
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 69. Number 2, May 1978

A RESOLUTION OF THE EULER OPERATOR. I

PETER J. OLVER AND CHEHRZAD SHAKIBAN

Abstract. An exact sequence resolving the Euler operator of the calculus of

variations for polynomial differential equations in one independent and one

dependent variable is described. This resolution provides readily verifiable

necessary and sufficient conditions for such a polynomial differential equa-

tion to be the Euler equation for some Lagrangian. An explicit construction

of the Lagrangian is given.

1. The main result. In the calculus of variations the Euler operator E plays

a fundamental role. If / = \L(x, u, ux, uxx, .. . ) dx is a variational problem

with Lagrangian L, then the Euler equation E(L) = 0 forms a necessary

condition for an extremal of /. Conversely, suppose we are given a poly-

nomial differential equation P(x, u, ux, uxx, ... ) = 0. In this paper we derive

a necessary and sufficient condition for this equation to be the Euler equation

for some Lagrangian L.

Let R [u] denote the ordinary differential algebra consisting of all differen-

tial polynomials in the dependent variable u and its various derivatives with

respect to the independent variable x. We distinguish two cases: when the

polynomials all have constant coefficients, and when the polynomials have

arbitrary smooth functions as coefficients. The results to be described hold

equally well in both cases.

For convenience abbreviate u¡ = d'u/dx'. Given a multi-index / =

(/,, i2, . . . , /„), where 0 < i} G Z, let u, denote the monomial u¡u¡ • • • u¿. If

/ = (i'„ .. ., /„), define #1 = n. Let Rn be the subspace of R {»} spanned by

all «-monomials; i.e.,

R„ = Span!«,: #1 = n),       n > 1.

The (total) derivative, d/dx, acting on R{u) is the operator

i = 0 '

Similarly, the Euler operator is

(2) E-%(-D)'-¡¡-.
7=0 vui

Define the operator
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(3) F-Í(-D)'«^-.
¿-0 a".

Let

00 3

(The operator A, when restricted to Rn, is just multiplication by n.) Note that

to apply A, D, E or F to any given polynomial, only finitely many terms in

the sum are needed. The main result of this paper is

Theorem 1. The complex

O^R-* R{u) ^R{u) ^R {u)F^ R {u}F^ R {u)F^ R {u)F^1 ...

is exact. (Here 1 denotes the identity map.)

This theorem solves a problem posed by I. M. Gel'fand in a series of

lectures delivered at Harvard University and MIT in June, 1976. A subse-

quent paper, in preparation, will generalize Theorem 1 to differential algebras

in several independent and dependent variables.

Corollary 2. If P G R{u} is a differential polynomial, then P = E(L)for

some Lagrangian L if and only if

(4) F(P) = N(P).

In fact, if P satisfies (4), then the Lagrangian L can be explicitly given as

(5) L = u- (N + iyxP.

This can be directly verified as follows:

E(uP) = | (-D)'l-(uP) = P+f (-DYu^-P
,=0 °" i-O ""

= P + F(P) = (N + l)P.

= i "¿ - i "x- Then

P = E(L) = -D(- \uî) + D2(uxx) = uxuxx + uxxxx.

Example. Let L = \ uxx - | u3. Then

Now

F(P) = -D(uuxx) + D2(uux) + D4(u) = 2uxuxx + uxxxx = NP.

Substituting in (5), we have

L' = u-(N + l)~]P = \uuxuxx + \uuxxxx

as another Lagrangian for P. Indeed,

L' = L + D{\uuxxx - \uxuxx + \uu2x);

hence E(L') = E(L) = P.

The proof of Theorem 1 will be done here just for the case of constant
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coefficient polynomials. The main tool is a transform due to Gel'fand and

Dikiï, which is described in §2. An analogous proof of the result for

polynomials with arbitrary smooth functions as coefficients can be construc-

ted using the Fourier transform; for the sake of brevity this will be omitted.

