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Abstract

We investigate the symmetry group of a single linear partial
differential equation in p independent variables (x , co ,xp) = x and
one dependent variable u, extending the results of Ovsjannikov for a
" second order linear equation, It is first shown that all the symmetries
of an equation of order > 3 must be projectable, i.e., of the form
(x,u) k> (f(x), g(x,u)). Using the fact that the symmetries form a sub-
group of the conformal group of the top-order symbol of the equation,
a bound for the number of symmetries is obtained. Precisely, if G is
the full symmetry group and T the trivial normal subgroup that results

from the linearity of the equation, then dim G/T < pt1 for a

"nondegenerate" linear partial differential equation,
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1. Introduction

In this paper some results on the symmetry group of a linear
partial differential equation are derived, The Lie-Ovsjannikov theory
of symmetry groups of partial differential equations is discussed in
great detail in a number of references, for instance [1], [6], and [8].
Roughly speaking, the symmetry group of a partial differential equation
is the largest local Lie group of transformations acting on both the
independent and dependent variables, which transforms solutions of the
equation to other solutions of the equation, In section 2 a brief intro-
duction to the Lie-Ovsjannikov theory is sketched, Another version of
the symmetry group concept, to which this paper also applies; may be
found in the papers of Miller, Kalnins et.al., [5].

Suppose that

Alu] = S O'I(x)E)Iu = 0 (1.1)
I

is an n-th order linear partial differential equation in p independent
variables x = (xi, oo ,pr) and one dependent variable u, The summa-
tion in (4.1) is taken over multi-indices I = (ii,r. el ip) and 9 denotes
the corresponding partial derivative., Note that (1.1) is always
invariant under the trivial symmetry group T generated by all trans-
formations of the form

(s, u) b (x, ha + 9(x)

for 0# N e IR and ¢ an arbitrary solution of (1.1).



A transformation will be called projectable if it is of the form
(%, 0) b (£(x), g(x, 1)).

In [6], Ovsjannikov showed that a second order linear equation that
was not "strongly degenerate" (see section 3) possessed only projectable
symmetries, In section 3 this result is extended to show that any
linear equation of order > 3 possesses only projectable symmetries.

Let G denote the full symmetry group of (1.1). Ovsjannikov
has shown that the trivial subgroup T 1is a normal subgroup of G. The
factor group G/T forms the main object of interest, In [6] Osvjannikov
demonstrated that for a not strongly degenerate second order equation
with p > 2,

dim G/T ~_<_—(Pi1->2—(—‘—°i—2-—)- .

In Theorem 6.8 it is shown that for a linear equation with
"nondegenerate" symbol,
dim G/T < pt+i.

The adjective nondegenerate roughly means that for every system of

coordinates (xi, oo ,xp), the set

{1: |1] =n, o (x)# 0}
spans a (p-1)-dimensional affine subspace of RP, For n> 3; the non-
degenerate symbols form a dense open subset of the set of all symbols.

(For n = 2; all symbols are degenerate in our terminology.) The

method of proof of this theorem parallels Ovsjannikov's method for



second order equations, Once the possibility of nonprojectable
symmetries is disposed of, section 4 shows that the symmetry group
may be viewed as a subgroup of the conformal group of the symbol of
the equation. Section 5 discusses the conformal groups of symmetric
homogeneous polynomials and elucidates the concept of nondegeneracy.
Section 6 ties together these results to get the bound on the dimension
of G/T.

Some of the results of this paper appeared in my Ph.D, Thesis,
[7]. I would like to express my profound gratitude to my advisor,

Professor G, Birkhoff”,r for his invaluable help and encouragement,



2, Symmetry Groups of Partial Differential Equations

This section will provide a brief review of the Lie-Ovsjannikov
theory of symmetry groups of partial differential equations, For
simplicity we shall restrict our attention to equations in one dependent
variable defined over an open subset of Euclidean space. Completely
expositions of the general theory in Euclidean space may be found in
references [1] and [6]. The generalization of the theory to arbitrary
smooth manifolds is done in [8].

Consider the Euclidean space Z = RY X R with coordinates (x,u).
Here x = (X'l, oo ,xp) are the independent variables and u the dependent
variable in the partial differential equation under consideration, We

construct the Euclidean space JnZ, called the n-jet bundle of Z, which

is of dimension p+N_ , where
n,p

_ pt+i ptn-1
Nn,p" 1+ p+( 5 )t .. + ( N ) -

Before proceeding further, some standard multi-index notation is

presented,

Definition, 2,41, Define the set of p-multi-indices of rank n to be

p . : - . .
é :{I:(li,‘,“,lp)° 0<ie Z, II!—11+°M+1p—n},
oo
Let Xp = /éi be the set of all p-multi-indices. Given
=0

n

Te ,Xp , J e é P , let I +J be the multi-index with components i_+j .
n n v Yy
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Introduce a partial ordering on AP by defining I £ J whenever iv < jv

forall v=1,,..,p. For I<J, let J-1 be the multi-index with com-

ponents jv- iv o Define

.. . P
If = i, Yi b ... it ITe s
1
Ty o I 1<Je 4P .

)= oo

Let & ¢ ﬂi) be the Kronecker multi-index, with components 6\“] .

