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B.7 Lie Groups and Differential Equations
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The applications of Lie groups to solve differential equations dates back
to the original work of Sophus Lie, who invented Lie groups for this purpose.
The modern era begins with Birkhoff (1950), and was forged into a key tool
of applied mathematics by Ovsiannikov (1982). Basic references are (Hydon,
2000; Olver, 1993, 1995).

First we review the geometric approach to systems of differential equa-
tions. We begin with a smooth m-dimensional manifold M ; the reader will
not experience any significant loss of generality by taking M = Rm. Solutions
will be identified as p-dimensional (smooth) submanifolds S ⊂M . Local co-
ordinates on M include a choice of independent variables x = (x1, . . . , xp),
and dependent variables u = (u1, . . . , uq), where p+ q = m, and so a (trans-
verse) submanifold is given as the graph of a function u = f(x). The deriva-
tives of the dependent variables are represented by uαJ = ∂Jf

α(x), where
α = 1, . . . , q and J is a multi-index of order 0 ≤ |J | ≤ n. These form a system
of local coordinates, collectively denoted by (x, u(n)), on the n-th order (ex-
tended) jet bundle Jn →M . The jet bundle can be defined as the set of equiv-

alence classes of p-dimensional submanifolds S ⊂M , where S ∼ S̃ define the
same equivalence class or jet jnS ∈ Jn at common point z ∈ S ∩ S̃ whenever
the two submanifolds have n-th order contact at z. A system of differential
equations ∆ν(x, u

(n))=0, ν=1, . . . , s is regular if the Jacobian matrix of the
∆ν has maximal rank s at all (x, u(n)) that satisfy the system. A regular sys-
tem can be viewed as a submanifold S∆ ={∆ν(x, u

(n))=0} ⊂ Jn. A classical
(smooth) solution is, thus, a submanifold S ⊂ M whose jet jnS ⊂ S∆. The
system is locally solvable if there exists a smooth solution passing through
each point (x, u(n)) ∈ S∆.

Let G be an r-dimensional Lie group acting smoothly on M . Since
G preserves contact between submanifolds, there is an induced action, de-
noted G(n), on Jn, called the n-th order prolonged action, which tells us how
G acts on the derivatives of functions. The action defines a symmetry group
of a system of differential equations S∆ if it maps solutions to solutions. As-
suming local solvability this occurs if and only if S∆ is a G(n)-invariant subset
of Jn.

A connected Lie group action is entirely determined by its infinitesimal
generators, which are vector fields on the manifold M and can be identified
with the Lie algebra g (often denoted by g in the literature) of G. Each
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vector field

v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uαJ
∈ g,

generates a one-parameter subgroup. The infinitesimal generator of the cor-
responding n-th prolonged one-parameter subgroup is a vector field

pr v =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

∑
j=#J

ϕαJ(x, u(j))
∂

∂uαJ
,

on Jn. There is an explicit formula for the coefficients ϕαJ of the prolonga-
tion pr v in terms of the derivatives of the coefficients ξi, ϕα of v. This prolon-
gation formula, coupled with the following infinitesimal symmetry criterion
allows us to explicitly compute the symmetry groups of almost any systems
of differential equations. Indeed, there now exist a wide range of computer
algebra packages for performing this computation, (Hereman, 1994).

B.7.1 Theorem (SymGroupDEQ) A connected group of transformations G
is a symmetry group of the regular system of differential equations S∆ if and
only if pr v(∆ν)=0, ν=1, . . . , s, on S∆ for every v ∈ g.

Example

Consider the linear heat equation ut=uxx. Applying Theorem B.7.1, an in-
finitesimal symmetry v=ξ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u must satisfy
τu = τx = ξuu = 0, −ξu =−2τxu − 3ξu, ϕuu = 2ξxu, ϕu − τt =−τxx + ϕu − 2ξx,
−ξt = 2ϕxu − ξxx, ϕt = ϕxx. The solution space to this overdetermined lin-
ear system of partial differential equations yields the symmetry algebra of
the heat equation, with basis v1 = ∂x, v2 = ∂t, v3 = u∂u, v4 = x∂x + 2t∂t,
v5 =2t∂x−xu∂u, v6 =4xt∂x + 4t2∂t− (x2 + 2t)u∂u, and vα=α(x, t)∂u, where
αt =αxx. The corresponding one-parameter groups are, respectively, x and
t translations, scaling in u, the scaling (x, t) 7→ (λx, λ2t), Galilean boosts,
an “inversional symmetry”, and the addition of solutions stemming from the
linearity of the equation. Each of these groups maps solutions to solutions,
e.g., the inversional group tells us that if u = f(x, t) is any solution, so is

u= 1
1+4εt

exp
{
−εx2

1+4εt

}
f
(

x
1+4εt

, t
1+4εt

)
, for any ε ∈ R. The constant solution

u = 1/
√

2π produces the fundamental solution at (0,−(4ε)−1). Thus, the
symmetry group provides an effective mechanism for computing a wide vari-
ety of new solutions from known solutions. Further applications—to finding
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explicit group-invariant solutions, to determining conservation laws, to solu-
tion, to classification of differential equations with given symmetry groups,
and so on—are described below.

