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Dispersion

Definition. A linear partial differential equation is called
dispersive if the different Fourier modes travel unaltered
but at different speeds.

Substituting
U(t,$) _ ei(kx—wt)
produces the dispersion relation
w = w(k)

relating frequency w and wave number k.

Phase velocity: ¢ =

Group velocity: ¢, = (stationary phase)



The simplest linear dispersive wave equation:

ou  Ou
ot  Ox3
Dispersion relation: w = —k?
Phase velocity: ¢, = % = — k2
d
Group velocity: ¢, = % = —3k*

Thus, wave packets (and energy) move faster (to the left) than
the individual waves.



Linear Dispersion on the Line

ou  Ou

9t O3 u(0,7) = f(x)



Linear Dispersion on the Line
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Fourier transform solution:

u(0,z) = f(z)

u(t,x) =



Linear Dispersion on the Line

ou  Ou
9% 928 u(0,z) = f()
Fourier transform solution:
1 0 ,
u(t,zr;) _ / f(k) 61(k:a:+l<;3t) dk
2m J—o0
Fundamental solution u(0,2) = d(x)

1 0 . 3 1 x
i(kx+k°t) :
u(t,af;)—2 /_ e dk = ey A1< )









Linear Dispersion on the Line
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u(0,z) = f(z)




Linear Dispersion on the Line

ou  du
5% 9.3 w(0,z) = f(x)
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0 0
Step function initial data: w(0,z) = o(x) = { 1’ z i 0’



Linear Dispersion on the Line
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Step function initial data: w(0,z) = o(x) = { 1» z i 0,
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Periodic Linear Dispersion

ou_ o
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du du d%u 0u



Periodic Linear Dispersion
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ou ou 0%u 0%u
Step function initial data:
0, x<0,
u(0,z) =o(x) = { >0



Periodic Linear Dispersion
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Step function initial data:
0, x<0,
u(0,z) =o(x) = { >0

sin((2j+ 1)z — (25 +1)%¢t)
275 +1 '
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Theorem. At rational time ¢ = mwp/q, the solution u* (¢, )
is constant on every subinterval 7j/q < = < 7w(j + 1)/q.
At irrational time w*(¢,x) is a non-differentiable continuous
function.



Lemma.

o0
f(:l?) ~ Z Ckelkx
k=—oc0

is piecewise constant on intervals pm/q < x < (p + 1)7/q if
and only if
where

k

¢, = e k20 mod 2q.

ig(e~imk/a—1)
—> DFT



The Fourier coefficients of the solution u*(¢,z) at rational time
t =mp/q are

e = by (7 g) = b, (0) el Fe=Fmp/a),

where
—i/(mk), k odd,
0, 0 # k even.

Crucial observation:
if k=1 mod 2¢q, then k°=1[° mod 2¢

and so
pike—k’mp/q) _ ,i(la—1np/q)



Theorem. At rational time ¢ = 7p/q, the fundamental
solution to the initial-boundary value problem is a linear
combination of finitely many delta functions.



Theorem. At rational time ¢ = 7p/q, the fundamental
solution to the initial-boundary value problem is a linear
combination of finitely many delta functions.

Corollary. At rational time, any solution profile u(wp/q, x)
to the periodic initial-boundary value problem depends
on only finitely many values of the initial data, namely
u(0,z;) = f(z;) where z; = wj/qforj =0,...,2¢q — 1
when p is odd, or T; = 2wj/q for 7 =0,...,g — 1 when p is
even.



* x The same phenomenon appears in any linearly dispersive
equation with “integral” dispersion relation:

w(k)= > ¢ k™
m=0

where

c,./c, €Q



Linear Schrodinger Equation

. Ou  0%u
i—=—
ot Ox?
Dispersion relation: w = k?
. w
Phase velocity: ¢, = = k
dw
Group velocity: ¢ = —2k

g:%_



Periodic Linear Schrodinger Equation

u_ ot
Yot T 0x2
du du 0%u 0u
U(t, O) - U’(ta 27T) % (tv 0) - % (ta 27T) W (ta O) = w (ta 27T)

e Michael Berry, et. al.

e Oskolkov

e Michael Taylor

e Fulling, Guntirk

e Kapitanski, Rodnianski

“Does a quantum particle know the time?”



William Henry Fox Talbot (1800—-1877)




* Talbot’s 1835 image of a latticed window in Lacock Abbey

—> oldest photographic negative in existence.



The Talbot Effect

Fresnel diffraction by periodic gratings (1836)

“It was very curtous to observe that though the grating was
greatly out of the focus of the lens ... the appearance of
the bands was perfectly distinct and well defined ... the
experiments are communicated in the hope that they may
prove interesting to the cultivators of optical science.”

— Fox Talbot

—> Lord Rayleigh calculates the Talbot distance (1881)



The Quantized /Fractal Talbot Effect
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Optical experiments — Berry & Klein

Diffraction of matter waves (helium attoms) — Nowak et. al.



Quantum Revival

e Electrons in potassium ions — Yeazell & Stroud

e Vibrations of bromine molecules —
Vrakking, Villeneuve, Stolow



Periodic Schrodinger Equation

k=—oc0

i Ou _ @
ot 0x?
u(t,0) = u(t,2m) % (t,0) = % (t,2m) % (¢,0) = % (t,2m)
Integrated fundamental solution:
u(t,r) = % » i ei(kjk%)

* For x/t € Q, this is known as a Gauss (or, more generally,
Weyl) sum, of importance in number theory

—> Hardy, Littlewood, Weil, I. Vinogradov, etc.



Integrated fundamental solution:
1 o0 el (k x+k>t)

2 k

k=—o0

u(t,x) = —
2T
0#

Theorem.

e The fundamental solution du/dx is a Jacobi theta function.
At rational times t = pm/q, it linear combination of delta

functions concentrated at rational nodes z; = 7j/q.

e At irrational times t, the integrated fundamental solution is a
continuous but nowhere differentiable function.
(The fractal dimension of its graph is 2.)



Schrodinger Carpet



Future Directions

Other boundary conditions (Fokas/Bona)
Higher space dimensions and other domains (e.g., tori, spheres)
Numerical solution techniques?

Dispersive nonlinear partial differential equations:
periodic Korteweg—deVries — Zabusky & Kruskal

Experimental verification in dispersive media?



