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Abstract. Every underdetermined system of partial differential equations arising
from a variational principle admits an infinite hierarchy of higher order generalized sym-
metries. These symmetries are a consequence of the Noether dependencies among the
Euler–Lagrange equations that follow from Noether’s Second Theorem. This result is a
consequence of a more general theorem on the existence of higher order generalized sym-
metries for any system of differential equations that admits an infinitesimal symmetry
generator depending on an arbitrary function of the independent variables.

There are two well known classes of partial differential equations that admit infinite
hierarchies of higher order generalized symmetries, [11, 13]. The first consists of linear
systems of partial differential equations that admit a nontrivial point symmetry group, as
well as systems that can be linearized into one of these by a change of variables (a point
transformation). A second consists of integrable nonlinear partial differential equations
such as the Korteweg–de Vries equation, the nonlinear Schrödinger equation, Burgers’
equation, etc. Indeed, an interesting question, [4, 5, 7, 11], is whether, under certain con-
ditions, the existence of higher order symmetries or, more generally, an infinite hierarchy
of higher order symmetries, implies integrability. The purpose of this note is to introduce
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a third general class: underdetermined systems of partial differential equations that admit
an infinite-dimensional symmetry algebra† depending on one or more arbitrary functions
of the independent variables — although, as shown in the final example, not every un-
derdetermined system admits such a symmetry algebra. A cautionary consequence of the
latter fact is that any integrability or linearizability criterion that is based on higher order
symmetries will not be applicable to such systems.

An important subclass of the third category are the underdetermined systems arising
from a variational principle that admits an infinite-dimensional variational symmetry alge-
bra depending on one or more arbitrary functions of the independent variables. Noether’s
Second Theorem, [12, 13], tells us that the conservation laws associated with these in-
finitesimal symmetries, as provided by the Noether integration by parts identity, are all
trivial. On the other hand, the associated Euler–Lagrange equations are underdetermined,
meaning that they admit a Noether dependency : a nontrivial linear combination of them
and their derivatives that vanishes identically. This result, when specialized to Einstein’s
equations of general relativity based on Hilbert’s variational principle, allowed Noether to
explain why the energy conservation law in relativistic theories is trivial: it is a consequence
of the fact that the corresponding time translational symmetry generator is contained in
such an infinite-dimensional variational symmetry algebra, whose associated Noether de-
pendencies are the relativistic Bianchi identities. Noether’s remarkable result resolved an
issue that perplexed both Einstein and Hilbert in the early days of general relativity, and
we refer the reader to Kosmann-Schwarzbach’s book, [10], for the historical details.

The main theorems in this paper are relatively easy consequences of the basic calculus
of symmetries and conservation laws of differential equations, as developed, for example,
in [13], whose results and notation we will use throughout. In particular, all functions
are assumed to be smooth, i.e., C∞. The first main result appears not to have been
noticed previously, whereas a result similar to our second theorem for variational problems
can be found in a paper by Fulp, Lada, and Stasheff, [8], in which they allow arbitrary
differential functions in their definition of gauge symmetries, and then apply Noether’s
identity to derive the Noether dependencies; see also A. Kiselev’s lecture notes, [9]. Later,
in a recent survey paper, [1], Anco proved that an underdetermined system of differential
equations possesses adjoint symmetries that depend on an arbitrary differential function;
as with Noether’s result, the associated conservation laws are trivial. In the case of a
system of Euler–Lagrange equations, adjoint symmetries coincide with ordinary variational
symmetries, and hence Anco’s result includes that in [8]. Apparently, the first place
in the literature where generalized symmetries depending upon an arbitrary differential
function appear is in a paper of I. Anderson and C. Torre, [2, 3], in which they prove
that the only generalized symmetries of Einstein’s vacuum field equations are scalings of
the metric tensor and what they call “infinitesimal generalized diffeomorphisms”. The
latter arise from the invariance of relativity under space-time diffeomorphisms, and so are
considered “physically trivial” and not indicative of any underlying integrability property
of the Einstein equations.

