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Sur la théorie, si importante sans doute, mais

pour nous si obscure, des "groupes de Lie infinis#,

nous ne savons rien que ce qui trouve dans les

mémoires de Cartan, première exploration à travers

une jungle presque impénétrable; mais celle-ci men-

ace de se refermer sur les sentiers déjà tracés, si

l’on ne procède bientôt à un indispensable travail de

défrichement.

— André Weil, 1947



What’s the Deal with Infinite–Dimensional Groups?

• Lie invented Lie groups to study symmetry and solution of
differential equations.

♦ In Lie’s time, there were no abstract Lie groups. All groups
were realized by their action on a space.

♠ Therefore, Lie saw no essential distinction between finite-
dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two
subjects have gone in radically different directions.

♥ The general theory of finite-dimensional Lie groups has been
rigorously formalized and applied.

♣ But there is still no generally accepted abstract object that
represents an infinite-dimensional Lie pseudo-group!



Ehresmann’s Trinity

1953:

• Lie Pseudo-groups

• Jets

• Groupoids



Ehresmann’s Trinity

1953:

• Lie Pseudo-groups

• Jets

• Groupoids



Ehresmann’s Trinity

1953:

• Lie Pseudo-groups

• Jets

• Groupoids



Ehresmann’s Trinity

1953:

• Lie Pseudo-groups

• Jets

• Groupoids



Lie Pseudo-groups in Action

• Lie — Medolaghi — Vessiot

• Cartan

• Ehresmann

• Kuranishi, Spencer, Goldschmidt, Guillemin,
Sternberg, Kumpera, . . .

• Relativity

• Noether’s (Second) Theorem
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• Gauge theory and field theories:
Maxwell, Yang–Mills, conformal, string, . . .

• Fluid mechanics, metereology: Navier–Stokes,
Euler, boundary layer, quasi-geostropic, . . .

• Solitons (in 2 + 1 dimensions):
K–P, Davey-Stewartson, . . .

• Kac–Moody

• Morphology and shape recognition

• Control theory

• Linear and linearizable PDEs

• Geometric numerical integration

• Lie groups !



Moving Frames

In collaboration with Juha Pohjanpelto, I have estab-
lished a moving frame theory for infinite-dimensional Lie
pseudo-groups mimicking the earlier equivariant approach
for finite-dimensional Lie groups developed with Mark Fels
and others.

The finite-dimensional theory and algorithms have had
a very wide range of significant applications, including
differential geometry, differential equations, calculus of
variations, computer vision, Poisson geometry and solitons,
numerical methods, relativity, classical invariant theory, . . .



What’s New?

In the infinite-dimensional case, the moving frame
approach provides new constructive algorithms for:

• Invariant Maurer–Cartan forms

• Structure equations

• Moving frames

• Differential invariants

• Invariant differential operators

• Basis Theorem

• Syzygies and recurrence formulae



• Further applications:

=⇒ Symmetry groups of differential equations

=⇒ Vessiot group splitting; explicit solutions

=⇒ Gauge theories

=⇒ Calculus of variations

=⇒ Invariant geometric flows



Symmetry Groups — Review

System of differential equations:

∆ν(x, u(n)) = 0, ν = 1, 2, . . . , k

By a symmetry, we mean a transformation that maps solutions
to solutions.

Lie: To find the symmetry group of the differential equations,
work infinitesimally.

The vector field

v =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα

is an infinitesimal symmetry if its flow exp(tv) is a one-
parameter symmetry group of the differential equation.



We prolong v to the jet space whose coordinates are the
derivatives appearing in the differential equation:

v(n) =
p∑

i=1

ξi
∂

∂xi
+

q∑

α=1

n∑

#J=0

ϕJ
α

∂

∂uαJ

where

ϕJ
α = DJ

(

ϕα −
p∑

i=1

uαi ξ
i

)

+
p∑

i=1

uαJ,i ξ
i

DJ — total derivatives
Infinitesimal invariance criterion:

v(n)(∆ν) = 0 whenever ∆ = 0.

Infinitesimal determining equations:

L(x, u; ξ(n), ϕ(n)) = 0



The Heat Equation

ut = uxx

Symmetry generator:

v = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ ϕ(t, x, u)

∂

∂u
Prolongation:

v(2) = v + ϕt ∂

∂ut

+ ϕx ∂

∂ux

+ ϕxx ∂

∂uxx

+ · · ·

ϕt = ϕt + utϕu − utτt − u2
tτu − uxξt − utuxξu

ϕx = ϕx + uxϕu − utτx − utuxτu − uxξx − u2
xξu

ϕxx = ϕxx + ux(2ϕxu − ξxx) − utτxx + u2
x(ϕuu − 2ξxu)

− 2uxutτxu − u3
xξuu − u2

xutτuu + uxxϕu − uxuxxξu − utuxxτu



Infinitesimal invariance:

v(3)(ut − uxx) = ϕt − ϕxx = 0 whenever ut = uxx

Determining equations:

Coefficient Monomial

0 = −2τu uxuxt

0 = −2τx uxt

0 = −τuu u2
xuxx

−ξu = −2τxu − 3ξu uxuxx

ϕu − τt = −τxx + ϕu − 2ξx uxx

0 = −ξuu u3
x

0 = ϕuu − 2ξxu u2
x

−ξt = 2ϕxu − ξxx ux

ϕt = ϕxx 1



General solution:
ξ = c1 + c4x + 2c5t + 4c6xt,

τ = c2 + 2c4t + 4c6t
2,

ϕ = (c3 − c5x − 2c6t − c6x
2)u + α(x, t),

where αt = αxx is an arbitrary solution to the heat equation.

Basis for the (infinite-dimensional) symmetry algebra:

v1 = ∂x, v2 = ∂t, v3 = u∂u, v4 = x∂x + 2t∂t,

v5 = 2t∂x − xu∂u, v6 = 4xt∂x + 4t2∂t − (x2 + 2t)u∂u,

vα = α(x, t)∂u, where αt = αxx.

• x and t translations, scalings: λu, and (λx, λ2t), Galilean
boosts, inversions, and the addition of solutions stemming
from the linearity of the equation.



