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Sur la théorie, st importante sans doute, mazis
pour nous st obscure, des K groupes de Lie infinis>>>,
nous ne savons rien que ce qui trouve dans les
mémoires de Cartan, premaiere exploration a travers
une jungle presque tmpénétrable; mais celle-ci men-
ace de se refermer sur les sentiers déja tracés, si

[’on ne procede bientot a un indispensable travail de

défrichement.

— André Weil, 1947



What’s the Deal with Infinite-Dimensional Groups?

e Lie invented Lie groups to study symmetry and solution of
differential equations.

¢ In Lie’s time, there were no abstract Lie groups. All groups
were realized by their action on a space.

& Therefore, Lie saw no essential distinction between finite-
dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two
subjects have gone in radically different directions.

(¢ The general theory of finite-dimensional Lie groups has been
rigorously formalized and applied.

& But there is still no generally accepted abstract object that
represents an infinite-dimensional Lie pseudo-group!
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Lie Pseudo-groups in Action

Lie — Medolaghi — Vessiot
Cartan
Ehresmann

Kuranishi, Spencer, Goldschmidt, Guillemin,
Sternberg, Kumpera, ...

Relativity
Noether’s (Second) Theorem



Gauge theory and field theories:
Maxwell, Yang—Mills, conformal, string, ...

Fluid mechanics, metereology: Navier—Stokes,
Euler, boundary layer, quasi-geostropic, ...

Solitons (in 2 + 1 dimensions):
K-P, Davey-Stewartson, ...

Kac—Moody

Morphology and shape recognition
Control theory

Linear and linearizable PDEs
Geometric numerical integration

Lie groups!



Moving Frames

In collaboration with Juha Pohjanpelto, I have estab-
lished a moving frame theory for infinite-dimensional Lie
pseudo-groups mimicking the earlier equivariant approach
for finite-dimensional Lie groups developed with Mark Fels
and others.

The finite-dimensional theory and algorithms have had
a very wide range of significant applications, including
differential geometry, differential equations, calculus of
variations, computer vision, Poisson geometry and solitons,
numerical methods, relativity, classical invariant theory, ...



What’s New?

In the infinite-dimensional case, the moving frame
approach provides new constructive algorithms for:

Invariant Maurer—Cartan forms
Structure equations

Moving frames

Differential invariants

Invariant differential operators
Basis Theorem

Syzygies and recurrence formulae



e Further applications:

Symmetry groups of differential equations
Vessiot group splitting; explicit solutions
Gauge theories

Calculus of variations

bl

Invariant geometric flows



Symmetry Groups — Review

System of differential equations:

Ay(a:,u(")):O, v=12,....k

By a symmetry, we mean a transformation that maps solutions
to solutions.

Lie: To find the symmetry group of the differential equations,
work infinitesimally.

The vector field

2 xuax goaxuaua

a=1

is an infinitesimal symmetry if its flow exp(¢v) is a one-
parameter symmetry group of the differential equation.



We prolong v to the jet space whose coordinates are the
derivatives appearing in the differential equation:

where

D g total derivatives
Infinitesimal invariance criterion:

viW(A ) =0 whenever A = 0.
Infinitesimal determining equations:

L(z,u; &M, o) =0



The Heat Equation

Symmetry generator:

v = (b, ) o () ()

ot ou

Prolongation:

V(Z)ZV—i—gOti—l—gpxi—i—gO 0 _|_...
ou, ou,, ou_

@t:¢t+ut¢u_ut7t_u%7'u_u § — uug,
0" =, +u,p, — UT, — U, T, —UE, —u2§

gpwm = Pra + ux(QSOscu - €scsc) — U Tn + u:c(gouu - 2§xu)

2

3
o 2u:cut7_scu o uscguu — Uy Uy Ty, + UprPo — UgU :m:f

Uy,

x

Ty



Infinitesimal invariance:

v (u, —u,,)=¢"'— " =0  whenever  u, =u,,

Determining equations:

Coefficient Monomaal
0=-27, U, U,y
0=-27, Uy
0=—7,, uium

&y = 72T, — 38, Uy Uy
P = Tt = ~Tup + 00, — 28, Upy
0=—&, u?
0=y — 2, ug
=& =20, — & Uy,
Pt = Pra 1



General solution:
§ = ¢y + ¢y + 2¢5t + 4egat,

T = ¢y + 2¢,t + degt?,

o= (e — s — 2egt — coa®)u + ala, 1),

where a, = o, is an arbitrary solution to the heat equation.

x

Basis for the (infinite-dimensional) symmetry algebra:
v, =0 vy = O, vy = ud,, v, = z0, + 2t0,,

@’

vy = 2t0,, — zul,, vg = 4atd, + 4120, — (2° + 2t)ud,,

v, = a(x,t)0,, where  «a, = a,,.

e 2 and t translations, scalings: Au, and (A z, A\?t), Galilean
boosts, inversions, and the addition of solutions stemming
from the linearity of the equation.