For convenience the following notations for partial derivatives will

be used: 5 5
8 = _— N 8 = 5:-1- )
1 9x u
5. = aii aiz aip 1c 4F
p =0y 8y e 8 € .

The coordinates on JnZ shall be written (x, u;,u n)), where u(n) has

)

components u_ for Ie /Xp, |I| <n, If £I RP =~ R is a smooth (C

I
function jnf: RP - R n,p', called the n-jet of f‘,r given by u; = BIf(x)o
(These concepts may of course be made coordinate free, cf. [4] or [8].)
In this context‘,r an n-th order partial differential equation is regarded
as a closed subvariety AO C J'nZ given by the vanishing of a smooth
function A: JnZ - ]R, i. e, ,

AO = {(x,u, u(n)) :A(X; u‘,iu(n)) =0},

A (smooth) solution of AO is therefore a function f: IRp - IR such that

the graph of its n-jet‘,A jnf‘,A is entirely contained in the subvariety AO°
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Now suppose G is a local Lie group of transformations acting
on Z, cf. [2]or[9]. An element ge G is a local diffeomorphism
g Ug = 7, where UgC Z is open, If ff.'IRl‘O = IR is a smooth function
its graph is a smooth p-dimensional submanifold
Mf = {(x,f(x)) :x € RP } C 2Z, which is transversal to the fibers
{x = constant}, Now ge G transforms Mf(‘\ Ug into another
p-dimensional submanifold of Z, but this transformed submanifold is
not necessarily the graph of a function since the condition of trans-
versality is not maintained. (These difficulties are dealt with in detail
in [8].) However, transformations ge G sufficiently close to the
identity locally preserve the transversality condition when transforming
M. In other words for such g, there is an open subset V C Z such

that g[Mf N V] is part of the graph of a function ge f: RP «~ R. This

local action on functions induces a local Lie group action of G on the

jet space JnZ, called the n-th prolongation of G.,r and denoted by

(n)
pr' ‘G. Thus (n)

The actual formulas for the prolonged group action are very
complicated. However; there is a fairly simple formula relating the
(n).

infinitesimal generators of G to the infinitesimal generators of pr

If v is a vector field on Z‘,r with local one-parameter group exp(tv),



then its n-th prolongation is the vector field

(n) d (n)

pr v = o ‘t _ o PT exp(tv)

on J Z.
n
i
Recall that the total derivative in the x direction of a function

@ JkZ - IR is the function Digo: J - IR given by

k+1z

(k+1)

) = Bigo(x, u,ru(k))+ Zu . ¢ (X,u, u<k))., (2.1)
J J+6 J

Given Il e ﬂp, let

Theorem 2.2, [8]. Suppose

v = % igi(x,u)é).1 + o(x, 11)8u (2.2)

i=1

is a smooth vector field on Z. Then the n-th prolongation of v is the

vector field
(n)

T

pr(n)v = v + <,oI(X,u‘,u
<n L

1

whose coefficient functions are

P
VI, 0 (n 1 i
Foxu ) =pe- SO ST (Kl DE . (2.3)
0<K<I i=1 I-K+8

An n-th order partial differential equation AO Cc JnZ is said

to be invariant under G (or G is a symmetry group of AO) if all

the prolonged transformations in pr(n)G leave the subvariety A

0

invariant. Note that this implies that G transforms solutions of

AO to solutions, The converse of this statement is true providing



that for any point in A_ there is a solution whose n-jet passes through

0
that point. The next proposition follows from the standard infinitesimal

criterion of invariance of a subvariety,

Proposition 2. 3. Suppose AO is a partial differential

equation given by the vanishing of a smooth function A: JnZ - IR,
A connected local group of transformations G acting on Z is a sym-
metry group of A if and only if

pr(n)v[A(x, u, u(n))] =0 (2.4)

for all (x,u, u(n)) € AO and all infinitesimal generators v of G.

The symmetry group of a given partial differential equation will
mean the largest connected local group of transformations whose pro-
longation leaves the equation invariant, Note that we are excluding
discrete symmetries of the equation by requiring the group to be
connected. Special care must be exercised when this "group" becomes
infinite dimensional,

Now we consider a linear partial differential equation. Suppose

A= z o (%)

1< n !

is a n-th order linear differential operator, with corresponding equation

DT ) 1 _ I _
AO = {(x,u,u" ’): Alu] = > ¢ (x)uI = 0} .
Suppose v is a vector field on Z.,i with k-th order prolongation given

by Theorem 2.2. The symmetry conditions of proposition 2.3 for AO

are
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Z( Iq)I + }p_—: §v8v0'pul) = z O'IuI . (2.5)

I v=14 I
Here p:JkZ =+ IR is a multiplier, which may a priori depend on
(%, u, u(n)), and reflects ti&e fact that (2.4) only needs to hold on AO -
Formula (2.3) shows that all the coordinates a for I>0 occur
polynomially in (2,4), hence p must be a polynomial in these
variables. The results of this paper will come from a detailed analysis
of the symmetry equations (2.5). The first symmetries we consider
are the so-called nonprojectable symmetries, Projectable trans-
formations are those of the form

glx,u) = (g,(x), g,(x, ).