The Korteweg–deVries equation

ut + uxxx + uux = 0

Symmetry generator:

v = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ ϕ(t, x, u)

∂

∂u
Prolongation:

v(3) = v + ϕt ∂

∂ut

+ ϕx ∂

∂ux

+ · · · + ϕxxx ∂

∂uxxx

where

ϕt = ϕt + utϕu − utτt − u2
tτu − uxξt − utuxξu

ϕx = ϕx + uxϕu − utτx − utuxτu − uxξx − u2
xξu

ϕxxx = ϕxxx + 3uxϕu + · · ·



Infinitesimal invariance:

v(3)(ut + uxxx + uux) = ϕt + ϕxxx + uϕx + ux ϕ = 0

on solutions

Infinitesimal determining equations:

τx = τu = ξu = ϕt = ϕx = 0

ϕ = ξt −
2
3 uτt ϕu = − 2

3 τt = − 2 ξx

τtt = τtx = τxx = · · · = ϕuu = 0

General solution:

τ = c1 + 3c4t, ξ = c2 + c3t + c4x, ϕ = c3 − 2c4u.



Basis for symmetry algebra gKdV :

v1 = ∂t,

v2 = ∂x,

v3 = t ∂x + ∂u,

v4 = 3 t ∂t + x∂x − 2u∂u.

The symmetry group GKdV is four-dimensional

(x, t, u) *−→ (λ3 t + a, λ x + c t + b, λ−2 u + c)



v1 = ∂t, v2 = ∂x,

v3 = t ∂x + ∂u, v4 = 3 t ∂t + x∂x − 2u∂u.

Commutator table:

v1 v2 v3 v4

v1 0 0 0 v1

v2 0 0 v1 3v2

v3 0 −v1 0 −2v3

v4 −v1 −3v2 2v3 0

Entries: [vi,vj] =
∑

k

Ck
ijvk. Ck

ij — structure constants of g



Navier–Stokes Equations

∂u

∂t
+ u · ∇u = −∇p + ν∆u, ∇ · u = 0.

Symmetry generators:

vα = α(t) · ∂
x

+ α′(t) · ∂
u
− α′′(t) · x ∂p

v0 = ∂t

s = x · ∂
x

+ 2 t ∂t − u · ∂
u
− 2 p ∂p

r = x ∧ ∂
x

+ u ∧ ∂
u

wh = h(t) ∂p



Kadomtsev–Petviashvili

(KP) Equation

(ut + 3
2 uux + 1

4 uxxx )x ± 3
4 uyy = 0

Symmetry generators:

vf = f(t) ∂t + 2
3 y f ′(t) ∂y +

(
1
3 x f ′(t) ∓ 2

9 y2f ′′(t)
)
∂x

+
(
− 2

3 u f ′(t) + 2
9 x f ′′(t) ∓ 4

27 y2f ′′′(t)
)
∂u,

wg = g(t) ∂y ∓
2
3 y g′(t) ∂x ∓ 4

9 y g′′(t) ∂u,

zh = h(t) ∂x + 2
3 h′(t) ∂u.

=⇒ Kac–Moody loop algebra A(1)
4



Main Goals

Given a system of partial differential equations:

• Find the structure of its symmetry (pseudo-) group G

directly from the determining equations.

• Find and classify its differential invariants.

• Use symmetry reduction or group splitting to construct

explicit solutions — both invariant and non-invariant.
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Pseudo-groups
M — smooth (analytic) manifold

Definition. A pseudo-group is a collection of

local diffeomorphisms ϕ : M → M such that

• Identity : 1M ∈ G,

• Inverses : ϕ−1 ∈ G,

• Restriction: U ⊂ domϕ =⇒ ϕ | U ∈ G,

• Continuation: domϕ =
[

Uκ and ϕ | Uκ ∈ G =⇒ ϕ ∈ G,

• Composition: imϕ ⊂ domψ =⇒ ψ ◦ϕ ∈ G.



Lie Pseudo-groups

Definition. A Lie pseudo-group G is a pseudo-group whose

transformations are the solutions to an involutive system of

partial differential equations:

F (z, ϕ(n)) = 0.

called the nonlinear determining equations.

=⇒ analytic (Cartan–Kähler)

) ) Key complication: 1 ∃ abstract object G ) )



A Non-Lie Pseudo-group

Acting on M = R2:

X = ϕ(x) Y = ϕ(y)

where ϕ ∈ D(R) is any local diffeomorphism.

♠ Cannot be characterized by a system of partial differential

equations

∆(x, y, X(n), Y (n)) = 0



Theorem. (Itskov, PJO, Valiquette) Any regular non-Lie

pseudo-group can be completed to a Lie pseudo-group with

the same differential invariants.

Lie completion of previous example:

X = ϕ(x), Y = ψ(y)

where ϕ, ψ ∈ D(R).



Infinitesimal Generators

g — Lie algebra of infinitesimal generators of

the pseudo-group G

z = (x, u) — local coordinates on M

Vector field:

v =
m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi
∂

∂xi
+

q∑

α=1

ϕα
∂

∂uα

Vector field jet:

jnv *−→ ζ(n) = ( . . . ζb
A . . . )

ζb
A =

∂#Aζb

∂zA
=

∂kζb

∂za1 · · · ∂zak



The infinitesimal generators of G are the solutions to the

Infinitesimal Determining Equations

L(z, ζ(n)) = 0 (∗)

obtained by linearizing the pseudo-group’s nonlinear determin-

ing equations at the identity.

• If G is the symmetry group of a system of differential equa-

tions, then (∗) is the (involutive completion of) the usual

Lie determining equations for the symmetry group.



The Diffeomorphism Pseudo-group

M — smooth m-dimensional manifold

D = D(M) — pseudo-group of all local diffeomorphisms

Z = ϕ(z)





z = (z1, . . . , zm) — source coordinates

Z = (Z1, . . . , Zm) — target coordinates






Lψ(φ) = ψ ◦φ — left action

Rψ(φ) = φ ◦ψ−1 — right action



Jets

For 0 ≤ n ≤ ∞:

Given a smooth map ϕ : M → M , written in local coordinates as

Z = ϕ(z), let jnϕ|z denote its n–jet at z ∈ M , i.e., its nth

order Taylor polynomial or series based at z.