The Korteweg—deVries equation

U + Uy, +uu, =0

Symmetry generator:

v ="1(t,z,u) % +&(t, z,u) % + p(t,z,u) 90
Prolongation:
ou, c’?u U,
where

t __ 2

©" =@, +u,p, — T, —uu,T, —u,l, —uf’

rxrx




Infinitesimal invariance:

Trx

V(g)(ut+uxxx+uux):90t+gp —|—ugpx—|—uxg0:O

on solutions

Infinitesimal determining equations:
szgt_%m't SOu:_%Tt:_Qfa;

Tot = Toge = Ty — 7 :QDUUZO

General solution:

T =c¢; + 3¢yt § = ¢y + 3t + ¢y, Y = c3 — 2c u.



Basis for symmetry algebra g ;-

v, = 0,,
v, =0,
vy =10, +0,,

v,=3t0,+x0, —2u0,.

The symmetry group G,y is four-dimensional

(z,t,u) — (Nt4+a, z+ct+b A 2u+c)



Vl — 8.[:, V2 — 833,

vy =10, +0,, v,=3t0,+x0, —2ud,.

Commutator table:

Vi Vo Vs Vi
\'2 0 0 0 \'2
Vs 0 0 v, 3v,
& 0 —Vy 0 —2v,
\'2 -V, —3 v, 2V, 0

Entries:  [v;,v,] = Ek: ijvk. Cy; — structure constants of g



Navier—Stokes Equations

%_IZ-Fu-Vu:—Vp—FVAU, V-u=0.

Symmetry generators:
ve=a(t) 0, +a(t)- 0, —a’(t)-x0,
Vo =0,
s=x-0,+2t9;,—u-9,—2p09,
r=xA0, +uAd,

w, = h(t) 0

p



Kadomtsev—Petviashvili
(KP) Equation

w,. =0

3 1
(ut+§uux+1ummm)xi Yy

AN

Symmetry generators:
vy =f0)0,+ 3y '), + (52 f/ () F3°1"(1) 0,
+(=2ufO+22 ") F 507" (1) 0,
w,=g(t)8, T 3yg'(t)9, T 5y9"(t)0,,
z, = h(t) 9, + 2 1'(t) 9,.

—> Kac—Moody loop algebra Afll)
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Main Goals

Given a system of partial differential equations:

e Find the structure of its symmetry (pseudo-) group G

directly from the determining equations.
e Find and classify its differential invariants.

e Use symmetry reduction or group splitting to construct

explicit solutions.



Pseudo-groups
M — smooth (analytic) manifold

Definition. A pseudo-group is a collection of

local diffeomorphisms ¢: M — M such that
e Identity: 1,, €0,
e Inverses: e teg,
e Restriction: U Cdomyp =— ¢ |U€q,
e Continuation: domp =J U_and ¢ |U_€§ — ¢p g,

e Composition: imp C domy =— Pop e .




Lie Pseudo-groups

Definition. A Lie pseudo-group G is a pseudo-group whose
transformations are the solutions to an involutive system of

partial differential equations:
F(z,o™) =0.

called the nonlinear determining equations.
—> analytic (Cartan—Kdhler)

* % Key complication: A abstract object G * %



A Non-Lie Pseudo-group

Acting on M = R?:

where ¢ € D(R) is any local diffeomorphism.

& Cannot be characterized by a system of partial differential

equations
Az, y, X™ Y™y =0



Theorem. (Itskov, PJO, Valiquette) Any regular non-Lie
pseudo-group can be completed to a Lie pseudo-group with

the same differential invariants.

Lie completion of previous example:

where p,9 € D(R).



Infinitesimal Generators

g — Lie algebra of infinitesimal generators of

the pseudo-group G

z = (x,u) — local coordinates on M

Vector field:

YD DRI g +§q:soo‘i
oy 0z ‘7 Ox* [ ou®
Vector field jet:
j, v — C(”):(... g c)
; 8#A<-b 8k:Cb
(A= 9zA ~ 9zu1... 0y



The infinitesimal generators of G are the solutions to the

Infinitesimal Determining Equations
L(z,¢™) =0 (%)

obtained by linearizing the pseudo-group’s nonlinear determin-

ing equations at the identity.

e If G is the symmetry group of a system of differential equa-
tions, then (%) is the (involutive completion of) the usual

Lie determining equations for the symmetry group.