A vector field v given by (2.2) generates a projectable one-parameter

group. if and only if

8 £ (x,u) = 0 i=1,...,p.
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3. Nonprojectable Symmetries.

In this section we dispose of the nonprojectable symmetries of
linear equations, The main result is that a linear equation of order
n > 3 possesses only projectable symmetries, In the proof of this
result, we rederive the result of Ovsjannikov,[6], that a second .order
linear equation possesses a nonprojectable symmetry if and only if it
is strongly degenerate; i. e.; is‘,i under a change of coordinates; of

the form

2
o'Z(x)aiu + o"i(x)aiu + o-o(x)u = 0,

More generally, let us make the following definition.

Definition 3.1 , A linear partial differential operator A of

order n is partially degenerate if there is a local coordinate system

1
(x,...,x") on IRP such that

= n '
A= O'n(X)ai + A,
where A' is a linear partial differential operator of order n'<n,

An n-th order linear partial differential operator is strongly degenerate

1”_ -
if there is a coordinate system (x ,..., Xp) on _TRp such that

+... to,(x)0

n-1
1 1

A= o'n(X)Bn t+ o 1(X)3

1 e + O'O(X).

1
In other Words‘,r A 1is equivalent under a change of independent variables

to a parametrized ordinary differential operator,
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The plan of proof is to first show that if A is of order n > 2,
then AO being invariant under a nonprojectable symmetry implies
that A" is strongly degenerate. Then if n > 3, the strongly

degenerate equations are also shown to have only projectable sym-

metries, The proof involves a detailed consideration of the symmetry

P

equations (2. 5) based on the formulas for the prolongations of vector
fields given in Theorem 2.2, Throughout this section, the symbol

A (k) shall be used to denote a polynomial expression in the partial

derivatives uJ for |J| < k,

p
Lemma 3. 2. Let ¢: ]Rp X IR - IR be smooth, Let le J m

be a multi-index, Then

oy 22 - d¢
DIgo = u +v§ 1vu1_6vDV oe T XL (m-1), (3.1)

for m> 2. For m-= Z', we have

0 82 32 82
DD ¢ = u oL tuu =% +u L+ a5+ A1) (3.1Y)
J J 4 J ou BxJau J ox du

The proof is an easy induction using the formula for total
derivative (2.1). As a corollary of this, we see that the coordinates

q)I of the prolongation of a vector field v given by (2.3) are of the form

+ I(n’l), (3.2)

p P ae Y eV
I_0¢ [ k, 9§ 1
¢ = u 2 La[(lk+ BV) Iu uk+ 1k, k ]uI_6k+6v
v=1 ox

for TIe /&p . To see this, it suffices to note that the only terms in the
m
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sum in (2.3) that contribute m-th order derivatives of u are when K = I

or K= 6k for some k,

Lemma 3. 3. If AO is invariant under the one parameter group

generated by the vector field v with multiplier p, then

‘ P .
b= pglxua) + > py (5 @)y, (3.3)
k=1
Moreover,
k
. ag B .

P‘k(x,u)" akal— ’ k‘1:°°°sp, (3°4:)

where . is the integer defined by

. p J

a'k—-i—sup{_]k.Je /{n , o (x) £ 0} . (3.5)

Proof. Using (3. 2), the left-hand side of the symmetry equation
(2.5) is

I 1Z I . k v ) v .
> (e Bt Dot 8 o )u - SO ((,+8 98t u 18t ) T +X(n)
"y Y k, v I-5+6
n

(3.6)

This proves p must be of the form (3.3). Equating the coefficients of

0, Uy yields the following important equations :

P 7-5746" v g
D STOERIE 08 = e 6.7
v =1
p . . p J '
for all 1< k< p, Je,Zn . Given k, let 1=sup{3k:Je Xn,o-(x);éO}.

For this value of k and some J with = A o‘J(x) # 0, equation (3.7)

d t
reduces to 3 1

—(ﬁ +'1)0‘ Bugk = o,

Pk
proving ' the lemma.,
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Combining equations (3. 4) and (3. 7), we have

p v _k
. ki, J-6 +8 v
2(3k+ 1+a6 )o 8 £ =0, (3.8)
v=1
forall 1<k<p, Je 4°.
Lemma 3.4. For each k=1,...,p and each (x,u), either
k
k
811% (x,u) =0 or 0‘n6 (x) # 0.
k
nd

Proof. Assume that ¢ (x)=0. Let £ = -(a +1)<n, so that

k
16k+1 p
o (x) # 0 for some Ie¢ J§ , with ik: 0. Choose j so that ij# 0.
s
Then (3. 8) in the case J = (L+ 1)6k +1-8 and j replacing k is
k
. 46 +1
io

; ()8, 6xw) = 0,

hence 9 gk = 0,
u

Lemma 3. 5. An n-th order linear partial differential operator is
partially degenerate if and only if its n-th order coefficient functions are

of the form

J ' J
o) = Tre (S(x),  Te 4T, (3.9)
. TP A J
for some real-valued functions p ,...,p ,0 . (Here p~ denotes
J J J
1,71, 2.2 p
() (... (D P

The proof follows directly from the way the operator 8/8x1 behaves
under a change of coordinates, cf.[7]. We are now in a position to prove

our first main result:
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Theorem 3.6, If AO is a linear partial differential equation of

order n > 2 which is invariant under a nonprojectable group of trans-
formations, then A is strongly degenerate.

