h i 11 It
where Ji (Ji, iy Ji+ Jigq Jp) and the sum is over all J's
with j,+... + jp < k  For instance, if X = U = IR, then there is

just one total derivative



u +u .
x ox X ou xx ou XXx ou
X XK

Given a multi-index J = (ji" . ,jp), we abbreviate

Theorem 7.13. Suppose « is a smooth vector field on

X X U, given by

L. 9 3, 9
@ = 2 Elxu) g > e (xu) —;
i=A4 i =1 ou

The k-th prolongation of o, as defined by (7.5), is the vector field

9
p»r(k)a = o+ Z :>:: ¢, (x, u(k)) 2 : - (7.9)
i=1 '

k ' ' ‘
on X X U( ), where the sum is over all J's with 0 < ji+" . +jp < k.

The coefficient functions gpj are given by the following formula:

P % : :
¢, = D(p” - DL ulE) v > u_ &, (7.10)
JJ . i : J. .
i=1 i=1 1
{ I . .
where u, = Qu /8Xi and Ji is as defined above.
Proof. Firstthe formula will be proved for the case k = 1.
Let
(%, 8) = explta)(x,0) = (= 6s,0), 8 (x0),

so that




d i
— 2 (x,u) = £ (x,u) i=1, )P s
dt

t=0
d
R ® (x,u) = ¢ (x,u) £ =1,...,9.
a |, _, i ,

1 1)
Now given (x, u( )) € X X U( ), let u = f(x) be any representative,
so that uji = Bf(x)/axi. According to (7.3), for t sufficiently
small, the transform of f by the group element exp(te) is well-

defined and is given by

£(%) = (o0 (XDl [Hoxn] (=

)

t
Using the chain rule, the Jacobian matrix of ft at X, is therefore

- th(%’t) = J[@to'(z_x £) =) - [J[gto (I % f)](x)]_i_ (7.14)

(1)

This serves to define the prolonged group action pr

(1)

to find the infinitesimal generator pr' '@, we must differentiate

exp(te). ‘Thus

7.44) with respectto t and set t = 0. Recall that for any matrix
P y

valued function A(t),

1, dA(t) -1

a -1 -
SaTle) = —aTi e 5 a7

Also note that since t = 0 corresponds to the identity group element,

Eoe(Ixf) = 1 , geo(Ixf) = £




Therefore, by Leibnitz' rule,

SELCRE I ERIEI X

£t=0

Iee (IXH]Gx) - T(x) J[E e (TXH)](x) .

Now the matrix entries of this are just the coordinate functions of .

the first prolongation of o ; namely

. P 1z .
d = %;;j o, G 6] - > g;i ~ %{[al(x,ﬂx))]
p .
- D GOE(X,U( )) - z .ui Dj gl(x,u(i))
=
P i < i
= D [(’of - z uf{; ] 2_( uﬂlJ E s
1= 1 i=1

where we have used the definition of the total derivative, and

2
uiﬁ = 3 ul/axiaxj . This proves the theorem when k = 1.

To prove the theorem in general, we proceed by induction.

+1 ‘ k), (4
Notice that X X U(k ) can be viewed as a subspace of X X [U( <)]( )

Therefore given a multi-index J, by what we have already proven,

- D Sp“ o pogt ' (f 12)
T 5% e ‘




(Equation (7.10) is a useful recursion relation for the goﬁj's, and may
be also found in [3, page 106} ) It is a simple matter to check that

(7.10) satisfies the recursion relation (7.12). Indeed,

) J. .
J- £ 1 j, 1 S 2§
De - u. D, = D - u, +
) %ﬂ.Ji A (¢ Z CE)

+ > (uﬂ gl ¥ oot D.El) - o D.El

el J.. J. ] - J. ]

i ij i o1 i :
Ji 4 S ol — 1 i
= D ((P - , ulg) + >,uJ' ‘{:::
' i i ij

(Here Jij = (Ji)j ) This completes the proof of Theorem 7.13.

Example 7.14. Let X,U,G be as in examples 7.5,7.7 and 7.140.