† Recall, [13], that the infinitesimal symmetries of a system of differential equations form a
Lie algebra under the commutator bracket.
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Given independent variables x = (x1, . . . , xp) and dependent variables (u1, . . . , uq)
forming local coordinates on an open subset† M = X × U ⊂ R

p+q, by a differential

function we mean a scalar-valued function, denoted

F [u ] = F ( . . . xi . . . uα
J . . . ),

depending smoothly on the independent variables, the dependent variables, and finitely
many of their derivatives, denoted by uα

J , i.e., the induced coordinate of the jet spaces over
M . Here 1 ≤ α ≤ q, while J = (j1, . . . , jn) with 1 ≤ jν ≤ p is a symmetric multi-index of
order‡ 0 ≤ n = #J .

To start with, suppose that we have a system of differential equations

∆κ[u ] = 0, κ = 1, . . . , q, (1)

determined by the differential functions ∆1, . . . ,∆q. As is usual in symmetry analysis
— see [13; Definitions 2.30, 2.70] — we assume that the system (1) is of maximal rank,
meaning that its Jacobian matrix with respect to all variables has rank q, and locally
solvable, meaning that every point in jet space that satisfies the algebraic constraints
imposed by system (1) belongs to the jet of at least one solution u = f(x).

Definition 1. A system of differential equations (1) is called underdetermined if
there exist differential operators D1, . . . ,Dq that do not simultaneously vanish on solutions,
such that the differentiated linear combination

D1∆1 + · · · +Dq∆q ≡ 0 (2)

vanishes identically.

Examples of underdetermined systems arising in basic physics include Maxwell’s equa-
tions for electromagnetism and Einstein’s equations for general relativity.

Remark : Note that we are assuming that the system (1) contains the same number of
equations as unknowns u1, . . . , uq, and our definition of underdetermined is a slight refor-
mulation of that in [13; p. 171]. While the analysis in this paper can be applied to systems
involving any number of equations, the rigorous general definition of an underdetermined
system of differential equations is considerably more technical, relying on the system being
in involution. See Seiler, [15], for full details on what this entails and how it is related to
Definition 1.

We will work exclusively with infinitesimal symmetries in characteristic form, [13].
Thus, a (generalized) evolutionary vector field

vQ =

q∑

α=1

Qα[u ]
∂

∂uα
, (3)

† More generally, M could be a fiber bundle over a base manifold X, or even a general smooth
manifold, [13]. Since we work in local coordinates throughout, we are not losing generality by
assuming X ⊂ R

p and U ⊂ R
q are open subsets of Euclidean space.

‡ When the order #J = 0, by convention we set uαJ = uα.
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where Q = (Q1, . . . , Qq) is a q-tuple of differential functions known as the characteristic

of (3), forms an infinitesimal symmetry of (1) if and only if Q satisfies the infinitesimal
determining equations

pr vQ[∆] = 0 whenever ∆ = 0. (4)

In other words, the infinitesimal invariance criterion in (4) holds on all solutions to the
system (1), taking into account the equations and all their derivatives. Further,

pr vQ =

q∑

α=1

∑

#J≥0

DJ Qα

∂

∂uα
J

(5)

denotes the standard jet space prolongation of the evolutionary vector field (3) whose coef-
ficients are obtained by applying the iterated total derivative operators DJ = Dj1

· · · Djn

to the individual components of the characteristic. Similarly, if h(x) is a smooth function
of the independent variables, we denote its partial derivatives (which coincide with its total
derivatives) by hK(x) = ∂Kh(x) = DKh, where again K is a symmetric multi-index.

Let us now state the first main result.

Theorem 2. Suppose that a system of differential equations (1) admits an infinites-

imal symmetry vQ whose characteristic

Q[u, h ] = Q( . . . xi . . . uα
J . . . hK(x) . . . )

depends on finitely many derivatives of an arbitrary function h(x) of the independent

variables. Let F [u ] be an arbitrary differential function. Then the characteristic

Q̂[u ] = Q( . . . xi . . . uα
J . . . DKF . . . ) (6)

obtained by replacing the derivatives of h by the corresponding total derivatives of F is

also the characteristic of an infinitesimal symmetry v
Q̂

of the system. Thus, any such

system of differential equations automatically admits an infinite family of higher order

symmetries depending upon an arbitrary function F of the independent variables, the

dependent variables, and their derivatives of arbitrarily high order.