Proof. We first show that A must be partially degenerate via

the criterion of Lemma 3.5. Let
’ ~ il \
p (x,u) = ouﬁ (x,u).

By the assumption of nonprojectability, pk(x, u) # 0 for at least one Kk,

k
hence by Lemma 3.4, o0 (x) # 0 for this value of k. Define
k
A nd k -n
ofx,u) = o~ & p (xu)] . (3.10)

Suppose J = (n-{ )6k + I, where Ie /&pn—l with ik = 0., Criterion (3.9)

shall be proven for any fixed value of u by induction on £ . Equation (3. 10)

constitutes the case f£= 0. Now (3. 8) implies
k v
k - -
22670 £5 4 (n- 24+1) § ARSI 5 ¢’ = 0
u
v £k
Therefore, by induction;
k ! J k
JZO'Jp (n-2+1) vn p P &
vEk (I-6 )!(n-2+1)?
i £0

v
n! . J ka n! JIa k
= J"[ 1V]pp0‘ -E'—-!p op
’ v;k )

1}

it

This proves the partial degeneracy of A,
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To prove the strong degeneracy, we work in the coordinate system
1
(X" yeens xp) such that

A= o (x)8, +o_ ,(x)0 +“,+%M+Au

where A! is a linear partial differential operator of order n'<n., By
k .
Lemma 3. 2, aug =0 for k=2,...,n, hence
1
po= p,o(x,u) - (n+i)8u§ (x,u) a, .
Using Lemma 3. 2 on the symmetry equations (205); the only terms containing

w u. for k#1, |J'| = n', are

k' J
P
J 1
Z o Z 8u§ W Ur skygl = 0,
k=2
where the sum is over all J ¢ /Kp except n'61. This immediately implies
n'

O'J(X) = 0 for all such J, hence A!' is in reality of order n'-1, This com-

pletes our proof,

Theorem 3.7. The symmetry group of a linear partial differential

equation of order n >3 contains no nonprojectable symmetries.
Proof. By Theorem 3.6, it only remains to consider the strongly

degenerate equations. Suppose v 1is an infinitesimal symmetry of
n

Alu] = S cr,(x)aiiu.

i=o

Using the prolongation formula (2.3) and Lemma 3. 2, it can be seen that the

only terms in the symmetry equation (2.5) involving u n , are
26" (n-1)8

n

- @G) + ()08 gl

u = 0
261 (n-1)s1



-17-

(This relies heavily on the fact that n> 2.) We conclude that augi =0,
and hence v is projectable .
To show that this theorem is not true when n = 2, we compute the
symmetry group of the equation
u =0
XX

on IRZX R. If v=£05/0x+ n8/9y + ¢8/8u is an arbitrary vector field,

then the symmetry equations (2.5) become

2

0= Pxx ¥ uX(ZgDXLl ) E’xx) ¥ ux(q)uu ) 2€’Xu)
—u3§ -u (n_ + 2un +u2r| )-2u (n_ +umn).
X “uu y'xx X 'xu X 'uu Xy' ' X X 'a
Therefore

Pxx = 0

a‘(pxuz gxx
Pau © ngu
guu =0
mn, =0

We conclude that the infinitesimal symmetry algebra is generated by all

vector fields of the form

9 0 9
[c1+c4x + c5u]—8—£ + 2By + [03 tegxt (07 + 2c4x)u] ou
where CyrevsCy are arbitrary functions of vy.
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4, Conformal Transformations

We now make the connection between the projectable symmetries of a
linear partial differential equation and the group of conformal transformations
of the top order symbol of the equation. We first recall some standard
notations from differential geometry. If X is a smooth manifold, we let
TX (resp. T*X) denote the tangent {resp.cotangent) bundle of X, If £f:X - X
is any smooth map, then there are induced maps df: TXilX - TX If(x) and

*
of: T*X!f - T X <’ cf.[10]. Given a vector space V,we let ®nV

(%)

denote the n-th symmetric power of V, cf. [3]. The elements of ® V are

all of the form sz@ e @ v for v, e V, where @ is a symmetric
i

V1
product, i.e., v Ov'=v'®v, If {ei, e ep} forms a basis of V, then

1
1
.

G)nV with the space of all n-th order homogeneous polynomials on the dual

{eI = (e ®... (D(ep)ip cIe 5::} forms a basis of @nV. We may identify
" *

space V by evaluating & ¢ G)nV at the element WEWE... @ WE @nV .

The inverse map is given by the standard p’olarizatioh process, In a similar

fashion; we may define the symmetric powers @nTX and @nT*X of the

tangent and cotangent bundles of X. If {Bi = 8/8xi:i = 1, .., p} is a basis

of TX corresponding to a local coordinate system on X, then {BI:I € ’Xr[:}

is a basis of ®nTX° Similarly.,i a basis of @nT*X is given by

{dxI sl e ,ﬁi} These bases are dual to within a factor:

I

ax (9)) = 1t , de(aJ) =0, I#7.
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Suppose

NN UI(X)BI

is a linear partial differential operator of order n. The (top order)

symbol of A is the map
¢ : R -0 TR
n

given by

(This definition can of course be made in a coordinate free fashion.)