The infinitesimal generator of the rotation group is « = -ud. + xau
X

The first prolongation, according to (7. 9; 10), is the vector field

(1) | x
pr ‘e = ato Bu , where
x

x
= D + -
@ X(x qu) uu__
2
= 1+ u_s

as we have already discovered. Similarly, the coefficient function

goxx of B/EuXX in the second prolongation of o is



= D%x+u’+ - '
? (x “x quX) e
2
= D{4+u +un ) - uu
x x XX KKK

1
w
ot
ot

Therefore the infinitesimal generator of the second prolongation of

the rotation group is the vector field

2
pr' ‘e = -ud +x0 + (4+u )8 +3uu 9 .
T Ux u x ' u X XX
x ®X

(The reader is invited to attempt to deduce this formula directly from

the prolonged group action!) Using the infinitesimal criterion of

Theorem 7.11, we see that the differential equation u = 0 is

. o (2) . ~

invariant under S,, since pr' ‘ofu ) = 3u u =0 whenever

1 XX X XX
u_ = 0. This is just a restatement of the fact that rotations preserve
: : . . : 2.-3/2 .

straight lines. Similarly the function F(u ,u }=u (1+u ) 77 is
x  xx XX x .

2 2 ) ‘
invariant under pr( )Si since pr( )a-F = 0. This just says that
the curvature of a curve is invariant under rotations.

Example 7.15, Consider the case p= 2, g=1, so we are looking at

partial differential equations for functions u = f(x,t). A vector field
on X X U is of the form

= 4+ 7
a §8X+78t <p8u R
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where £, 7,9 are functions of x,t,u. The first prolongation of «

is the vector field

P4 ut
where
=D lp-uf -ur) +ou_t+
¢ = D {o < u T u o,
= De¢-ubD - D
xgp ux xg ut xnr
¥ ( ) u 2 @t un
- ¢ un gxux—T t—gux *lu.u};t A
(7.43)
qot=D((p~li§~u'r)+u§+u—r |
t X t xt tt
= D oo D - u D
= ¢ ~fu +{p -T)u »%uu»vuz
t tx u tht ux t . u X
Similarly, the second prolongation of « is
2 . 1 .‘.\t L,
pr( )o: = pr( )oz+goXX8 + (p[ o + 'chLa
u u u
XX xt tt

where, for example,




XX

<
1

2
D - - T) + +
X (QD uX§ ut ' ) uxxxg uxxt’r

1§

2 2 2 '
-u D - - -
_Dx ¢ ~u D £ utDX T = 2u ng ZuxthT

= ¢ +tu (2o -£)- £ 7.44
q)x ux( (pxu gxx)‘ uthx o ( * )
~ 2 3 : 2
+ -2 - - - +
ux (qouu gxu) uxuthu uxguu uxutT uu
+ -2 -2 - - - .
uxx: ((Pu E“x) uxt TX 3 uxxuxgu uxxutTu 2 uxtuXT u

These expressions will be used in the following section to compute the

symmetry group of the heat equation.

Theorem 7.16. Suppose « and p are smooth vector fields

on X X U. Then

pr(k)[a, gl = [pr(k)oz,'pr(k)ﬁ]a

Corollary 7.47. If A(x, u(k)) = 0 is a system of p.d.e.'s

satisfying the conditions of Theorem 7.12, then the set of all infini-

tesimal symmetries of A = 0, meaning the set of all vector fields «

on X X U generating one-parameter symmetry groups, is a Lie

algebra.
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The most straightforward proof of 7.16 is computational
using the prolongation formula of Theorem 7.13. The details are’

left to the reader. (See also [4].)

4. Applicatipns of the Theory.

The basic method for finding the (connéc»ted componént) of
the symmetry group of a given system of p.d.e.'s is to substitute
the prolongation formula of Theorem 7.43 for a vector field o on
X X U into theb infinitesimal criterion of invariance (7.6). The
coefficients of the various partial derivatives of the dependent
variables in the resulting equations are equated, which gives a
large system of elementary p.d.e.'s ior the coefficient functions of

o, called the symmetry equatiohs. The general solution of the

symmetry equations is then the most general infinitesimal symmetry
of the given systern. The symmetry group itself may be found via
exponentiation.
As a first ‘example,A consider the one-dimensional heat
equation
u = u . (7.45)
Note that p = 2; g=1 and k= 2';7 the heat equation being thé linear

subvariety of X X U(Z) given by the vanishing of the function
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A=u -u . Given a vector field o= £8 + 79 + ¢8 on X XU,
KK X t u :