The Diffeomorphism Pseudo-group

M — smooth m-dimensional manifold
D=D(M) — pseudo-group of all local diffeomorphisms
Z = ¢(2)
z=(2%,...,2™) — source coordinates
{ Z = (Z',...,Z™) — target coordinates

Ly(¢) =vo¢ — left action
{ R,(¢) = potp™1 — right action



Jets
For 0 <n < oc:

Given a smooth map ¢: M — M, written in local coordinates as
Z = ¢(2), let j, |, denote its n—jet at z € M, i.e., its n'"

order Taylor polynomial or series based at z.
J*(M, M) is the n*® order jet bundle, whose points are the jets.

Local coordinates on J"(M, M):
oFZb
azal « o azak

(z,Z(”)):(...za...Zﬁl...), Zﬁx:



Diffeomorphism Jets

The n*" order diffeomorphism jet bundle is the subbundle
D" = DpM(M) c JV (M, M)

consisting of n'" order jets of local diffeomorphisms ¢: M — M.

The Inverse Function Theorem tells us that D™ is defined
by the non-vanishing of the Jacobian determinant:

det( Z{) = det(02%/0z") # 0



Pseudo-group Jets

A regular Lie pseudo-group G C D defines a subbundle
G ={F(z,Z2"™)=0} c D"

consisting of the jets of pseudo-group diffeomorphisms, and
therefore characterized by the pseudo-group’s nonlinear
determining equations.
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Pseudo-group Jets

A regular Lie pseudo-group G C D defines a subbundle
G ={F(z,Z2"™)=0} c D"

consisting of the jets of pseudo-group diffeomorphisms, and
therefore characterized by the pseudo-group’s nonlinear
determining equations.

¢ Local coordinates on G (”), e.g., the restricted diffeomor-
phism jet coordinates z2¢, Z%, are viewed as the pseudo-group
parameters, playing the same role as the local coordinates on a
Lie group G.

& The pseudo-group jet bundle G™ does not form a
group, but rather a groupoid under composition of Taylor
polynomials/series.



Groupoid Structure
Double fibration:
g(n)

oM/ N
M M

0-(”)(27 Z(n)) = Z — source map
T(n) (Z, Z(n)) — Z — target map

You are only allowed to multiply h(™ . () if
oM (hM)) = +() (g(n))

* % Composition of Taylor polynomials/series is well-defined
only when the source of the second matches the target
of the first.



One-dimensional case: M =R

Source coordinate: x Target coordinate: X

Local coordinates on D) (R)

g™ = (2, X, X_, X, X

T rxxrxr? °°

5 X))

Diffeomorphism jet:

X[h]=X+X, h+iX K +i1X h+

— Taylor polynomial /series at a source point x



Groupoid multiplication of diffeomorphism jets:
(X, X, X, Xyyy oo ) (0, XX, Xy o)
= (0, X, X X, Xy X+ Xy X2, ...)

—> Composition of Taylor polynomials/series

e The groupoid multiplication (or Taylor composition) is only
defined when the source coordinate X of the first multipli-
cand matches the target coordinate X of the second.

e The higher order terms are expressed in terms of Bell polyno-
mials according to the general Faa—di—Bruno formula.



Structure of Lie Pseudo-groups

The structure of a finite-dimensional Lie group
(G is specified by its Maurer—Cartan forms — a basis
pt, ..., u" for the right-invariant one-forms:

dp* =" CF p' A !
1<J
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What should be the Maurer—Cartan forms of a Lie
pseudo-group?
Cartan: Use exterior differential systems and

prolongation to determine the structure equations.

I propose a direct approach based on the following
observation:

The Maurer—Cartan forms for a pseudo-group can be
identified with the right-invariant one-forms on
the jet groupoid G{*).

The structure equations can be determined immediately
from the infinitesimal determining equations.



The Variational Bicomplex

* The differential one-forms on an infinite jet bundle split
into two types:

e horizontal forms

e contact forms

* Consequently, the exterior derivative

on D) splits into horizontal (manifold) and contact
(group) components, leading to the variational bicomplex
structure on the algebra of differential forms on D(°).



For the diffeomorphism jet bundle
D) ¢ J°(M, M)

Local coordinates:

source target jet

Horizontal forms:

Basis contact forms:

0% =dgZh=dz% - > 7% ,dz"

a=1



One-dimensional case: M =R

Local coordinates on D(>)(R)

(z,X, X, X, X

xx) rxxx’) °°

LX)

Horizontal form:

dx

Contact forms:
O=dX — X_ dx

O, =dX,— X, dx



Maurer—Cartan Forms

The Maurer—Cartan forms for the diffeomorphism pseudo-group
are the right-invariant one-forms on the diffeomorphism jet
groupoid D(>®),

Key observation:
The target coordinate functions Z¢ are right-invariant.

Thus, when we decompose
dZCL — O_CL _|_ ILLCL
horizontal contact

the two constituents are also right-invariant.