Definition 4.1 Let X be a smooth manifold and ¢: X - @nTX

a smooth section. A map f:X = X is called a conformal transformation

*
i co e h
of ¢ if for each x e¢ X and any covectors W, s W € T le(x) we have

0'[6f((.01)® oo ®6f(cok) (x| = p(x)o[wig coe @Oy £(x)]

for some real-valued function p:X = IR.

A vector field v will be called an infinitesimal conformal transforma-
tion if the local transformations exp(tv) are conformal for t sufficiently

small,

Lemma 4.2, Let x= (xi;'. . ,xp) be local coordinates on X. The

vector field v = z gl(x)’ai is an infinitesimal conformal transformation
oI, . . . .
of ¢ = 2 o (X)BI if and only if there is a function p:X - IR such that
p P i,k |%
. k, I-8"+8 k I I k
D3 G a-90 T e ) = weoT) + D o oM )
k=1j=1 K=1

P
for every multi-index I ¢ /& n
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Proof. Let f = exp(tv). We have

i, i j
6ft(dx) = ? ijt(x)dx .

Therefore by the duality of the bases of the tangent and cotangent spaces ,
i,k

a 1-87+ 6
dt 't=0

oot (ax)sx] = 3 (1-67+ Bk)!ijajﬁk(x)(r (x) .

j, k
On the other hand, this must equal

Y1,

P
Ectl' t=0 Ht(X)cr[dXI;ft(X)] = 1! [[.L(X)O‘I(X) + :L:’,l gk(x)akg

d

where p(x) = e

lt-O P"tf(XL The proof of the converse follows via the
usual properties of the exponential map.

Now suppose AO is an n- th order linear partial differential equation
and v = z E,i(x)a + ¢(x,u)d 1is a projectable symmetry of A . We
¢ i SR 0

shall call the vector field v' = z gl(x)ai on RP the projection of v.
i

(In general, if f(x, u) = (fi(x),f x,u)) is any projectable transformation

N
of RP X R, the transformation fi(x) on IRP shall be called the projection

of f.)

Proposition 4. 3. If a linear partial differential equation AO is

invariant under a projectable one parameter group with generator
v = E gi'a + ¢9 , then (p(". 0) is a solution of A_ . If A contains no
i u ’ 0 0
term of order zero, then ¢(°,u) forms a one parameter family of solutions

of AO.
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(n))

is any solution of A _, so is

Proof. Note first that if (x,u,u 0’
(n)

(x, N u, )\u(n)) for any N e IR, Applying pr' ’'v to the equation and

(n))

evaluating at (x,\u, \u we get
I I n : I
2 o (x)e (%, \u, xu( )) + A z v{c (X))uI = 0.

Letting . = 0 and noting that goI(x, u, 0) = 8.¢(x,u) gives the first result.

(n))

The second follows from considering AO at the point (x,u, \u

Corollary 4.4, If Z\/ glai + o(x, u)au is a projectable symmetry

of AO, then
olx,u) = a(x) + B(x)u
where o (and, if AO has no zeroth order term, B ) is a solution of AO.
The proof is a direct consequence of LLemmas 3.2, 3.3 and the
symmetry equations (2.5). The details are omitted. Now consider the

top order terms in the symmetry equations for a projectable symmetry of AO°

By Lemma 3.2 and Corollary 4. 4;
| % % k

pl= Bu - > DL iagu o+ L)

1%
for each I ¢ ’Xn . Comparing the coefficients of uy for each J ¢ ,gi in
(2.5) shows first that p = p(x) and second that the conformal equations of
Lemma 4, 2 are satisfied for the projection of v with N=B-p.

Summaring we have
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Theorem 4.5. The group of projectable symmetries of a linear

partial differential equation, when projected, is a subgroup of the conformal

group of the symbol of the equation.
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5. Symmetries of Homogeneous Polynomials

Consider the space of all n-th order homogeneous polynomials defined
on the vector space ((Ep)*., According to section 4, we may identify this
space with the n-th order symmetric power G)n(Ep., Let TERERE ep be
a basis of (Ep, so that {eI:I € XE } forms a basis of @n(Ep., A poly-

nomial o € @r(ﬁp is given by
1

“and the complex numbers o-I shall be thought of as the "local coordinates"

" :
of o. If (e (G:p) , with coordinates ¢ = L(ei), then

o(t) = olt?) = S o't
explicitly showing the polynomial nature of o,
There is a natural action of GL(p);‘ the general linear group of (Ep,
on @nCpi

A(V1® @vp) = A(vi)@.,.. @A(Vp) , A e GL(p), V’l’°°°’vp e V.

Let v: @nCp X gl(p) - T@n(Ep denote the infinitesimal version of this

action:
V(oz)l dt £=0 exp(ta)(o) , ae gl(n).,‘ te ]R, o€ @n(Ep .
With respect to the basis {ei, cees ep} , @ has the matrix form (ozji), and
in terms of the induced coordinates crI on @ cP ,
[zz +1-5i)JkI'6J+6JBI (5.1)
k=1 j=1 X
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Definition 5.1. Let

. P
= m 1 c" .
n_ dim y[g (n)]|cr , o€ @

2
A polynomial ¢ is called nondegenerate if n_=n . Otherwise ¢ is called
o

degenerate.