Jn(M, M) is the nth order jet bundle, whose points are the jets.

Local coordinates on Jn(M,M):

(z, Z(n)) = ( . . . za . . . Zb
A . . . ), Zb

A =
∂kZb

∂za1 · · · ∂zak



Diffeomorphism Jets

The nth order diffeomorphism jet bundle is the subbundle

D(n) = D(n)(M) ⊂ Jn(M,M)

consisting of nth order jets of local diffeomorphisms ϕ : M → M .

The Inverse Function Theorem tells us that D(n) is defined
by the non-vanishing of the Jacobian determinant:

det(Za
b ) = det( ∂Za/∂zb ) 1= 0



Pseudo-group Jets

A regular Lie pseudo-group G ⊂ D defines a subbundle

G(n) = {F (z,Z(n)) = 0} ⊂ D(n)

consisting of the jets of pseudo-group diffeomorphisms, and
therefore characterized by the pseudo-group’s nonlinear
determining equations.

♥ Local coordinates on G(n), e.g., the restricted diffeo-
morphism jet coordinates zc, Za

B, are viewed as the pseudo-
group parameters, playing the same role as the local coordinates
on a Lie group G.

♠ The pseudo-group jet bundle G(n) does not form a
group, but rather a groupoid under composition of Taylor
polynomials/series.
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Groupoid Structure
Double fibration:

G(n)

!
!

"
σ(n) #

#$
τ (n)

M M

σ(n)(z, Z(n)) = z — source map

τ (n)(z, Z(n)) = Z — target map

You are only allowed to multiply h(n) · g(n) if

σ(n)(h(n)) = τ (n)(g(n))

) ) Composition of Taylor polynomials/series is well-defined
only when the source of the second matches the target
of the first.



One-dimensional case: M = R

Source coordinate: x Target coordinate: X

Local coordinates on D(n)(R)

g(n) = (x,X, Xx, Xxx, Xxxx, . . . , Xn)

Diffeomorphism jet:

X[[ h ]] = X + Xx h + 1
2 Xxx h2 + 1

6 Xxxx h3 + · · ·

=⇒ Taylor polynomial/series at a source point x



Groupoid multiplication of diffeomorphism jets:

(X,X,XX,XXX, . . . ) · (x,X, Xx, Xxx, . . . )

= (x,X,XX Xx,XX Xxx + XXX X2
x, . . . )

=⇒ Composition of Taylor polynomials/series

• The groupoid multiplication (or Taylor composition) is only
defined when the source coordinate X of the first multipli-
cand matches the target coordinate X of the second.

• The higher order terms are expressed in terms of Bell polyno-
mials according to the general Fàa–di–Bruno formula.



Structure of Lie Pseudo-groups

The structure of a finite-dimensional Lie group
G is specified by its Maurer–Cartan forms — a basis
µ1, . . . , µr for the right-invariant one-forms:

dµk =
∑

i<j

Ck
ij µi ∧ µj



What should be the Maurer–Cartan forms of a Lie
pseudo-group?

Cartan: Use exterior differential systems and
prolongation to determine the structure equations.

I propose a direct approach based on the following
observation:

The Maurer–Cartan forms for a pseudo-group can be
identified with the right-invariant one-forms on
the jet groupoid G(∞).

The structure equations can be determined immedi-
ately from the infinitesimal determining equations.
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The Variational Bicomplex

) The differential one-forms on an infinite jet bundle split
into two types:

• horizontal forms

• contact forms

) Consequently, the exterior derivative

d = dM + dG

on D(∞) splits into horizontal (manifold) and contact
(group) components, leading to the variational bicomplex
structure on the algebra of differential forms on D(∞).



For the diffeomorphism jet bundle

D(∞) ⊂ J∞(M,M)

Local coordinates:

z1, . . . zm

︸ ︷︷ ︸
, Z1, . . . Zm

︸ ︷︷ ︸
, . . . Zb

A, . . .
︸ ︷︷ ︸

source target jet

Horizontal forms:
dz1, . . . , dzm

Basis contact forms:

Θb
A = dG Zb

A = dZb
A −

m∑

a=1

Za
A,a dza



One-dimensional case: M = R

Local coordinates on D(∞)(R)

(x,X, Xx, Xxx, Xxxx, . . . , Xn, . . . )

Horizontal form:
dx

Contact forms:
Θ = dX − Xx dx

Θx = dXx − Xxx dx

Θxx = dXxx − Xxxx dx

...



Maurer–Cartan Forms

The Maurer–Cartan forms for the diffeomorphism pseudo-group
are the right-invariant one-forms on the diffeomorphism jet
groupoid D(∞).

Key observation:
The target coordinate functions Za are right-invariant.

Thus, when we decompose

dZa = σa + µa

horizontal contact

the two constituents are also right-invariant.



Invariant horizontal forms:

σa = dM Za =
m∑

b=1

Za
b dzb

Invariant total differentiation (dual operators):

DZa =
m∑

b=1

( Za
b )−1

Dzb

Thus, the invariant contact forms are obtained by invariant
differentiation of the order zero contact forms:

µb = dG Zb = Θb = dZb −
m∑

a=1

Zb
a dza

µb
A = D

A
Zµb = DZa1 · · · DZanµb

b = 1, . . . , m, #A ≥ 0



One-dimensional case: M = R

Contact forms:

Θ = dX − Xx dx

Θx = DxΘ = dXx − Xxx dx

Θxx = D
2
xΘ = dXxx − Xxxx dx

Right-invariant horizontal form:

σ = dM X = Xx dx

Invariant differentiation:

DX =
1

Xx

Dx



Invariant contact forms:

µ = Θ = dX − Xx dx

µX = DXµ =
Θx

Xx

=
dXx − Xxx dx

Xx

µXX = D
2
Xµ =

XxΘxx − XxxΘx

X3
x

=
Xx dXxx − Xxx dXx + (X2

xx − XxXxxx) dx

X3
x

...