Invariant horizontal forms:

C=dy 2% =Y Zpd

Invariant total differentiation (dual operators):
m
=> (Zy)”
b=1

Thus, the invariant contact forms are obtained by invariant
differentiation of the order zero contact forms:

p=dg 72" =0"=dz" - Z 70 dz"

a=1

ply = Dgp’ =Dyay -+ Dya,p®



One-dimensional case: M =R

Contact forms:
O=dX — X, dx
O,=D060=dX, - X,  dz
O, =030 =dX,, - X, dz
Right-invariant horizontal form:
oc=dy,X=X_dz
Invariant differentiation:

x

x



Invariant contact forms:
p=0=dX — X _dx
S, _dX, - X, dx

M x XM b% b%

Xa: @mm B Xma: @a:
Hxx = D?XU = X3

x

XL

) dx

X3

fy, = Dy



The Structure Equations for
the Diffeomorphism Pseudo—group
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The Structure Equations for
the Diffeomorphism Pseudo—group

b b,B,C ¢ d
duly = 22 C300 wh A
Maurer—Cartan series:

1
plH] =3 o wy HY
Al

H=(H',...,H™) — formal parameters

du[ H] = VulH] A (u[H] - dZ)

do=—du[0] =Vu[0] Ao




One-dimensional case: M =R

Structure equations:

do=px Ao du[H] = [HIA (u[H] - dz)

where
oc=X,dr=dX —p

plH] =p+px H+ Gpuxx H + -+

d_H[[HH:UX+UXXH+%UXXXH2+



In components:

do=p, No

n—1
n
d:un:_lun—l—l/\o- + Z (Z) lu'i—l—l/\:un—i
1=0

[=£] -
n—27+1(n+1
= oA — E ,
Hotl j=1 n+1 ( J

) g N g1 — -

— (Cartan



The Maurer—Cartan Forms
for a Lie Pseudo-group

The Maurer—Cartan forms for a pseudo-group G C D
are obtained by restricting the diffeomorphism
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The Maurer—Cartan Forms
for a Lie Pseudo-group

The Maurer—Cartan forms for a pseudo-group G C D
are obtained by restricting the diffeomorphism

Maurer—Cartan forms o®, % to G(°) ¢ D),

* % The resulting one-forms are no longer linearly

independent.



Theorem. The Maurer-Cartan forms on G(°) satisfy the
invariant infinitesimal determining equations

L(... 2% ...ph ...)=0 (% %)
obtained from the infinitesimal determining equations

LO... 2% ... ¢ ...)=0 (%)
by replacing
e source variables z® by target variables Z¢

e derivatives of vector field coefficients ¢4 by
right-invariant Maurer—Cartan forms %



The Structure Equations
for a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group
G are obtained by restricting the universal diffeomorphism

structure equations
dul H] = Vu[H] A (p[H] —dZ)
to the solution space of the linearized involutive system

(... 2% ...u%, ...)=0.



The Korteweg—deVries Equation

u, +u,,, +uu, =0

Diffeomorphism Maurer—Cartan forms:

t T U t t t T U t T
Hy 1y By By Bxs Hys Hps ---5 Ry By Brxs -



Infinitesimal determining equations:

Tx:Tu f Spt gOm—O

pt=py —5Upp,  pp = —5pp = — 24k,



Basis (dim Gy 4 = 4):
pt=ut,  pt=pt, pt=pt, ot =

Substituting into the full diffeomorphism structure equations
yields the structure equations for gz 4

dp' = —p* A,

dp? = —pt Ap® =20 ph A pt — 5 At
=27 At

du* = 0.

dp' = Chy p? A "




dp' = —p* A,

dp? = —pt Ap® =20 pt A pt =5 At
dp’ =5 p® A pt,

du* = 0.

In general, the pseudo-group structure equations live on the
principal bundle G (OO); if GG is a finite-dimensional Lie group,
then G(*) ~ M x (G, and the usual Lie group structure equa-
tions are found by restriction to the target fibers { Z = ¢} ~ G.
Note that the constructed basis u!, ..., u" of g™ might vary from
fiber to fiber.