2. The Gel fand-Dikii transform. The notation

00

S" = 0,R" = 0 O.R",       n > 1,
7 = 0

will be used to denote the symmetric algebra of R", cf. [2, Chapter 1]. If

{ex, e2, . . . , en) is a basis of R", then

{e1 = e[< © efe ■ ■ • ©e¿: / - (i„ ...,/„), 0 < 7} E Z }

forms a basis of S". Note that if / = (/,, ...,/„) and J = (j\> ■ ■ • »7«)' tnen

e' © eJ = e'+J, where I + J = (ix + jx,. .., i„ + j„). Elements tp £ S" may

be thought of as polynomials in the variables ex,. .., e„, so we shall write

<p = tp(ex, . . ., en). This will enable us to easily construct transformations of

S" by replacing one or more of the arguments <¡p by a new linear combination

of the efs.
Suppose ir is a permutation of the integers 1,2,...,«. There is an induced

map tr: S" -* S" which permutes the basis vectors of R":

tr[<p(ex, . . . , en)] = <p(e„(x), e.(2), . . . , eAn)),       <p E Sn.

Let

0 = -V 2 ¿■■S"^>sn
»! T

be the symmetrizing map, the sum being taken over all permutations tr of the

integers 1, 2, . . ., n. Note that a is a projection, i.e., o ° a = a. Let 5q =

o(S"). Note that 1// E S¡¡ if and only if fi(\p) = \p for all permutations tr. Let

00 00

S* _   (T\   on o* _   m   on
—   »37 O   , O0   —   tU o0.

n=0 n=0

(By convention, S° = 50° = R.)

Definition 3. The Gel'fand-Dikiï transform is the linear map <&: R{u) ->

S* such that for any multi-index I, ^(u,) = o(e').

Examples. For the differential polynomial P = uxx E Rx the Gel'fand-

Dikiï transform is ^(P) = e\ E 51. For the differential polynomial

Q = UxUxxx + 3""xx G R2

the transform is

%(Q) = {-[ex O e¡ + e3x o e2 + 3e2x + 3e\\ E S2.

Finally, the transform of a constant monomial c is just the same constant

considered as an element of S° = R.

Theorem 4 [1]. The Gel'fand-Dikiï transform gives a linear isomorphism *$:

Rn A SS, n>0.
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If P G R {u) is a differential polynomial, then we shall denote 'S(P) = P,

in analogy with the Fourier transform of classical analysis. Similarly, if O:

R {«} -» R {u) is a map, then Ô: S$ -* S* will be the unique map satisfying

$(P) =^(P), P e R{u).

Lemma 5. For <p E So,

¿ («p) = (ci + e2 + ■ • • + en) O <p,

¿[ç»(e„ ...,«„)] = n«p(e„ ...,en_„-e, - e2- <?„_,).

Corollary 6 [1]. The sequence

D E
0 —» R —» S1,) —» S* —» Sq

is exact.

Note that by Theorem 4, the exactness of the transformed sequence implies

the exactness of the original sequence; hence we have shown that

O^R^R{u) ^R{u] ^R{u}

is exact.

3. The constant coefficient case. Define the maps

F): S" -+S",       1 < j < n,

by

Fj[<p(ex, ...,en)] = <p(e„ ..., eJ_l,-el - e2 - • • • - en, eJ+x, ..., e„).

Lemma 1. If F is the operator defined by (3), then on Sq ,

n

*•- 2¿>
y-l

Proof. Suppose 7 = (/,, . .., /„). Then

F(u,)=t   (-£>)%

where 7, = (/',, .. ., t}_ „ 0, /,+,,. .., /„). Therefore

F[o(e')] = y[F(«,)] = a ¿ (-e, - e2-ej*© e*

y-i

-a2^(«#)-«2^(«')]-
,-i y-i

Next note that if Vy is the transposition interchanging ; andy, then, on S{¡,

% ° Pj = h   ¿u ° h = Fk,       i,j ¥= k.
Therefore, if m is any permutation of 1,2,...,« with -n(j) = k, then m ° F}

= Fk on S{¡. We conclude that

p=°° 23-25-
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Lemma 8. On S(¡,

Fj°Fk = Fk,  j*k,       FjoFj-l.