µn = D
n
Xµ



The Structure Equations for

the Diffeomorphism Pseudo–group

dµb
A =

∑
Cb,B,C

A,c,d µc
B ∧ µd

C

Maurer–Cartan series:

µb[[ H ]] =
∑

A

1

A!
µb

A HA

H = (H1, . . . , Hm) — formal parameters

dµ[[ H ]] = ∇µ[[ H ]] ∧ (µ[[ H ]] − dZ )

dσ = − dµ[[ 0 ]] = ∇µ[[ 0 ]] ∧ σ



The Structure Equations for

the Diffeomorphism Pseudo–group

dµb
A =

∑
Cb,B,C

A,c,d µc
B ∧ µd

C

Maurer–Cartan series:

µb[[ H ]] =
∑

A

1

A!
µb

A HA

H = (H1, . . . , Hm) — formal parameters

dµ[[ H ]] = ∇µ[[ H ]] ∧ (µ[[ H ]] − dZ )

dσ = − dµ[[ 0 ]] = ∇µ[[ 0 ]] ∧ σ



One-dimensional case: M = R

Structure equations:

dσ = µX ∧ σ dµ[[ H ]] =
dµ

dH
[[ H ]] ∧ (µ[[ H ]] − dZ)

where

σ = Xx dx = dX − µ

µ[[ H ]] = µ + µX H + 1
2 µXX H2 + · · ·

µ[[ H ]] − dZ = −σ + µX H + 1
2 µXX H2 + · · ·

dµ

dH
[[ H ]] = µX + µXX H + 1

2 µXXX H2 + · · ·



In components:

dσ = µ1 ∧ σ

dµn = −µn+1 ∧ σ +
n−1∑

i=0

(
n

i

)

µi+1 ∧ µn−i

= σ ∧ µn+1 −
[ n+1

2 ]∑

j =1

n − 2j + 1

n + 1

(
n + 1

j

)

µj ∧ µn+1−j.

=⇒ Cartan



The Maurer–Cartan Forms

for a Lie Pseudo-group

The Maurer–Cartan forms for a pseudo-group G ⊂ D

are obtained by restricting the diffeomorphism

Maurer–Cartan forms σa, µb
A to G(∞) ⊂ D(∞).

) ) The resulting one-forms are no longer linearly

independent.
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Theorem. The Maurer–Cartan forms on G(∞) satisfy the
invariant infinitesimal determining equations

L( . . . Za . . . µb
A . . . ) = 0 () ))

obtained from the infinitesimal determining equations

L( . . . za . . . ζb
A . . . ) = 0 ())

by replacing

• source variables za by target variables Za

• derivatives of vector field coefficients ζb
A by

right-invariant Maurer–Cartan forms µb
A



The Structure Equations
for a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group

G are obtained by restricting the universal diffeomorphism

structure equations

dµ[[ H ]] = ∇µ[[ H ]] ∧ (µ[[ H ]] − dZ )

to the solution space of the linearized involutive system

L( . . . Za, . . . µb
A, . . . ) = 0.



The Korteweg–deVries Equation

ut + uxxx + uux = 0

Diffeomorphism Maurer–Cartan forms:

µt, µx, µu, µt
T , µt

X , µt
U , µx

T , . . . , µu
U , µt

TT , µT
TX, . . .



Infinitesimal determining equations:

τx = τu = ξu = ϕt = ϕx = 0

ϕ = ξt −
2
3 uτt ϕu = − 2

3 τt = − 2 ξx

τtt = τtx = τxx = · · · = ϕuu = 0

Maurer–Cartan determining equations:

µt
X = µt

U = µx
U = µu

T = µu
X = 0,

µu = µx
T − 2

3 Uµt
T , µu

U = − 2
3 µt

T = − 2µx
X,

µt
TT = µt

TX = µt
XX = · · · = µu

UU = . . . = 0.



Basis (dimGKdV = 4):

µ1 = µt, µ2 = µx, µ3 = µu, µ4 = µt
T .

Substituting into the full diffeomorphism structure equations
yields the structure equations for gKdV :

dµ1 = −µ1 ∧ µ4,

dµ2 = −µ1 ∧ µ3 − 2
3 U µ1 ∧ µ4 − 1

3 µ2 ∧ µ4,

dµ3 = 2
3 µ3 ∧ µ4,

dµ4 = 0.

dµi = Ci
jk µj ∧ µk



dµ1 = −µ1 ∧ µ4,

dµ2 = −µ1 ∧ µ3 − 2
3 U µ1 ∧ µ4 − 1

3 µ2 ∧ µ4,

dµ3 = 2
3 µ3 ∧ µ4,

dµ4 = 0.

In general, the pseudo-group structure equations live on the
principal bundle G(∞); if G is a finite-dimensional Lie group,
then G(∞) 7 M × G, and the usual Lie group structure equa-
tions are found by restriction to the target fibers {Z = c} 7 G.
Note that the constructed basis µ1, . . . , µr of g∗ might vary from
fiber to fiber.



Lie–Kumpera Example

X = f(x) U =
u

f ′(x)

Linearized determining system

ξx = −
ϕ

u
ξu = 0 ϕu =

ϕ

u



Maurer–Cartan forms:

σ =
u

U
dx = fx dx, τ = Ux dx +

U

u
du =

−u fxx dx + fx du

fx
2

µ = dX −
U

u
dx = df − fx dx, ν = dU − Ux dx −

U

u
du = −

u

fx
2

( dfx − fxx dx )

µX =
du

u
−

dU − Ux dx

U
=

dfx − fxx dx

fx

, µU = 0

νX =
U

u
(dUx − Uxx dx) −

Ux

u
(dU − Ux dx)

= −
u

fx
3
( dfxx − fxxx dx ) +

u fxx

fx
4

( dfx − fxx dx )

νU = −
du

u
+

dU − Ux dx

U
= −

dfx − fxx dx

fx



First order linearized determining equations:

ξx = −
ϕ

u
ξu = 0 ϕu =

ϕ

u

First order Maurer–Cartan determining equations:

µX = −
ν

U
µU = 0 νU =

ν

U

First order structure equations:

dµ = − dσ =
ν ∧ σ

U
, dν = − νX ∧ σ −

ν ∧ τ

U

dνX = − νXX ∧ σ −
νX ∧ (τ + 2 ν)

U



Comparison of StructureEquations
If the action is transitive, then our structure equations are isomorphic to
Cartan’s. However, this is not true for intransitive pseudo-groups.
Which are “right”?