Lie—Kumpera Example

X=f@) U=

Linearized determining system

Uu



Maurer—Cartan forms:
U — d d
Jz%d:c:fxdx, r=U,de+— du= ”fmfj;rfx “
u:dX—gdx:df—fxd:E, V:dU—de:ﬁ—gdu:—
u u
_du dU-Upde df,— [, dz

Hx

U U Iz 7 o =0
vy = %(de _ U, d) — % (U — U, dx)

_ du  dU—U,dx _de—fmdw )

Vy = U+T: fx




First order linearized determining equations:

b
U Uu

First order Maurer—Cartan determining equations:

v 0 v

_ — — = VUyr = —

Hx U Hu UT

First order structure equations:
1A VAT
dy = —do = : dv = —vy No —
H U X U
vy N(T+ 2V

U
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Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic to

Cartan’s. However, this is not true for intransitive pseudo-groups.
Which are “right”?

e To find the Cartan structure equations, one first needs to work in an
adapted coordinate chart, which requires identification of the invariants
on M. Ours can be found in any system of local coordinates.

e C(Cartan’s procedure for identifying the invariant forms is recursive, and not
easy to implement. Ours follow immediately from the structure equations
for the diffeomorphism pseudo-group using merely linear algebra.

e For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group
structure equations do not coincide with the standard Maurer—Cartan
equations. Ours do (upon restriction to a source fiber).

e C(Cartan’s structure equations for isomorphic pseudo-groups can be non-
isomorphic. Ours are always isomorphic.



Action of Pseudo-groups on Submanifolds

a.k.a. Solutions of Differential Equations

G — Lie pseudo-group acting on p-dimensional submanifolds:

N={u=f(x)}CM

For example, G may be the symmetry group of a
system of differential equations

Az, u™) =0

and the submanifolds the graphs of solutions u = f(x).



Prolongation

Jv=J"(M,p) — n*® order submanifold jet bundle

Local coordinates :
2= (™) = (.2t ud )
Prolonged action of G™ on submanifolds:
(:U,u(”)) — (X, ﬁ(n))
Coordinate formulae:
o = F9(x, (™ g(n))

— Implicit differentiation.



Differential Invariants

A differential invariant is an invariant function 7: J* — R
for the prolonged pseudo-group action

I(g'" - (z,u™)) = I(z,u™)

—> curvature, torsion, ...
Invariant differential operators:

Dy,...,D —> arc length derivative

p

e If I is a differential invariant, so is D,I.

Z(G) — the algebra of differential invariants




The Basis Theorem

Theorem. The differential invariant algebra Z(G) is locally
generated by a finite number of differential invariants

I, ... 1,
and p = dim S invariant differential operators
Dy, ..., D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,I, =D, D, D, I

In~ K’

—> Lie groups: Lie, Ousiannikov

—> Lie pseudo-groups: Tresse, Kumpera, Kruglikov-Lychagin,
Munoz—Muriel-Rodriguez, Pohjanpelto—O



Key Issues

e Minimal basis of generating invariants: Iy,..., 1,

e Commutation formulae for

the invariant differential operators:
p .
7
[Djapk] — Z jk D,
i=1

—> Non-commutative differential algebra

e Syzygies (functional relations) among

the differentiated invariants:
(... DI, ...)=0

— (Codazzi relations



Computing Differential Invariants

#® The infinitesimal method:
v(l)=0 for every infinitesimal generator vVEg

—> Requires solving differential equations.

@  Moving frames.
e Completely algebraic.
e Can be adapted to arbitrary group and pseudo-group actions.

e Describes the complete structure of the differential invariant
algebra Z(G) — using only linear algebra & differentiation!

e Prescribes differential invariant signatures for equivalence and
symmetry detection.



Moving Frames

In the finite-dimensional Lie group case, a moving frame is

defined as an equivariant map

pm . s @



However, we do not have an appropriate abstract object to

represent our pseudo-group G.

Consequently, the moving frame will be an equivariant section
A (p— AL
of the pulled-back pseudo-group jet groupoid:

G HM)

M ——- J"



Moving Frames for Pseudo—Groups

Definition. A (right) moving frame of order n is a right-
equivariant section p(™ : V* — H(™ defined on an open
subset V™ C J".

— Groupoid action.

Proposition. A moving frame of order n exists if and only if

G acts freely and regularly.



Freeness

For Lie group actions, freeness means no isotropy. For infinite-
dimensional pseudo-groups, this definition cannot work,
and one must restrict to the transformation jets of order

n, using the n'™ order isotropy subgroup:
G, = { g™ € GOV | gm0 = 5 )

Definition. At a jet 2("™) € J”, the pseudo-group G acts
o freely if Qi@) = {1}

o locally freely if
o G is a discrete subgroup of G{™

z(n)
e the orbits have dim = r,, = dim gi,”)



Persistence of Freeness

Theorem. Ifn > 1 and G acts locally freely
at z(") € J7, then it acts locally freely at any
(k) € Jk with 7% (2(F)) = 2() for all k > n.



The Normalization Algorithm

To construct a moving frame :

I. Compute the prolonged pseudo-group action
uy — Up = Fg(x, ul™, g(m)

by implicit differentiation.