A (conformal) symmetry of a polynomial ¢ e @n(Ep is a linear trans-

formation A ¢ GL{n) satisfying

for some X ¢ €. A matrix o e gl{n) is called an infinitesimal symmetry
of o if the matrices exp(te) are symmetries for t ¢ IR sufficiently small.
Note that the infinitesimal symmetries of a given o form a Lie subalgebra

of gl(n), called the symmetry algebra of o.

Theorem 5.2. A matrix « is an infinitesimal symmetry of a poly-

nomial ¢ ¢ @nCDp if and only if vy(a)| = \((}\/4~)|U for some e €. (Here
o

1 is the identity matrix. )

Corollary 5.3. The dimension of the symmetry algebra of a poly-

nomial ¢ is one if and only if the polynomial is nondegenerate. In fact,
the only symmetries of a nondegenerate ¢ are the multiples of the identity

matrix.

Note that Corollary 5.3 is true in IRp as well as ¢P. The reason
for using complex space is in the following useful characterization of the
nondegenerate polynomials. We regard the multi-indices I = ('11, cevyi)

p
e P L . P
as points in IR". Note that all the multi-indices in /Sn lie in the
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(n-1)-plane {x;x1 +... % * =n }. Let oe @n(Ep. For each basis
E = {e'l, e ep} of (Ep, let N (E) denote the dimension of the

o
smallest affine subspace of IRp containing the set {1: O‘I}'{ 0} .

Let N denote the minimum of all N0'<E) for all possible choices of
o

bases of CF. Note that 0 <N <n-1.
o

Theorem 5. 4. A homogeneous polynomial o € @n(Ep is. nondegenerate

if and only if N < n-1,
o
Proof. First suppose that N < n-1. This means that for some basis
—_— o
of (L‘p there exist real constants Qpyoees ap, not all equal, and a real
constant c¢ such that o~I = 0 unless 2 @, i, = c. But this implies, for
k'k ’

o= dlag(a'i, ou ,a'p),

vi@)| = vl .

with o not being a multiple of 1.
Conversely, suppose o is degenerate. This implies there exists
0# aec glln) with y(e)| = 0. By a suitable choice of basis in cP, we
o

can assume that ¢ is in Jordan cancnical form, i.e.,
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where ¢ =0or 1 andif ¢, =1, then o, = a,, ,. Substituting into
i i i i+1

(5.1) we see that

p k+1 k
" . I-§ + 8§ ~
Z [aklkcr + Sk(lk +1)o 1 =o0 (5.2)
k=1
for each I /égf . Now define
1) = + 21 4+ 31+ + (p-
£(1) i, 3 3i, {p '1)1p

Note that K+ 1 Kk

£(I-56 +6 ) = £(I) -1
for any k. Let

Jzo=rmn{f(l):al;!o}°

. . . o LI
For any I with £(I) = £ , equation (5. 2) implies (z a'klk)tr = 0, hence

0
o‘I 74 0 implies h(I) = z a/kik = 0. In particular, this implies all the
a'k's cannot be equal unless they are all 0. However, this special case
can be dealt with by noting that at least one & K must be nonzero, and
then (5. 2) implies o—I = 0 unless ik = OV,V which proves the theorem.

We therefore may assume all the a'k's are not equal. I.et us assume
by induction that for all I with £(I) < £ , o' = 0 unless h(I) = 0.
Suppose I is given with f(I) =£ , and h(I) # 0. Since

h( - 65 14 65 = h(1) + RN

equation (5. 2) only contains a coefficient ch with J #1 when £(J) < ¢
and h(J) = h(I). By induction, these ch = 0, hence (5. 2) reduces to
h(I)crI =0,

This completes the induction on ¢ and thereby proves the result.
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Suppose p > 1. It is not hard to see that if n =1 or 2, then every
homogeneous polynomial is, in our terminology, degenerate. However,
for n> 2, an open dense subset of homogeneous polynomials in @n(Ep are
nondegenerate. In particular,

- ¢ P 1% 1%
o(l) = éi + QZ +... 4+ én

is nondegenerate for p > 2.
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6. The Triviality of the Symmetry Group

We now apply the main result of the preceding section to prove the
bound on dim G/T for a linear partial differential equation with non-
degenerate symbol, This shall be accomplished in two stages. The case
when the symbol is constant shall be proven directly from section 5. The
general case will then be reduced to this special case. In this section we
shall return to working in IRp, although the results hold equally well
in CP,

To keep the notation straight, we define

V= (v:RP - TRP)
to be the Lie algebra of all smooth vector fields on IRp., Let

N = {a:RP = gl(p) )

be the space of all smootil matrix valued maps on RP. We define a map

p: V=1
as follows: if v= S ‘g’,l(x) Bi ¢V, then p(v)(x) is the matrix with com-
ponents oz; = ajﬁi(x). In other words p(v) is just the Jacobian matrix
of § = (gi, ce s gp) Let !\/O C V denote the subalgebra of all constant
vector fields; and let ’\/1 C V denote the subalgebra of all vector fields
whose coefficient functions are linear homogeneous polynomials in
(xi; oo , xp). Let mO C m denote the subspace of all constant maps.