• To find the Cartan structure equations, one first needs to work in an
adapted coordinate chart, which requires identification of the invariants
on M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and not
easy to implement. Ours follow immediately from the structure equations
for the diffeomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group
structure equations do not coincide with the standard Maurer–Cartan
equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-
isomorphic. Ours are always isomorphic.
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Action of Pseudo-groups on Submanifolds

a.k.a. Solutions of Differential Equations

G — Lie pseudo-group acting on p-dimensional submanifolds:

N = {u = f(x)} ⊂ M

For example, G may be the symmetry group of a
system of differential equations

∆(x, u(n)) = 0

and the submanifolds the graphs of solutions u = f(x).



Prolongation

Jn = Jn(M,p) — nth order submanifold jet bundle

Local coordinates :

z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . )

Prolonged action of G(n) on submanifolds:

(x, u(n)) *−→ (X, Û (n))

Coordinate formulae:

ÛαJ = FαJ (x, u(n), g(n))

=⇒ Implicit differentiation.



Differential Invariants

A differential invariant is an invariant function I : Jn → R

for the prolonged pseudo-group action

I(g(n) · (x, u(n))) = I(x, u(n))

=⇒ curvature, torsion, . . .

Invariant differential operators:

D1, . . . ,Dp =⇒ arc length derivative

• If I is a differential invariant, so is DjI.

I(G) — the algebra of differential invariants



The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , I%
and p = dim S invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1
Dj2

· · · Djn
Iκ.

=⇒ Lie groups: Lie, Ovsiannikov

=⇒ Lie pseudo-groups: Tresse, Kumpera, Kruglikov–Lychagin,
Muñoz–Muriel–Rodŕıguez, Pohjanpelto–O



Key Issues

• Minimal basis of generating invariants: I1, . . . , I%

• Commutation formulae for

the invariant differential operators:

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

=⇒ Non-commutative differential algebra

• Syzygies (functional relations) among

the differentiated invariants:

Φ( . . . DJIκ . . . ) ≡ 0

=⇒ Codazzi relations



Computing Differential Invariants

♠ The infinitesimal method:

v(I) = 0 for every infinitesimal generator v ∈ g

=⇒ Requires solving differential equations.

♥ Moving frames.

• Completely algebraic.

• Can be adapted to arbitrary group and pseudo-group actions.

• Describes the complete structure of the differential invariant
algebra I(G) — using only linear algebra & differentiation!

• Prescribes differential invariant signatures for equivalence and
symmetry detection.



Moving Frames

In the finite-dimensional Lie group case, a moving frame is

defined as an equivariant map

ρ(n) : Jn −→ G



However, we do not have an appropriate abstract object to

represent our pseudo-group G.

Consequently, the moving frame will be an equivariant section

ρ(n) : Jn −→ H(n)

of the pulled-back pseudo-group jet groupoid:

G(n) H(n)

% %
M & Jn.



Moving Frames for Pseudo–Groups

Definition. A (right) moving frame of order n is a right-

equivariant section ρ(n) : V n → H(n) defined on an open

subset V n ⊂ Jn.

=⇒ Groupoid action.

Proposition. A moving frame of order n exists if and only if

G(n) acts freely and regularly.



Freeness
For Lie group actions, freeness means no isotropy. For infinite-

dimensional pseudo-groups, this definition cannot work,

and one must restrict to the transformation jets of order

n, using the nth order isotropy subgroup:

G(n)
z(n) =

{
g(n) ∈ G(n)

z

∣∣∣ g(n) · z(n) = z(n)
}

Definition. At a jet z(n) ∈ Jn, the pseudo-group G acts

• freely if G(n)
z(n) = {1(n)

z }

• locally freely if

• G(n)
z(n) is a discrete subgroup of G(n)

z

• the orbits have dim = rn = dimG(n)
z



Persistence of Freeness

Theorem. If n ≥ 1 and G(n) acts locally freely

at z(n) ∈ Jn, then it acts locally freely at any

z(k) ∈ Jk with π̃k
n(z(k)) = z(n) for all k > n.



The Normalization Algorithm

To construct a moving frame :
I. Compute the prolonged pseudo-group action

uαK *−→ UαK = FαK(x, u(n), g(n))

by implicit differentiation.

II. Choose a cross-section to the pseudo-group orbits:

uακ

Jκ
= cκ, κ = 1, . . . , rn = fiber dim G(n)



III. Solve the normalization equations

Uακ

Jκ
= Fακ

Jκ
(x, u(n), g(n)) = cκ

for the nth order pseudo-group parameters

g(n) = ρ(n)(x, u(n))

IV. Substitute the moving frame formulas into the un-

normalized jet coordinates uαK = FαK(x, u(n), g(n)).

The resulting functions form a complete system of nth order

differential invariants

IαK(x, u(n)) = FαK(x, u(n), ρ(n)(x, u(n)))



Invariantization

A moving frame induces an invariantization process, denoted ι,

that projects functions to invariants, differential operators

to invariant differential operators; differential forms to

invariant differential forms, etc.

Geometrically, the invariantization of an object is the unique

invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group

parameters in the transformed object by their moving frame

formulas.



Invariantization

In particular, invariantization of the jet coordinates leads to a

complete system of functionally independent differential

invariants: ι(xi) = Hi ι(uαJ) = IαJ

• Phantom differential invariants: Iακ

Jκ
= cκ

• The non-constant invariants form a functionally independent

generating set for the differential invariant algebra I(G)

• Replacement Theorem

I( . . . xi . . . uαJ . . . ) = ι( I( . . . xi . . . uαJ . . . ) )

= I( . . . Hi . . . IαJ . . . )



♦ Differential functions =⇒ differential invariant s

ι(xi) = Hi ι(uαJ) = IαJ

♦ Differential forms =⇒ invariant differential forms

ι( dxi) = 1i ι(θαK) = ϑαK

♦ Differential operators =⇒ invariant differential operators

ι (Dxi ) = Di



Recurrence Formulae

) ) Invariantization and differentiation

do not commute
) )

The recurrence formulae connect the differentiated invariants

with their invariantized counterparts:

DiI
α
J = IαJ,i + Mα

J,i

=⇒ Mα
J,i — correction terms



♥ Once established, the recurrence formulae completely

prescribe the structure of the differential invariant

algebra I(G) — thanks to the functional independence

of the non-phantom normalized differential invariants.