II. Choose a cross-section to the pseudo-group orbits:

Uyl = C k=1,...,r, =fiber dim G



III. Solve the normalization equations
Uge = Fyr(z,ul™,g"™) = c,
for the n*" order pseudo-group parameters
g™ = p(”)(x,u(”))
IV. Substitute the moving frame formulas into the un-
normalized jet coordinates u$ = F&(z,u(™, g(™).

The resulting functions form a complete system of n*" order

differential invariants

]f‘((x,u(”)) _ Fg(x,u("),p(")(x,u(”)))



Invariantization

A moving frame induces an invariantization process, denoted ¢,
that projects functions to invariants, differential operators
to invariant differential operators; differential forms to

invariant differential forms, etc.

Geometrically, the invariantization of an object is the unique

invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group
parameters in the transformed object by their moving frame

formulas.



Invariantization

In particular, invariantization of the jet coordinates leads to a
complete system of functionally independent differential
invariants: () =H'  o(uG) =19

e Phantom differential invariants: I5" = ¢,

e The non-constant invariants form a functionally independent

generating set for the differential invariant algebra Z(G)

e Replacement Theorem



> Differential functions — differential invariant s
W(z') = H L(ug) =19
> Differential forms — invariant differential forms
W(dx') = @ L(0%) = 0%
¢ Differential operators = invariant differential operators

t(D,:) =D,

1



Recurrence Formulae

+ % Invariantization and differentiation * %

do not commute

The recurrence formulae connect the differentiated invariants

with their invariantized counterparts:

DI =I5, + MS,

— M, — correction terms



¢ Once established, the recurrence formulae completely
prescribe the structure of the differential invariant
algebra 7(G) — thanks to the functional independence

of the non-phantom normalized differential invariants.

* % The recurrence formulae can be explicitly determined
using only the infinitesimal generators and linear

differential algebral



Korteweg—deVries Equation
Prolonged Symmetry Group Action:
T =e3M(t+ \)
X=eMOgt+z+ AN+
U=e?Mu+\,)
Up = €_5>\4(ut — Agly,)

— =3\
Uy =c¢ u,
_ _—8)\4 2
Urp=e (utt — 23Uy, + A3 Um)

Urx = Dx DU = €_6A4(Ut:g - )‘3Um)

—4Xy
Uy g



Cross Section:

T

M(t+N)=0
X=eMONgt+z+ A\ +),) =0
U=e?Mu+N) =0

Uy =e M(u, — Mu,) =1

Moving Frame:

AM=—t, A=-z,  Ay=-u, A =:log(u, +uu,)



Moving Frame:

)\1 — _t,

Invariantization:

)\2 — —CU,

1

Ay =—u, A\, = glog(u, + uu,)

[’(UK) — UK ‘)\1:—t,>\2:—sc,>\3:—u,>\4:log(ut—|—uum)/5

Phantom Invariants:



Normalized differential invariants:

Iy, = t(u,) = (u, +sz)3/5

Iy, = L(Utt) S z;fj_u;z:‘);ium
o = o) = o e

Loy = tug,) = () +u52$)4/5

oy = t(Uyyy) = -

u, + uu,



Invariantization:

LOE(t @ty Uy Uy Uy Uy Uy v )

= F(u(t), o), (), elu,), (), e(uy,), ), 0y, )

— F(Hlszv[00711071017120711171027 )
= F(0,0,0, L, 1oy, I5gs 141, Ly, - -- )

Replacement Theorem:

U, +uu.. +u
Ozb(ut+uux+uxxx) :1+103: : = mmm.

U, + uu,

Invariant horizontal one-forms:
wh = (dt) = (u, + uu,)>® dt,

w? = 1(dz) = —u(u, + vu,)Y? dt + (u, + uu )5 dz.



Invariant differential operators:

D, = [’(Dt) = (ut + uux)_3/5Dt + u(ut + uum)_3/5Dm7

~1/5

DQ — [’(Dm) — (ut + uum) / Da:

Commutation formula;
[D17D2] - 101 Dl

Recurrence formulae:
D1101 - 111 - %Igl - %101120; D2101 - 102 - %Igl - 21011117
D1]20 - ISO + 2Ill - §101]20 - §12207 D2I20 - 121 + 2101]11 - 2131]20 - §111]20’
Dllll = I21 + 102 o 2101111 o 2111[207 D2111 = 112 + 101]02 _ 2131[11 _ 211217

D1]02 - 112 - %101102 - %102[207 D2102 - Io3 - 3131102 - %102[117



Generating differential invariants:

2
U Uyt 20y, + utug,

101 = L(Ua:) = (Ut n qu)3/57 ]2() = L(Utt) — (ut n uux)8/5

Fundamental syzygy:
D%IOI + %]017)1[20 — Dylyy + (% Iy + % ]01) D1y,

3
—Dyly; — % Iy 15, — % 15110 + % I5, = 0.