Proof : This is a consequence of Kiselev’s general Substitution Principle, [9; Exercise
9.2]. In detail, since h(x) is an arbitrary function of all the independent variables, its
partial derivatives hK(x) can assume any values†. The hK can therefore be treated as
algebraically independent quantities appearing in the algebraic relations prescribed by the
symmetry determining equations (4). Since they are independent, they can be replaced
by any other quantities, hK 7→ cK , independent or not, without affecting these algebraic
relations.

† All expressions only involve finitely many of the hK , and so no convergence issues arise.
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Furthermore, according to the prolongation formula (5), the coefficients of prvQ are
obtained by total differentiation and, as noted above, the partial derivatives of h coincide
with its total derivatives. If we write out their explicit formulas

DIQα = Rα,I( . . . xi . . . uα
J . . . ∂Kh(x) . . . ),

where Rα,I are certain functions of the jet coordinates and the partial (total) derivatives
of h, then, replacing h by F in Q as in (6) leads to the same algebraic expressions for its
total derivatives,

DIQ̂α = Rα,I( . . . xi . . . uα
J . . . DKF . . . ),

in terms of the jet coordinates and the total derivatives of F . By the preceding remarks, we
can thus replace each partial derivative hK(x) appearing in the determining equations (4)
by the corresponding total derivative DKF without affecting their validity. We conclude
that the evolutionary vector field v

Q̂
with characteristic (6) also satisfies the symmetry

determining equations for the system of differential equations. Q.E.D.

Remark : Systems that satisfy the hypothesis of Theorem 2 are necessarily underde-
termined, although, as we will see, not every underdetermined system will admit such a
symmetry generator. The preceding statement is easily established when the system arises
from a variational principle — see below — but to rigorously prove it for more general
systems appears to be nontrivial, requiring the technical machinery of involutivity, [15]. In
outline, one first shows that the admission of a symmetry generator involving an arbitrary
function of the independent variables implies that the last Cartan character of the system
of differential equations is nonzero — on an infinitesimal level this will be equivalent to
the statement that general solution to the system involves an arbitrary function of the
independent variables — and hence, according to [15; Proposition 7.5.7 and Lemma 8.2.1],
the system is necessarily underdetermined. Filling in the details would take us too far
afield, and is thus left as a challenge for the motivated reader.

Next, suppose we have a variational problem

I[u ] =

∫
L[u ] dx (7)

whose Lagrangian L[u ] is a differential function, with corresponding Euler–Lagrange equa-
tions

∆α = Eα(L) = 0, α = 1, . . . , q. (8)

Here Eα denotes the variational derivative or Euler operator corresponding to the depen-
dent variable uα, [13]. According to Noether’s Second Theorem, I[u ] admits an infinitesi-
mal symmetry vQ whose characteristic depends linearly† on an arbitrary function h(x) —
meaning that

Qα = Dαh, α = 1, . . . , q, (9)

† If Q depends nonlinearly on h, then, using the argument in the proof of Noether’s Second
Theorem given in [12, 13], its linearization with respect to h also forms a symmetry, and so there
is no loss in generality assuming linearity of Q in h.

5



where D1, . . . ,Dq are linear differential operators, which may depend on the jet coordinates

xi, uα
J — if and only if its Euler–Lagrange equations satisfy the corresponding Noether

dependency
q∑

α=1

D
∗
αEα(L) = 0, (10)

where D∗
α denotes the formal adjoint of the differential operator Dα; details can be found

in [13; pp. 329, 343]. The existence of a nontrivial Noether dependency implies that the
Euler–Lagrange equations of such a variational problem form an underdetermined system
of differential equations.

Remark : Except in completely trivial cases, the existence of a Noether dependency
and thus such a symmetry generator requires that the number of dependent variables q ≥ 2.