) ) The recurrence formulae can be explicitly determined

using only the infinitesimal generators and linear

differential algebra!



Korteweg–deVries Equation
Prolonged Symmetry Group Action:

T = e3λ4(t + λ1)

X = eλ4(λ3t + x + λ1λ3 + λ2)

U = e−2λ4(u + λ3)

UT = e−5λ4(ut − λ3ux)

UX = e−3λ4ux

UTT = e−8λ4(utt − 2λ3utx + λ3
2uxx)

UTX = DXDTU = e−6λ4(utx − λ3uxx)

UXX = e−4λ4uxx

...



Cross Section:

T = e3λ4(t + λ1) = 0

X = eλ4(λ3t + x + λ1λ3 + λ2) = 0

U = e−2λ4(u + λ3) = 0

UT = e−5λ4(ut − λ3ux) = 1

Moving Frame:

λ1 = −t, λ2 = −x, λ3 = −u, λ4 = 1
5 log(ut + uux)



Moving Frame:

λ1 = −t, λ2 = −x, λ3 = −u, λ4 = 1
5 log(ut + uux)

Invariantization:

ι(uK) = UK |λ1=−t,λ2=−x,λ3=−u,λ4=log(ut+uux)/5

Phantom Invariants:
H1 = ι(t) = 0

H2 = ι(x) = 0

I00 = ι(u) = 0

I10 = ι(ut) = 1



Normalized differential invariants:

I01 = ι(ux) =
ux

(ut + uux)3/5

I20 = ι(utt) =
utt + 2uutx + u2uxx

(ut + uux)8/5

I11 = ι(utx) =
utx + uuxx

(ut + uux)6/5

I02 = ι(uxx) =
uxx

(ut + uux)4/5

I03 = ι(uxxx) =
uxxx

ut + uux...



Invariantization:

ι( F (t, x, u, ut, ux, utt, utx, uxx, . . . ) )

= F (ι(t), ι(x), ι(u), ι(ut), ι(ux), ι(utt), ι(utx), ι(uxx), . . . )

= F (H1, H2, I00, I10, I01, I20, I11, I02, . . . )

= F (0, 0, 0, 1, I01, I20, I11, I02, . . . )

Replacement Theorem:

0 = ι(ut + uux + uxxx) = 1 + I03 =
ut + uux + uxxx

ut + uux

.

Invariant horizontal one-forms:

ω1 = ι(dt) = (ut + uux)3/5 dt,

ω2 = ι(dx) = −u(ut + uux)1/5 dt + (ut + uux)1/5 dx.



Invariant differential operators:

D1 = ι(Dt) = (ut + uux)−3/5Dt + u(ut + uux)−3/5Dx,

D2 = ι(Dx) = (ut + uux)−1/5Dx.

Commutation formula:

[D1,D2 ] = I01 D1

Recurrence formulae:
D1I01 = I11 −

3
5I

2
01 −

3
5I01I20, D2I01 = I02 −

3
5 I3

01 −
3
5 I01I11,

D1I20 = I30 + 2I11 −
8
5I01I20 −

8
5I

2
20, D2I20 = I21 + 2I01I11 −

8
5I2

01I20 −
8
5I11I20,

D1I11 = I21 + I02 −
6
5I01I11 −

6
5I11I20, D2I11 = I12 + I01I02 −

6
5I2

01I11 −
6
5I2

11,

D1I02 = I12 −
4
5I01I02 −

4
5I02I20, D2I02 = I03 −

4
5I2

01I02 −
4
5I02I11,

...
...



Generating differential invariants:

I01 = ι(ux) =
ux

(ut + uux)3/5
, I20 = ι(utt) =

utt + 2uutx + u2uxx

(ut + uux)8/5
.

Fundamental syzygy:

D2
1I01 + 3

5 I01D1I20 −D2I20 +
(

1
5 I20 + 19

5 I01

)
D1I01

−D2I01 −
6
25 I01I

2
20 −

7
25 I2

01I20 + 24
25 I3

01 = 0.



Lie–Tresse–Kumpera Example

X = f(x), Y = y, U =
u

f ′(x)

Horizontal coframe

dH X = fx dx, dH Y = dy,

Implicit differentiations

DX =
1

fx

Dx, DY = Dy.



Prolonged pseudo-group transformations on surfaces S ⊂ R3

X = f Y = y U =
u

fx

UX =
ux

f 2
x

−
u fxx

f 3
x

UY =
uy

fx

UXX =
uxx

f 3
x

−
3ux fxx

f 4
x

−
u fxxx

f 4
x

+
3u f 2

xx

f 5
x

UXY =
uxy

f 2
x

−
uy fxx

f 3
x

UY Y =
uyy

fx

=⇒ action is free at every order.

Coordinate cross-section

X = f = 0, U =
u

fx

= 1, UX =
ux

f 2
x

−
u fxx

f 3
x

= 0, UXX = · · · = 0.



Moving frame

f = 0, fx = u, fxx = ux, fxxx = uxx.

Differential invariants

UY *−→ J =
uy

u

UXY *−→ J1 =
uuxy − uxuy

u3
UY Y *−→ J2 =

uyy

u

Invariant horizontal forms

dH X = fx dx *−→ u dx, dH Y = dy *−→ dy,

Invariant differentiations

D1 =
1

u
Dx D2 = Dy



Higher order differential invariants: Dm
1 Dn

2 J

J,1 = D1J =
uuxy − uxuy

u3
= J1,

J,2 = D2J =
uuyy − u2

y

u2
= J2 − J2.