2
the second prolongation pr( )01 is given in example 7.15. The

infinitesimal criterion (7.6) is just
= ¢ ’ _ (7.16)
which must be satisfied whenever u o= . Substituting (7.13,14)

into (7.16), replacing L by u < and équating the coefficients of the
X

various partial derivatives of u, yields thevfollowing system of

equations: ‘
Yrxxt’ 0="-7, (a)
o 0= -2r_ (b)
ul v =T (c)
W“u : 0= -7 (d)
X XX uu
wu ) gu _ —'ZTXU‘ - 3¢ (e)
u_ QL T T ;TXX + 2 -.zgx | (£)
“j: 0=-¢ . | . | (g)‘
'ujz 0=9¢ " ngu (h)
uX: _gt - ZqD;x;u - gXx (1)
1 © = @ (J)




These are the symmetry equations. Now (a) and (b) show
that T is just a function of t. Then (e) shows that ¢ depends only

a(s - h - : ‘how
on x,t, and (f) shows T, ng’ ence E}Q 0. Then (h) shows

that ¢ = g(x, t)u + £(x,t), and by (i), gt = -2g . Finally (j) implies
8= 8.y and ft = f.xxg hence 8 = 0= g SO gtt = O There-
fore the most general solution of the symmetry equations is

£ = c1+c4x+2c5t+ 4(:6}:1:,

i'r =c_ + 2c t+ 4c tz (7.47)

2 4 6’
o 2

P = (c3 = CgX - 2c6t - cyx Ju+ £f(x,t) ,

where c,;...,c, are arbitrary constants and f(x,t) an arbitrary

1 6

solution of the heat equation. Thus the Lie algebra of infinitesimal
symmetries of the heat equation is spanned by the six vector fields

o, = 0

1 %

a, = 81:

@y = WO, . | (7.18)
@, = xd_+2td

@ = 2t8X - xud

2 2
= 4txd + 4t 0, - {x + 2t)ud
X t u

and the infinite=dimensional subalgebra

ap = f(x, t)au

where f is an arbitrary solution of the heat equation. The one-
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parameter groups Cri = exp()\czi) generated by «, are given by the
: i

expressions

G,: (x+ X\, t,u)
G, (x,t + X\, u)

)N : Ja
G3:: (x,t, e u) e R « (7.19)
G : (e)\’x, eZKt, u)

4
Gy (x - Zkt,t,uexp(xx-kzt)) ,
X t . A 2
T ~Ax

G (v merre VAT el 5y )
G, (x,t,u + ©(x, t)).

Note that the symmetries G3, Gf are consequences of the fact that
the heat equation is linear. G1 and Gr2 reflect the fact that the heat
equation has constant coefficients. G is the well-known scale

4

symmetry’,r G. a kind of Gallilean boost. This result is not new;

5
see for instance [1] and [2] for a more complete discussion of
these symmetries. » Note alsa that G6 is a local group.

For our second example, the symmetry group of the Navier- _

Stokes equations

p.tue +vu +wu = Au
* x y Z
p_tuv_+vv +wv = Av (7. 20)
y X y Z .
p tuw +vw + ww = Aw
z x y Z
=0

u + v +w
X y Z




will be computed. In this case p = 3, with coordinates (x,v,2),
and g = 4, with coordinates (u,v,w,p). A typical vector field on

4
XXU&:]RBXIR is given by
= + + ot '
o gax nay + QBZ 90 + L[Jav + Xaw + 'rrap )
“where the coefficient functions depend on (x3 y; zZ,u,V,W,p). The

infinitesimal symmetry criterion (7.6) for (7.20) is

| y

3 XX
*rrY + ugox + ve® + Wgoz + uxgo + Lly_L!J + uzx = ¢ + goyy + .;o‘ZZ

w4 u + vy +owy” o+ EARNEREE T S A (7.21)