According to [13; Theorem 4.14], any variational symmetry is also a symmetry of the
Euler–Lagrange equations. Thus, one can adapt the argument used to justify Theorem 2
to prove that, when we replace h by an arbitrary differential function F [u ] as in (6), the
resulting vector field v

Q̂
remains a variational symmetry and a symmetry of the Euler–

Lagrange equations. Since the argument leading to the Noether dependency (10) can be
reversed, every linear dependency of the Euler–Lagrange equations produces a correspond-
ing infinite-dimensional variational symmetry algebra whose characteristics are of the form
(9). Thus, we deduce the second main theorem, which can be viewed as a counterpart of
the aforementioned results in [1, 8].

Theorem 3. If E(L) = 0 is any underdetermined system of Euler–Lagrange equa-

tions, then it admits generalized symmetries of arbitrarily high order depending upon one

or more arbitrary differential functions.

This result resolves a mystery concerning Noether’s Second Theorem, which relies on
infinitesimal symmetries that involve one or more arbitrary functions of the p indepen-
dent variables. But one can always perform a “hodograph-type” change of variables in
which the roles of independent and dependent variables are interchanged; see [13; The-
orem 4.8] for how the Euler operators behave. Consequently, such a change of variables
does not affect the existence of Noether dependencies for the transformed variational prob-
lem. On the other hand, the transformed symmetries no longer involve functions solely of
the new independent variables, and so Noether’s Second Theorem implies the existence of
an ostensibly different symmetry generator depending on arbitrary functions of the new
independent variables. What Theorems 2 and 3 imply is that, if the variational prob-
lem or system of differential equations admits an infinite-dimensional symmetry algebra
depending on arbitrary functions of any p of the independent and dependent variables
(x, u) = (x1, . . . , xp, u1, . . . , uq), then it automatically admits the enlarged symmetry al-
gebra depending, in the same manner, on all of the independent and dependent variables
and, in fact, on any finite collection of jet variables also. In other words, Noether’s Sec-
ond Theorem does not, in fact, rely on any artificial distinction between independent and
dependent variables!

Let us finish by illustrating the preceding results with two examples.
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Systems of differential equations or variational problems for curves, surfaces, etc., that
do not depend on any underlying parametrization thereof are called parameter-independent

or parametric, cf. [13]. In other words, a system of differential equations involving the
independent variables x = (x1, . . . , xp) ∈ X is parameter-independent if it admits the
symmetry pseudo-group consisting of all local diffeomorphisms of the base space X . Its
infinitesimal generators are all the locally defined vector fields on X :

v =

p∑

i=1

ξi(x)
∂

∂xi
, (11)

where the ξi(x) are arbitrary functions of the independent variables. Their evolutionary
representative takes the form

vQ =

q∑

α=1

(
p∑

i=1

ξi(x) uα
i

)
∂

∂uα
, where uα

i =
∂uα

∂xi
, (12)

and, by a general principle, is also an infinitesimal symmetry, [13]. Theorem 2 immediately
implies that any parameter-independent system of differential equations admits hierarchies
of generalized symmetries depending on p = dimX arbitrary differential functions.

Theorem 4. A system of differential equations ∆[u ] = 0 is parameter-independent

if and only if it admits all generalized infinitesimal symmetry generators of the form

vQ =

q∑

α=1

(
p∑

i=1

uα
i Fi[u ]

∂

∂uα

)
, (13)

where F1[u ], . . . , Fp[u ] are arbitrary differential functions.

In particular, any system of Euler–Lagrange equations (8) arising from a parameter-
independent variational problem admits the generalized symmetries (13) along with the p

consequential Noether dependencies

q∑

α=1

uα
i Eα(L) = 0, i = 1, . . . , p. (14)

We remark that one can explicitly characterize all nondegenerate parameter-independent
systems of differential equations and variational problems in terms of the differential in-
variants and invariant volume form of the diffeomorphism pseudo-group, cf. [6, 13, 14].