Recurrence formulae:

D1J = J1, D2J = J2 − J2,

D1J1 = J3, D2J1 = J4 − 3J J1,

D1J2 = J4, D2J2 = J5 − J J2,



The Master Recurrence Formula

dH IαJ =
p∑

i=1

(DiI
α
J )ωi =

p∑

i=1

IαJ,i ω
i + ψ̂ αJ

where

ψ̂ αJ = ι( ϕ̂ αJ ) = ΦαJ( . . . Hi . . . IαJ . . . ; . . . γb
A . . . )

are the invariantized prolonged vector field coefficients, which
are particular linear combinations of

γb
A = ι(ζb

A) — invariantized Maurer–Cartan forms
prescribed by the invariantized prolongation map.

• The invariantized Maurer–Cartan forms are subject to the
invariantized determining equations :

L(H1, . . . , Hp, I1, . . . , Iq, . . . , γb
A, . . . ) = 0



dH IαJ =
p∑

i=1

IαJ,i ω
i + ψ̂ αJ( . . . γb

A . . . )

Step 1: Solve the phantom recurrence formulas

0 = dH IαJ =
p∑

i=1

IαJ,i ω
i + ψ̂ αJ( . . . γb

A . . . )

for the invariantized Maurer–Cartan forms:

γb
A =

p∑

i=1

Jb
A,i ω

i (∗)

Step 2: Substitute (∗) into the non-phantom recurrence
formulae to obtain the explicit correction terms.



♦ Only uses linear differential algebra based on the specifica-
tion of cross-section.

♥ Does not require explicit formulas for the moving frame, the
differential invariants, the invariant differential operators, or
even the Maurer–Cartan forms!



The Korteweg–deVries Equation (continued)

Recurrence formula:

dIjk = Ij+1,kω
1 + Ij,k+1ω

2 + ι(ϕjk)

Invariantized Maurer–Cartan forms:

ι(τ) = λ, ι(ξ) = µ, ι(ϕ) = ψ = ν, ι(τt) = ψt = λt, . . .

Invariantized determining equations:

λx = λu = µu = νt = νx = 0

ν = µt νu = − 2µx = − 2
3 λt

λtt = λtx = λxx = · · · = νuu = · · · = 0

Invariantizations of prolonged vector field coefficients:

ι(τ) = λ, ι(ξ) = µ, ι(ϕ) = ν, ι(ϕt) = −I01ν −
5
3 λt,

ι(ϕx) = −I01λt, ι(ϕtt) = −2I11ν −
8
3I20λt, . . .



Phantom recurrence formulae:
0 = dH H1 = ω1 + λ,

0 = dH H2 = ω2 + µ,

0 = dH I00 = I10ω
1 + I01ω

2 + ψ = ω1 + I01ω
2 + ν,

0 = dH I10 = I20ω
1 + I11ω

2 + ψt = I20ω
1 + I11ω

2 − I01ν −
5
3 λt,

=⇒ Solve for λ = −ω1, µ = −ω2, ν = −ω1 − I01ω
2,

λt = 3
5 (I20 + I01)ω

1 + 3
5 (I11 + I2

01)ω
2.

Non-phantom recurrence formulae:

dH I01 = I11ω
1 + I02ω

2 − I01λt,

dH I20 = I30ω
1 + I21ω

2 − 2I11ν −
8
3I20λt,

dH I11 = I21ω
1 + I12ω

2 − I02ν − 2I11λt,

dH I02 = I12ω
1 + I03ω

2 − 4
3I02λt,

...



D1I01 = I11 −
3
5I

2
01 −

3
5I01I20, D2I01 = I02 −

3
5 I3

01 −
3
5 I01I11,

D1I20 = I30 + 2I11 −
8
5I01I20 −

8
5I2

20, D2I20 = I21 + 2I01I11 −
8
5I

2
01I20 −

8
5I11I20,

D1I11 = I21 + I02 −
6
5I01I11 −

6
5I11I20, D2I11 = I12 + I01I02 −

6
5I2

01I11 −
6
5I

2
11,

D1I02 = I12 −
4
5I01I02 −

4
5I02I20, D2I02 = I03 −

4
5I

2
01I02 −

4
5I02I11,

...
...



Lie–Tresse–Kumpera Example (continued)

X = f(x), Y = y, U =
u

f ′(x)

Phantom recurrence formulae:
0 = dH = 11 + γ, 0 = dI10 = J11

2 + ϑ1 − γ2,

0 = dI00 = J 12 + ϑ− γ1, 0 = dI20 = J31
2 + ϑ3 − γ3,

Solve for pulled-back Maurer–Cartan forms:

γ = −11, γ2 = J11
2 + ϑ1,

γ1 = J 12 + ϑ, γ3 = J31
2 + ϑ3,

Recurrence formulae: dy = 12

dJ = J11
1 + (J2 − J2)12 + ϑ2 − J ϑ,

dJ1 = J31
1 + (J4 − 3J J1)1

2 + ϑ4 − J ϑ1 − J1 ϑ,

dJ2 = J41
1 + (J5 − J J2)1

2 + ϑ5 − J2 ϑ,



Gröbner Basis Approach

Identify the cross-section variables with the complementary
monomials to a certain algebraic module J , which is the
pull-back of the symbol module of the pseudo-group under
a certain explicit linear map.

=⇒ Compatible term ordering.

=⇒ Algebraic specification of compatible moving frames of all

orders n > n'.



Theorem. Suppose G acts freely at order n'. Then

a system of generating differential invariants

is contained in the non-phantom normalized

differential invariants of order n' and those

differential invariants corresponding to a Gröbner

basis for the module J>n"

.



The Symbol Module

Linearized determining equations

L(z, ζ(n)) = 0

t = (t1, . . . , tm), T = (T1, . . . , Tm)

T =

{

P (t, T ) =
m∑

a=1

Pa(t)Ta

}

7 R[ t ] ⊗R
m ⊂ R[ t, T ]

I ⊂ T — symbol module

s = (s1, . . . , sp), S = (S1, . . . , Sq),

Ŝ =

{

T (s, S) =
q∑

α=1

Tα(s)Sα

}

7 R[s] ⊗ R
q ⊂ R[s, S]



Define the linear map

si = βi(t) = ti +
q∑

α=1

uαi tp+α, i = 1, . . . , p,

Sα = Bα(T ) = Tp+α −
p∑

i=1

uαi Ti, α = 1, . . . , q.