Generalized Symmetries

For ordinary or point symmetries, the coefficients ξi, ϕα of v depend only
on x, u. Generalized or higher order symmetries, including contact trans-
formations, allow dependence on the derivatives uαJ as well. Higher order
symmetries play an essential role in the study of integrable soliton equations,
(Fokas, 1980; Mikhailov et al., 184; Sanders and Wang, 1998). Recursion op-
erators and master symmetries map symmetries to symmetries and thereby
generate infinite hierarchies of generalized symmetries. The biHamiltonian
structure theory of Magri (1978); Olver (1993), provides an method for con-
structing recursion operators.

Linearization of Partial Differential Equations

Any linear partial differential equation has an infinite-dimensional symmetry
group: addition of solutions. A system of partial differential equations can
be linearized if and only if it has an infinite-dimensional symmetry group of
the proper form.

Noether’s Theorems

A variational problem admitting a symmetry group G leads to a G-invariant
system of Euler-Lagrange equations. Noether’s first theorem, (Noether,
1918), associates a conservation law for the Euler-Lagrange equations with
every one-parameter symmetry group of the variational problem. For in-
stance, translation invariance leads to conservation of linear momentum,
rotation invariance leads to conservation of angular momentum, and time
translation invariance leads to conservation of energy. Noether’s second the-
orem, of application in relativity and gauge theories, produces dependencies
among the Euler-Lagrange equations arising from infinite-dimensional vari-
ational symmetry groups.

Integration of Ordinary Differential Equations

Lie observed that virtually all the classical methods for solving ordinary
differential equations (separable, homogeneous, exact, etc.) are instances
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of a general method for integrating ordinary differential equations that ad-
mit a symmetry group. An n-th order scalar ordinary differential equation
admitting an n-dimensional solvable symmetry group can be integrated by
quadrature. The associated conservation laws of variational problems and
Hamiltonian systems doubles the order of symmetry reduction.

Symmetry Reduction of Partial Differential Equations

If the orbits of G are s-dimensional and transverse to the vertical fibers
{x=c}, then the G-invariant solutions to a G-invariant system of differential
equations are found by reducing to a system in p− s variables. See (Bluman
and Cole, 1969; Olver and Rosenau, 1987) for the nonclassical generalization,
and (Anderson and Fels, 1997) for the nontransverse case, of importance in
many physical systems, e.g., relativity, fluid mechanics.

Differential Invariants

A function I : Jn → R which is invariant under the action of G(n) is known
as a differential invariant. Basic examples include curvature and torsion of
curves, and the Gaussian and mean curvature of surfaces in three-dimensional
Euclidean geometry. The differential invariants are the fundamental building
blocks for constructing G-invariant differential equations, variational prob-
lems, etc., as well as solving the basic problems of equivalence and symmetry
of submanifolds. For example, every Euclidean-invariant differential equa-
tion for space curves involves just the curvature, torsion and their arc-length
derivatives: Fν(κ, κs, . . . , τ, τs, . . . )=0.

Differential invariants are characterized by the infinitesimal invariance cri-
terion pr v(I)=0 for all v ∈ g. Cartan’s method of moving frames, (Cartan,
1935; Fels and Olver, 1999), forms an effective tool for producing complete
systems of differential invariants. An n-th order moving frame is a smooth,
G-equivariant map ρ : Jn → G, where G acts on itself by left multiplication.
The most familiar case is the moving frame for a curve in R3, consisting of a
point z on the curve together with the unit tangent ~t, normal ~n and binormal
~b at z. These form a left-equivariant map ρ : J2 → E(3) from the second jet
space to the Euclidean group, where we interpret z ∈ R3 as the translation
component and the 3×3 matrix [~t, ~n,~b ] ∈ O(3) as the rotation component of
the group element. In general, a moving frame exists if and only if G(n) acts
freely and regularly, which holds in all practical examples for n � 0. Nor-
malization amounts to setting r=dimG components of the prolonged group
transformations (g(n))−1 · (x, u(n)) to be suitably chosen constants. Solving
for the group parameters and substituting into the remaining components
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produces a complete system of differential invariants. In the case of space
curves, these are the curvature, torsion and their successive derivatives with
respect to arc length.

Symmetry Classification of Ordinary Differential Equa-
tions

Lie’s classification of all finite-dimensional Lie groups acting on the plane,
(Lie, 1924; Olver, 1995), along with their differential invariants and Lie de-
terminants leads to a complete symmetry classification of scalar ordinary
differential equations, and possible symmetry reductions.

Discrete Symmetries

Discrete symmetry groups also play an important role in differential equa-
tions, including Schwarz’s theory of hypergeometric functions, Fuchsian and
Kleinian groups, etc., (Hille, 1976). Discrete symmetries can often be deter-
mined from the continuous symmetry group, (Hydon, 2000).

GF Id: Lie-Groups-Diff.tex,v 1.5 2001/08/02 02:43:19 xbx Exp


	Lie Groups and Differential Equations