Example 5. As in [13; Example 5.70], let p = 1 and q = 2, so there is a single
independent variable x and two dependent variables u, v. The solution to a parameter-
independent differential equation or variational problem can be regarded as a plane curve
C ⊂ R

2 which is independent of any specific parametrization x 7→ (u(x), v(x)) thereof. In
particular, a second order system of differential equations is parameter-independent if and
only if it is equivalent to one in the form

H1

(
u, v,

vx
ux

,
uxvxx − uxxvx

u3
x

)
= H2

(
u, v,

vx
ux

,
uxvxx − uxxvx

u3
x

)
= 0. (15)
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If we use u to parametrize the curve, so v = v(u), then the system (15) should reduce to
a single second order ordinary differential equation:

H

(
u, v,

dv

du
,
d2v

du2

)
= 0. (16)

In other words, unless the system (15) is overdetermined, one of its parameter-independent
equations is redundant.

According to Theorem 4, any such system (15) admits the higher order generalized
symmetries

vQ = uxF [u, v ]
∂

∂u
+ vxF [u, v ]

∂

∂v
,

where F [u, v ] is an arbitrary differential function. On the other hand, these symmetries do
not carry over to the reduced ordinary differential equation (16), which only admits ordi-
nary Lie symmetries. If the system (15) is the Euler–Lagrange equations for a parametric
(parameter-independent) variational problem, which must take the form

I[u, v ] =

∫
L(x, u, v, ux, vx) dx =

∫
G

(
u, v,

vx
ux

)
ux dx =

∫
G

(
u, v,

dv

du

)
du,

for some function G, then it admits the usual Noether dependency

uxEu(L) + vxEv(L) = 0.

Example 6. Following [13; Example 5.71], consider the variational problem

I[u, v ] =

∫ ∫
1
2
(ux + vy)

2 dx dy, with Lagrangian L[u, v ] = 1
2
(ux + vy)

2, (17)

involving two independent variables x, y, and two dependent variables u, v. Its Euler–
Lagrange equations are

Eu(L) = −uxx − vxy = 0, Ev(L) = −uxy − vyy = 0. (18)

The variational problem (17) admits the infinite-dimensional abelian symmetry group with
generator

v = −
∂h

∂y

∂

∂u
+

∂h

∂x

∂

∂v
, (19)

where h(x, y) is an arbitrary function of the independent variables. Noether’s Second
Theorem produces the evident linear dependency among the Euler–Lagrange equations:

DyEu(L)−DxEv(L) = 0. (20)

Theorem 2 implies that, for any differential function F [u, v ] depending on x, y, u, v

and their derivatives, the evolutionary vector field

v̂ = −DyF
∂

∂u
+DxF

∂

∂v
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also forms a variational symmetry, and thus a symmetry of the Euler–Lagrange equations
— which is easy to check by direct computation. Thus, the underdetermined system (18)
admits an infinite hierarchy of generalized symmetries of arbitrarily high order. On the
one hand, as explained in [13; Proposition 5.22], since the system is linear, this fact is not
so surprising. On the other hand, the same result holds for more complicated variational
problems admitting the same variational symmetry (19). For example, the second order
variational problem

Ĩ[u, v ] =

∫ ∫ [
1
2
(uxx + vxy)(uxy + vyy) +

1
6
(ux + vy)

3
]
dx dy,

with underdetermined nonlinear fourth order Euler–Lagrange equations

uxxxy + vxxyy = (ux + vy)(uxx + vxy), uxxyy + vxyyy = (ux + vy)(uxy + vyy),

possesses the aforementioned properties.

While Theorem 3 implies the existence of higher order symmetries of any under-
determined system of Euler–Lagrange equations, this result does not extend to general
underdetermined systems of nonlinear partial differential equations. Indeed, in the present
context, if H[u, v ] is any differential function, then the underdetermined system

∆1 = DxH = 0, ∆2 = DyH = 0, (21)

satisfies the same linear dependency:

Dy∆1 −Dx∆2 = 0.

An evolutionary infinitesimal generator v = Q[u, v ]∂u+R[u, v ]∂v will be an infinitesimal
symmetry of (21) provided

Dx[pr v(H) ] = Dy [pr v(H) ] = 0

whenever (21) holds. It is clear that, by making H[u, v ] sufficiently complicated, one
can ensure that there are no symmetries. Thus, such an underdetermined system does not
admit an infinite-dimensional symmetry algebra of the required form, and hence Theorem 2
does not apply.
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