Prolonged symbol module:

J = (β∗)−1(I)

N — leading monomials sJSα

=⇒ normalized differential invariants IαJ

K — complementary monomials sKSβ

=⇒ phantom differential invariants IβK



The Symbol Module

Vector field:

v =
m∑

a=1

ζb(z)
∂

∂zb

Vector field jet:

j∞v ⇐⇒ ζ(∞) = ( . . . ζb
A . . . )

ζb
A =

∂#Aζb

∂zA
=

∂kζb

∂za1 · · · ∂zak

Determining Equations for v ∈ g

L(z; . . . ζb
A . . . ) = 0 (∗)



Duality

t = (t1, . . . , tm) T = (T1, . . . , Tm)

Polynomial module:

T =

{

P (t, T ) =
m∑

a=1

Pa(t)Ta

}

7 R[ t ] ⊗R
m ⊂ R[ t, T ]

T 7 (J∞TM |z)
∗

Dual pairing: 〈
j∞v ; tATb

〉
= ζb

A.



Each polynomial

τ(z; t, T ) =
m∑

b=1

∑

#A≤n

hb
A(z) tATb ∈ T

induces a linear partial differential equation

L(z, ζ(n)) =
〈

j∞v ; τ(z; t, T )
〉

=
m∑

b=1

∑

#A≤n

hb
A(z) ζb

A = 0



The Linear Determining Equations

Annihilator:
L = (J∞g)⊥

Determining Equations
〈

j∞v ; τ
〉

= 0 for all η ∈ L ⇐⇒ v ∈ g

Symbol = highest degree terms:

Σ[L(z, ζ(n)) ] = Λ[τ(z; t, T ) ] =
m∑

b=1

∑

#A=n

hb
A(z) tATb

Symbol submodule:
I = Λ(L)

=⇒ Formal integrability (involutivity)



Prolonged Duality

Prolonged vector field:

v(∞) =
p∑

i=1

ξi(x, u)
∂

∂xi
+

∑

α,J

ϕ̂ αJ(x, u(k))
∂

∂uαJ

s̃ = (s̃1, . . . , s̃p), s = (s1, . . . , sp), S = (S1, . . . , Sq)

“Prolonged” polynomial module:

Ŝ =

{

σ(s, S, s̃) =
p∑

i=1

cis̃i +
q∑

α=1

σ̂α(s)Sα

}

7 R
p

⊕ (R[s] ⊗ R
q)

Ŝ 7 T∗J∞|z(∞)



Dual pairing:
〈

v(∞) ; s̃i

〉
= ξi

〈
v(∞) ; Sα

〉
= Qα = ϕα −

p∑

i=1

uαi ξ
i

〈
v(∞) ; sJSα

〉
= ϕ̂ αJ = ΦαJ(u(n); ζ(n))



Algebraic Prolongation

Prolongation of vector fields:

p : J∞g *−→ g
(∞)

j∞v *−→ v(∞)

Dual prolongation map:

p∗ : S −→ T

〈
j∞v ; p∗(σ)

〉
=

〈
p(j∞v) ; σ

〉
=

〈
v(∞) ; σ

〉

) ) On the symbol level, p∗ is algebraic ) )



Prolongation Symbols

Define the linear map β : R2m −→ Rm

si = βi(t) = ti +
q∑

α=1

uαi tp+α, i = 1, . . . , p,

Sα = Bα(T ) = Tp+α −
p∑

i=1

uαi Ti, α = 1, . . . , q.

Pull-back map

β∗[σ(s1, . . . , sp, S1, . . . , Sq) ]

= σ( β1(t), . . . , βp(t), B1(T ) . . . , Bq(T ) )



Lemma. The symbols of the prolonged vector field coefficients
are

Σ(ξi) = T i Σ(ϕ̂ α) = Tα+p

Σ(Qα) = β∗(Sα) = Bα(T )

Σ(ϕ̂ αJ) =β∗(sJSα) = β∗(sj1 · · · sjn
Sα)

= βj1(t) · · · βjn
(t)Bα(T )



Prolonged annihilator:

Z = (p∗)−1L = (g(∞))⊥

〈v(∞) ;σ 〉 = 0 for all v ∈ g ⇐⇒ σ ∈ Z

Prolonged symbol subbundle:

U = Λ(Z) ⊂ J∞(M, p) × S

Prolonged symbol module:

J = (β∗)−1(I)

Warning : : U ⊆ J

But
Un = J n when n > n'

n' — order of freeness.



Algebraic Recurrence

Polynomial:
σ(I(k); s, S) =

∑

α,J

ha
J(I(k)) sJSα ∈ Ŝ

Differential invariant:

Iσ =
∑

α,J

ha
J(I(k)) IαJ



Recurrence:

Di Iσ = IDiσ
≡ Isiσ

+ Ri,σ

σ ∈ J̃ n, n > n' =⇒

order Iσ = n

order IDiσ
= n + 1

order Ri,σ ≤ n



Algebra =⇒ Invariants

I — symbol module

• determining equations for g

M 7 T / I — complementary monomials tATb

• pseudo-group parameters

• Maurer–Cartan forms

N — leading monomials sJSα

• normalized differential invariants IαJ



K = S /N — complementary monomials sKSβ

• cross-section coordinates uβK = cβK

• phantom differential invariants IβK

J = (β∗)−1(I)

Freeness: β∗ : K −→̃ M



Generating

Differential Invariants

Theorem. The differential invariant algebra is generated by

differential invariants that are in one-to-one correspondence

with the Gröbner basis elements of the prolonged symbol

module plus, possibly, a finite number of differential invari-

ants of order ≤ n'.



Syzygies

Theorem. Every differential syzygy among the generating

differential invariants is either a syzygy among those of

order ≤ n', or arises from an algebraic syzygy among the

Gröbner basis polynomials in J̃ .