Proof. Let y E S0". Then

Fj ° Fj[<p(ex, . . . , en)]

" Fj[(p(ex, . . ., ej_x, - ex - ■ ■ ■ - e„, eJ+x, ..., en)]

= <p(e„ . . .,ej_x, ep eJ+x, . . . , en).

Also

Fj ° Fk[y(ex, .. ., e„)] - F^<p(ex, ...,- ex- ■ ■ ■  -<?„,...,«„)]

= <p(ex,..., - ex- ■ ■ ■  -e„,...,ej,...,e„j

= <p(ex, ..., - ex - • • •   - e„, . . . , e„),

since op E im o.

Corollary 9. On S0", F ° F = (n - l)F + n.

Proof.

n n

f° f= 2 ^ ° ̂ = 2 Í+ « - (« - 0^ +«•
'V'=l 'V=l

Corollary 10. TAe sequences

„„F-n„„F+l„„ „-^+1 „~F-n „„

are exact.

Proof. By Corollary 9, (/ + tyF - n) = 0 = (F - n\F + 1). ff (F +

l)(<p) = 0, tp E St?, then (F - 7j)[-(ti + l)_1<p] = <P, hence tp E im(F - n).

Similarly, if (F - n)(<p) = 0, then (F + l)[(n + l)~'tp] = <p, hence tp E im(F

+ 1).

Lemma II. Let ^ E 50". Then xp = Ê(<p) for some <p E S0n+1 if and only if

4> = Fj(yp)forj = 1, .. .,«.

Proof. First suppose ^ = E(q>), so that

«H^i. •••»«»)*(«+ iM*i> • • •. «,,. - ^i - e2 - • • • - *»)•

Since <p E im o.

/;!>(<?„ ..., <?„)] - *(«i» ..., Vi, - e,- e„, e>+„ ... ,ej

= (tj + l)«p(e„ .. ., e)_„ - *?, - • • ■ - e„, eJ+x, . . . , en, e¡)

= (n + l)<p(e„ . . . , e,_„ ep eJ+x, ..., en,-ex - ■ ■ ■ - en)

= *(<?,, • • • , e„).
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Conversely, if Fj(i¡¡) = t/> for ally, let

n + X

¥>(*i. • • • , en+,) = (/! + I)"2 2 «K«?i, • • •, e,-,, eJ+x, .
y-i

Then

£[v(e„ ..., <?„+,)]

• •>«?„+,).

= (« + !) S H^v-^j_x,ej+l, ...,en, - ex
y-i

O

+ *(*„..., ej

Corollary 12. The sequence

-*•

on+l _£. vnF" C"
On *^n   —'   Jn

ii exact*.

Proof. Let <// E 5g. Using the previous lemma, it suffices to show that if

F(i//) = /it// then Fy(t//) = \p for each y = 1, . . . , n. We have

2 Í (*)-#•
7=1

Applying Ft to both sides of this equation yields

y-i
y**

Subtracting the last two equations shows

which proves the result.

Piecing together the exact subsequences of Corollaries 6, 10 and 12, we

deduce that for n > 1, the transformed sequence

o^sr'-^+1 W-V-V-so1-- • •

is exact. Theorem 4 now implies the exactness of the sequence

D £ F-n       F+X        F-n

0^> Pn+X->Rn+l^>Rn   -»   K   -*   K   -*   Rn ~* '   '   '

for n > 1. Combining these sequences and the trivial sequence 0 -» R —> R

-» 0, and recalling how the operator N acts on each Rn, completes the proof

of Theorem 1.
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