We'then have ker p = VO , and

p: ”\/1 = m,
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is a Lie algebra isomorphism if we use the reversed Lie bracket on moz
[oz,ﬁ]= oo - afp , Q:Bem0°
More generally, if a ¢ [Y] , then @e im p if and only if « satisfies

the integrability conditions
i
a = i j = o o o 3 ° °

Now suppose that AO is an n-th order linear partial differential
equation on RP x IR, whose top order symbol is a constant map into
@n]Rp. We shall identity ¢ with its image, From Lemma 4.2 and

formula (5. 1) we have

Lemma 6.41. A vector field v ¢ \/ is an infinitesimal conformal
transformation of o (in the sense of section 4) if and-only if vy(p(v)) is

an infinitesimal symmetry of ¢ (in the sense of section 5),

0

Lemma 6.2, Let 0# o ¢ gl(n) and let a(x)= f(x)e, for some
smooth function f;IR” = R. Then & ¢ im 'p if and only if f is constant

or a, is a rank one matrix and, under a linear change of coordinates,

1

£(x) = £(x 7).

Proof, Let a, = (a/jl)., The integrability conditions (6.1) for & are

, i
Skf(x)a. = 8jf(x)a'k

J
Therefore; if £ is not constan‘c‘,r there exist vectors a = (a , .o .,Aap)
and b= (b ,,”,rb ) with o = a'b. and
1 p j j

bjka(X) = bkajf(x) , Jok=1,...,p.
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These equations imply

proving the lemma,

Definition 6,3, We define the Lie group GO acting on RP to be

generated by the translations
i 1 1 i
Tt:(x,”.,,xp)l—>(x,,.,,x+t,,”,xp), te R,

for i=1,...,p, and the single scale transformation

1 p> t 1 tp.)

S:(x,”,,x }=—>(ex,,,,,,ex , telR,

GO may be thought of as the semidirect product of IR and IRP, its
elements being all matrices of the form
)\Ng v

Ae IR , ve]Rp,
0 1

1

where &“ is the p X p identity matrix,

Theorem 6, 4. If A_ is a linear partial differential equation with

constant, nondegenerate symbol; then the symmetry group of Ao‘,r when
projected onto ]Rp; is contained in GO .

Proof, Since the symmetries of AO , when projected',r are contained
in the conformal symmetries of 0_,7 it suffices to prove that Gg is the
conformal group of o¢. It is obvious that all the transformations in GO

are conformal transformations of ¢, Since ¢ is nondegenerate all its
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symmetries in (Yl must be of the form f(x),@w. However, according to
Lemma 3, the only ones of these contained in im p are those with f

constant. This proves the theorem,

We now turn to the more general case of partial differential equations

p) be a local coordinate system

1
with nonconstant symbols, Let (x,...,x

on ]Rp, Let o3 RP - @nT]Rp be the symbol of the equation AO .

, 000,00 are infinitesimal conformal

Lemma 6,5, Suppose 9 ,

1

symmetries of o, Then there exists a smooth function h: RP -~ R - {0}

such that 241

o(x) = h(x)0x ,..., Xp),
where o3 RP - (DnT]Rp depends only on the last p-{ coordinates, i.e.,
@ is constant along the leaves of the involutive differential system

spanned by 9 ]

1,0 I °
Proof. If 8, isa conformal symmetry of ¢, then Bio'l(x) = )\‘(X)O‘I(X)

for each multi-index Ie le . Therefore

where h is nonvanishing and 9,logh =X . This proves the lemma

1

for £ = 1, Next suppose '81 and 82 are conformal symmetries of o.

Then
2‘ . - B
Gil(x , X3, ce ,xp) = hz(x)'(}?f(xi, x3, .o ,Xp)

°

o'(x) = h, (x)

Therefore ] N
o (x) = h(x)'(}l(x yeees Xp)
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where
hx) = hy(x) 8,7 (6) = 06085 60)
Al Al
Sy . B W
ad Ad ’
oy (=) O'Z(X)

where J is chosen so that O'J(X) does not vanish locally., This proves
the lemma for £ = 2, The proof for more general ¢ is clear. (The

passage from a local to a global result is made via a partition of unity. )

Lemma 6. 6, Suppose o satisfies the hypotheses of Lemma 6, 5.

Then a vector field of the form

is an infinitesimal conformal transformation of ¢ if and only if it is an
IO . . A
infinitesimal conformal transformation of o.

Proof, Using the formula of Lemma 3. 2,

k Al

ik
AI-87+6 = [h(x)u(x) + v(a(x))]s

] k
h(x) Z (1k+ 1 - ﬁj ) o ajg

Thus o satisfies the same formula with § = u + v(log h) replacing p.