Lie—Tresse-Kumpera Example

Horizontal coframe

Implicit differentiations

1

xT

@’



Prolonged pseudo-group transformations on surfaces S C R?

ua: u xx _uy
KT YT
Uxx=7%s " g T s

U, Uy, [ oo U
Uxy = fzy_ yfg UYY_%

—> action is free at every order.

Coordinate cross-section
u, U

U rxr __ I I
X:f:O, U:f—zl, UX f2 f3 —O, UXX—“'—O




Moving frame

f207 fm:uD fxx:usw fxxx:u:m:

Differential invariants

U "y
y — J = w
Uxy /> J1 = uumy;guwuy Uyy = Jy= %
Invariant horizontal forms
dy X = f.dr — udz, dyY = dy — dy,
Invariant differentiations
D, = 1 D, D,=D



Higher order differential invariants: D7 Dy J

UL — U U
_ _ xy xy
J’l—DlJ— 3 = Jq,
U

“uyy—“§ 2
J=D,J = = J, — J~.
2 2 2 2

Recurrence formulae:
D,J =J,, D,J = J, — J?,
D,J, = J;, Dy,J, =J,—3JJq,
D,Jy,=J,, D,Jy = J, — J Js,



The Master Recurrence Formula

p . ~
dg 1y = Y (D,I)w ZI WY
1=1
where
VI =0(@G) =% (... H ... IF ... 5 .95 ...)

are the invariantized prolonged vector field coefficients, which
are particular linear combinations of

7% = u(¢}) — invariantized Maurer—Cartan forms
prescribed by the invariantized prolongation map.

e The invariantized Maurer—Cartan forms are subject to the
inmvariantized determining equations:

CH ...,HP, I',...)I% ... 4% ...)=0



p . A~
dgI§ = > IF,w' +95(... 7% -..)
1=1

Step 1: Solve the phantom recurrence formulas
p . ~
0=dylf = > If,w +v5(... 7% ...)
i=1
for the invariantized Maurer—Cartan forms:

p .
Ya=2 Ja' (+)
i=1

Step 2: Substitute (x) into the non-phantom recurrence
formulae to obtain the explicit correction terms.



> Only uses linear differential algebra based on the specifica-
tion of cross-section.

¢ Does not require explicit formulas for the moving frame, the
differential invariants, the invariant differential operators, or
even the Maurer—Cartan forms!



The Korteweg—deVries Equation (continued)
Recurrence formula:

dlj;, = Ij+17kw1 + Ij7k+1w2 + L(gpjk)
Invariantized Maurer—Cartan forms:

Ur) =X W& =n Up)=v=v, ur)=¢"=X,
Invariantized determining equations:

)\x:)\u:luu:]/t:]/xzo

V=L, Vu:—z/ixz—%)\t
)\tt:)\t:c:)\:cx: = Vg = 0 =0

Invariantizations of prolonged vector field coefficients:
L(T) = )\7 L(S) = K, L(SO) =, L(Spt) = _101V o %)\b

L(Spm) = —Ip Ay, L(‘Ptt) = —2I,v — %Izo)‘tv



Phantom recurrence formulae:
0=dy H =w' + A\

0= dHH2:w2+,u,
0= dy Iy, = Lyw" + [w* + 1 = w' + [ w? + v,
0=dyl,=Lyw' + 1w+ =Lyw' + 0 — v — 3\

— Solve for A= -w', p=-w? v=-w'-1I,w?

A =2 (Iyg + I )wh + 2 (I} + I3))w?.
Non-phantom recurrence formulae:
dy Iy, = Ijjw' + Ingw® — Iy Ay,

dy Iy = Iygw' + Ipjw® — 2110 — 510,
dy Iy = Ipw' + Iw* — I — 213 ),

dy Ioo = 112“’1 + 103"‘32 - %102)‘157



D1101 - 111 - %Igl - %101120;
DiIyy = I3 + 21 — %Imlzo - §I220:
DIy = Iy + Ipy — g[01[11 - g[n[zov

D1]02 - [12 - §[o1102 - %102[207

D2101 - 102 - %Igl - 21011117
Dzlzo - 121 + 2101111 - %Igllzo - %Inlzoa
Dyl =I5 + [01[02 - 2131111 - 211217

Dzloz - 103 - %I(%Ioz - %102[117



Lie—Tresse—Kumpera Example (continued)

U
X = f z), Y = Y, U=
(@) (@)
Phantom recurrence formulae:
0=dH =o'+, 0=dl,=J, @+, — 7,
Solve for pulled-back Maurer—Cartan forms:
fyl:sz—l—i‘}, 73:J3w2—|—193,

Recurrence formulae: dy = w?
dJ = J, w4+ (Jy — JH) @* + 9, — J 9,

dJ, = Jyww' +(J,—3JJ)w* +9, —JI9, — J, 0,
dJ, = Jyw + (J5 — J Jy) @* + 95 — Jy 0,



Grobner Basis Approach

Identify the cross-section variables with the complementary
monomials to a certain algebraic module 7, which is the
pull-back of the symbol module of the pseudo-group under
a certain explicit linear map.