XX ny+ XZZ ‘

®

TTZ+uXX+VXY+WXZ+WX(p+WyL‘rI+WZX =y

X Z "
o+ +x =0,

which must be satisfied whenever (7.20) is. Here goX,r etc. are the
coefficient functions of the second prolongation of a; and are given
by the prolongation formula (7.10). (See also (7. '13;14 ) for proto-

typical examples.) Inthe first equation of (7.21), the coefficient of P, 18

0 = - u - u -u { ,
gDP X%P YnP z p-
hence; E.,m,0, g0,~ and‘, by similar arguments, y and ¥ do not depend
"on p. Next the coefficient of u and other mixed second~order

derivatives of u,v and w in the first three equations of (7.21)

shows that
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£ +n =0, 'g+(,=o, n +tC =0 (7.22)

If, in the first equation of (7.21), we replace P by its value as
given in (7.20), then the resulting coefficient of v shows that
. y

¢+t n_ =0, Similarly, we find -

1
o

o+ b +E =0 X +& =0, B
vooE R | (7.23)
' + = = ! T =

gaW Lx 0 qJW+ ?;Y 0 | Xv T, 0.

Next the coefficient of U (again after replacing p ) in the first
v x

e quation of (7.21) shows that £ (and, similarly, n and {) depends

only on x, v, z. Moreover, we fihd
¢, = 'n’p + gx . |
= o + , 7.24
s p TNy (7.24)
=+
Xy Trp Z“'z

Note that this implies that v depends linearly on p. The coefficient

of v in the first equation of (7. 21); using (7. 24),7 yields

Lp = nXU.’l' (ny - ZgX)V‘{‘ *qZW - AT] + Z(Py‘ll 0

Comparison with (7, 24) requires that = = -ng. Therefore we get

the following representations of (p,L!J‘, and ¥y .




o = mgxu + gyv + gzw - 3§XX - gyy‘ - gxx o
Y= q - nyY T, w L 3nyy "My, | | (7‘?25)
X = Labtvelw - Lot -3
Moreover
£ =n. =10 = 0. ' (7.26)

Consideration of other first derivatives of u,v,w in the first three

equations of (7.20) shows that = is linear in wu,v,w and p. Also

the mixed partial derivatives of g,n,'@, for instance, gxz , are
all 0. Finally the term in the first equation of (7.20) not involving

any derivatives of u,v,w,p is

+ + + 20 = Ag.
T, toue  + ove, ¢, ¢

22 2 |
The quadratic terms u ,v , and w of this last equation imply that

gxx = Eyy = gZZ = 0; so that g , and also »qv and U, | must be linear in .
X, y,‘z. The generbal solution of (7.21) is then found to be given by

£ =c1+c7x+c4y+c5z

M =c2—=c4x+c7y+céz

£ = Cy-cgx-cyte,z

@ = —c7u+ c4v+ c3w

g o= -—c4u—c7v+c6w

X = -Cgu-cv-c,w

T = c8—2c7p
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Therefore the Lie algebra of infinitesimal symmetries of the Navier-

Stokes equations is spanned by the vector fields

% - .ax

a, = ABY

oz3 = BZ

@, = yax - x0 + vau - uav

ap = ZBX - x8Z + wau - uE)W

ap = Zay - yaz + WBV ~ v8W _

o, = X'c)X + yay + zaz - uau = vav -iwaw - Zp&p
ag = Bp .

It is easily verified that the first six of these vector fields are just
the infinitesimal generators of the action of the group of rigid motions
given previously in Chapter 4, section 5. Hence a5y, o, generate

the translations, and « s Oy the rotations. The vector field o

4 7

generates a group of scale transformations:

R -\ -\ =X -2\
G7: (ex,ey,ez,eu,ev,ewge p).

This means that if
(u, Vi, Wy p) = (f(x, Ys Z)» g(X, VS Z)s h(X9 Yo Z)r J(X’ Ys Z))

is a solution of the Navier-Stokes equations, so is

=N, =N =N =) "y

- -2
fle x,e y,e "z),e g,e)\h,,e M

(E: v, %:ﬁ) = (e J)’

where g,h,j are also evaluated at e*x(x, Y, Z). Finally, o comes
¢
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~from the fact that the Navier-Stokes equations are invariant under

pressure translations.
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