Theorem 6. 7. Suppose A _ is a linear partial differential equation

0

whose symbol is nondegenerate on a dense open subset of RP. Then the
symmetry group of AO is projectable and its projection onto IRp has

dimension at most pt+i.
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Proof. By the remarks at the end of section 5, we know that A
must be at least a third order equation on a dense open subset of ]Rp,
hence its symmetry group, when projected, is contained in the conformal
group of its symbol, ¢. For each xc¢ IRp, let D IX denote the subspace
of TIRP lx spanned by all infinitesimal conformal symmetries of o at x.
The differential system /9’ is involutive since the Lie bracket of two

n
symmetries is again a symmetry, Let Ul C IR be a maximal open °

subset where |9 has constant dimension £ and o is nondegenerate,
|% ) p
We know that U Ui is dense in IR". Using Frobenius' theorem,
£=0
cf. [10], we have local coordinates on U£ so that D is spanned by the

,8 . Using Lemma 6, 5, in these coordinates

conformal symmetries 81, oo
A

A4t
p.o Note that since ¢ 1is nondegenerate, so is o,

o(x) = h(x)o(

A
since h is nonvanishing. Since we are in UE , the only symmetries of o

P)u

3o 00 5K

are of the form v = § (X)B1 ...+ E,z (X)Bl . Moreover, since [J is
involutive, each gl can only depend on (x ‘,7. .o ;XI ). But since & depends
only on (X£+ oo ,Xp), we are reduced to the constant coefficient case,

to which Theorem 6. 4 is applicable, This proves the theorem.

Now we return to consider the symmetry group G of AO before
projection onto RP. As noted in section 2.,7 G always contains the subgroup
T generated by the infinitesimal symmetries [cu + go(x)]au for c€ IR
and ¢(x) a solution of Ay T isa normal subgréup and we let G'= G/T

be the factor group. By Corollary 4.4',7 its infinitesimal generators are of



_34.

the form v = z gl(x)ai + B(X)uau , and two generators are identified if

the él's are all the same and the B's differ by a constant.

Theorem 6,8, Suppose AO satisfies the hypothesis of Theorem 6.7,

Then
dim G' £ pti.

Proof. From Theorem 6,7 it suffices to prove that if v is an
infinitesimal symmetry in G', then B is determined up to a constant,
By choosing local coordinates on ]Rp, we may assume that

v o= 81 + {3(X)u3u . The coefficients of the prolonged vector field are

p
I .
¢ =D [Blx)u] = Blx)u + k§= 11 1k8kﬁ(x)u1_6k +

Substituting this into the symmetry equations (2.5), the coefficients of

P
u ik for Te /J are
I-8 n x
I-6 I-Gk
o

O'Iikakﬁ + Bicr = (p-B) .
Since o is nondegenerate and since the multiplier pn-f is prescribed
from the conformal equation,r all the partial derivatives of B are
determined from these equations; proving the theorem. (Note that the

coefficients of derivatives of u of lower order prescribe more conditions

on B which must be met.)
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Definition 6,9, Suppose A_ and AO' are two linear partial

0

differential equations on RP X IR, We say AO and AO' are equivalent
if one can be obtained from the other through a combination of the
following operationss
i) Change of coordinates in the independent variables: x' = ¢(x),
N ]Rp -+ IRp°
ii) Multiplication of the dependent variable by a nonvanishing function:
ut. = P(x)u, ¢:IRp - IR - {0}.

iii) Multiplication of the entire equation by a nonvanishing functions

A, = X(x)a, x:RP - R - {0},

Theorem 6,10, A linear equation AO is invariant under a one

parameter group of transformations if and only if AO is equivalent to
a partial differential equation all of whose coefficients do not depend on on
one of the coordinates (i.e., o (x)= o (x

Proof. By a change of coordinate in the independent variable; we
may assume that the infinitesimal generator of the one-parameter group

is of the form
vo= '81+ [B(x)u + a/(x)]au .

As in the proof of Theorem 6. 8.,7 the symmetry equations (2.5) reduce to

I 1 T
Z(O-DI(ﬁu) t 90 uI) = u our,

Z crIDIoz = 0.
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Therefore

I+K, I+K

! 1 N0 )<r 0

810' =HU—_(_J(

B
K>0 K

Choose functions y and vV with 81\( = B and 81 v=XN. Let
v . .
Al = Z o BI be the linear operator whose coefficients are recursively

defined by v
Alu) = e A'e Yu)

for all u. Thus A! is an equivalent equation to A Explicitly we have

0 0°
v + +L -
o= e (PR e (7Y
L=20
Assume by induction that 810-'1 =0 for |I| > m. Then for |Il = 1m,
I I v I+ L I+ L -y I+L -y
= ! bl !
8,0 p.o-+eZ(L)[0' B (-pe” V) + 8,0 B e ]
I v +L, I+L -y v-y 1
=|J,o'—ez( )0" Z aﬁa_e + e 810'
50 ™ oskK<L © ME
I I+K % I+K+M -y V=Y, I
=HO'—Z( )eZ( o, e '0.p + e 9,0
K>0 I M>0 M M K 1
I -
= po - Z (I+K )GI+K8 B+ e’ Vo ot .
I K 1
K>0
Comparing this with the previous expression for 810'I shows that 810" = 0,

proving the theorem.

This theorem shows that invariance under a one-parameter group
is in a limited sense equivalent to the question of separation of variables.

An analogue of this theorem for more than one-parameter groups is much



more complicated and cannot be answered here. The work of Miller,
Kalnins, et.al., [5], on separation of variables should provide some

indication of the complexity of this question.
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