—> Compatible term ordering.

—> Algebraic specification of compatible moving frames of all

orders n > n*.



Theorem. Suppose G acts freely at order n*. Then
a system of generating differential invariants
is contained in the non-phantom normalized
differential invariants of order n* and those

differential invariants corresponding to a Grobner

basis for the module 7> .



The Symbol Module

Linearized determining equations

L(z,¢™) =0

t=(ty,....t,), T=(Ty,...,T,)

T = {P(t,T) N0 Ta} ~ R[t] o R™ C R[t, T]

ZCc7 — symbol module
§=(81,--+55,); S=(5,.--,5,),

S = {T(S,S) = > T.,(s)S, } ~ R[s]eR? C R]s, 5]



Define the linear map

s;=0;(t) =t;+ > uit, . i=1,...,p,
a=1
p
Sa:Ba(T):ijLa—Zu?Tl, a=1,...,q

Prolonged symbol module:

N — leading monomials s75,
—> normalized differential invariants I¢

K — complementary monomials s% S

—> phantom differential invariants I Iﬁ(



The Symbol Module

Vector field:
0

— b .
V_azzjl C (Z) azb

Vector field jet:

iV = (I =(... 8 ...

b 8#Acb B 8kz<-b

‘A= 0z4 0z ... 0z

Determining FEquations for v € g

Lz ... ¢% ...)=0



Duality

t=(t,...,t,) T=(Ty,....,T.)
Polynomial module:

T = {P(t,T) =3 P, Ta} ~ R[t] s R™ C R[¢,T]

a
a=1

T ~ (J®°TM|)*

Dual pairing:
(Vi t'T, ) =4



Each polynomial

m

(zt,T) =Y Y Wh()t*T, €T
b=1 #A<n

induces a linear partial differential equation

L(z,¢™) = (joov; T(56,T) )

% Y () ch =0

b=1 #A<n



The Linear Determining Equations

Annihilator:
L= (J>7g)"

Determining Equations

<joov;7>:0 forall nel <+ veg

Symbol = highest degree terms:

m

Z(L(e ] = Al D] = X 3 (),

Symbol submodule:
I=AL)

—> Formal integrability (involutivity)



Prolonged Duality

Prolonged vector field:




Dual pairing:



Algebraic Prolongation

Prolongation of vector fields:

p: J®¥g — >

JoV — v ()

Dual prolongation map:

(Jevi P (0) ) = (Pluv)io ) =(v™;0)

* % On the symbol level, p* is algebraic * %



Prolongation Symbols

Define the linear map 3 : R*™ — R™

q
Si_ — Z Z p—f—Oé’ izl,...,p,
p
Sa:Ba(T):Tp—l—a_Z U?Tw 05:17 g
1=1

Pull-back map
B*[o(sy,..., 85y 515+, 5,) ]



Lemma.
are

The symbols of the prolonged vector field coefficients

SE) =T (e =T



Prolonged annihilator:
Z=(p*) L= (g">)"
(v®) o) =0 forall veg <— oce€2Z
Prolonged symbol subbundle:
U = AZ) C J®(M,p) xS

Prolonged symbol module:

Warning: : u c J

But
Uu" = Jn when n>n"

n* — order of freeness.



Algebraic Recurrence

Polynomial:

o(I®:s,8) =3 eIy /s, €8
o,J

Differential invariant:

I, =3 h5A®) 15
o,J



Recurrence:

10

D1, = [Dia = Isia + Ri,a

ceJ n>n" —

orderI, = n

order R, . <n




Algebra — Invariants
Z — symbol module
e determining equations for g
M~T /T — complementary monomials t2T}
e pseudo-group parameters

e Maurer—Cartan forms

N — leading monomials s/S

e normalized differential invariants [ i



K=8/N — complementary monomials s®*S 3

e cross-section coordinates u% = c%

e phantom differential invariants I [’é

Freeness: g K — M



Generating

Differential Invariants

Theorem. The differential invariant algebra is generated by
differential invariants that are in one-to-one correspondence
with the Grobner basis elements of the prolonged symbol
module plus, possibly, a finite number of differential invari-

ants of order < n*.



Syzygies

Theorem. Every differential syzygy among the generating
differential invariants is either a syzygy among those of
order < n*, or arises from an algebraic syzygy among the

Grobner basis polynomials in J.



