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The Distance Histogram

Definition. The distance histogram of a finite set of
points P = {z,...,2,} C V is the function

np(r) =#{ (5,5 | 1<i<j<n, dz,z)=r}.



The Distance Set

The support of the histogram function,
supp Np = Ap C RT
is the distance set of P.

Erdos’ distinct distances conjecture (1946):

If PCR™, then #Ap >c¢,, _(#P)*/m ¢



Characterization of Point Sets

Note: If P = ¢ - P is obtained from P € R™ by a
rigid motion g € E(n), then they have the same
distance histogram: np = 13.

Question: Can one uniquely characterize, up to rigid
motion, a set of points P{z,...,2, } C R™ by its
distance histogram?

—> Tinkertoy problem.



Yes:

n=1,1,1, 1, V2, v2.



No:

Kite Trapezoid

=

n=+2 V2, 2 110, V10, 4.




No:

P=1{0,1,4,10,12,17}
Q=1{0,1,8,11,13,17}

C R

n=12,3,4,5,6,7,8,9,10,11,12, 13,16, 17

—> G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379



Theorem. (Boutin—-Kemper) Suppose n < 3orn > m + 2.
Then there is a Zariski dense open subset in the space of n
point configurations in R™ that are uniquely characterized,
up to rigid motion, by their distance histograms.

—> M. Boutin, G. Kemper, Adv. Appl. Math. 32 (2004) 709-735



Limiting Curve Histogram
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Sample Point Histograms

Cumulative distance histogram: n = #P:

Ap(r) __+—§<:77P 1 {(z’,j)‘d(z ZJ)<7“}7
Note
n(r) = %nQ[AP(T) —Ap(r—9)] <1

Local distance histogram:
1 , 1
Ap(r,2) =~ # {j| d(z,2) <r}= ~ #(P N B,(2))
Ball of radius r centered at z:
B.(z) ={veV|dvz)<r}

Note:
Y A2 = X #(P N B,(2))

zEP ze P



Limiting Curve Histogram Functions

Length of a curve

l(C):/C ds < oo

Local curve distance histogram function 2z€V

R CLEC)

— The fraction of the curve contained in the ball of radius r
centered at z.

Global curve distance histogram function:

H(r) = ﬁ/ghc(r,z(s))ds.



Convergence

Theorem. Let C' be a regular plane curve. Then, for both
uniformly spaced and randomly chosen sample points
P C C, the cumulative local and global histograms converge
to their continuous counterparts:

)‘P(TVZ) - hC(Taz)v AP(T) - HC(T)a

as the number of sample points goes to infinity.



Square Curve Histogram with Bounds




Kite and Trapezoid Curve Histograms
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Histogram—Based Shape Recognition
500 sample points

1 x 3 rectangle 31.8 36.7 83.7 595.7 4.0 46.5

Shape (a) () (¢) (d) (e) (f)
(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8
(b) square 28.2 5 81.2 73.6 34.8 72.1
(c) circle 66.9 79.6 D 137.0 89.2 138.0
(d) 2 x 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9
(
(

)
) star 81.0 74.3 139.0 9.3 60.5 9



Curve Histogram Conjecture

Two sufficiently regular plane curves C
and C have identical global distance
histogram functions, so H-(r) = Hx(r)
forallr > 0, if and only if they are

~

rigidly equivalent: C' ~ C.



“Proof Strategies”

e Show that any polygon obtained from (densely) discretizing a
curve does not lie in the Boutin—Kemper exceptional set.

e Polygons with obtuse angles: taking r small, one can recover
(i) the set of angles and (iz) the shortest side length from
H,(r). Further increasing r leads to further geometric
information about the polygon ...

e Expand H,(r) in a Taylor series at r = 0 and show that the
corresponding integral invariants characterize the curve.



Taylor Expansions

Local distance histogram function:

Lhy(r,z) = 27“—}—%/427“3—1— <4—10/£l<,88—|—%/£§—|—%l€4> 4 -

Global distance histogram function:

H _2r r’ 2 ro 3,4 1,2
o(r) = 7 +12L2 7{0/1 cls—|—40L2 %C (g/ﬁl —§Hs)d8—|—




Space Curves

Saddle curve:
2(t) = (cost,sint,cos2t), 0<t <27,

Convergence of global curve distance histogram function:
10} -
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Surfaces

Local and global surface distance histogram functions:

hy(r, 2) = area (S N B,.(2)) Hy(r) // hy(r, 2)

area (9) ’ ~ area (

Convergence for sphere:
10}

0.8 -




Area Histograms

Rewrite global curve distance histogram function:
1 1 / /
Ho(r) = 7 §, ho(rz(s)ds = = ¢ ¢ x,(d(2(s), (")) ds ds
t<r,

1
where  x,.(t) = { T

0, t>r,
Global curve area histogram function
1
Ac(r) = 75 7{} 72 72 X, (area (2(3), 2(3), 2(3")) d3 d3' d3",

ds — equi-affine arc length element L = /C ds

Discrete cumulative area histogram

— 1 / /!
AP(T) - n(n . 1)(n L 2) Z;’éz/;l/EPXr(area (Z7 Z & ))7

Boutin & Kemper: the area histogram uniquely determines
generic point sets P C R? up to equi-affine motion



Area Histogram for Circle
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Triangle Distance Histograms

Z =(..z;...) C M — sample points on a subset M C R"
(curve, surface, etc.)

T, ~— triangle with vertices z;, z;, ;.
Side lengths:
U(Tz‘,j,kz) = (d(ziazj)ad(zia Zk)7d(zjvzk;))
Discrete triangle histogram:
S=0(T)CK
Triangle inequality cone

K={(z,9,2)| 2,4,2>0, 24+y>2, x+2>y, y+z>z} CR3



Triangle Histogram Distributions

Circle Triangle Square

—> Madeleine Kotzagiannidis



Practical Object Recognition

Scale-invariant feature transform (SIFT) (Lowe)
Shape contexts (Belongie-Malik—Puzicha)
Integral invariants (Krim, Kogan, Yezzi, Pottman, ...)

Shape distributions (Osada-Funkhouser—Chazelle-Dobkin)
Surfaces: distances, angles, areas, volumes, etc.

Gromov—Hausdorff and Gromov-Wasserstein distances (Mémoli)
—> lower bounds



Definition. The signature curve S C R? of a curve C C R? is

parametrized by the two lowest order differential invariants

{(-5)) e v

—> One can recover the signature curve from the Taylor

expansion of the local distance histogram function.



Other Signatures

Euclidean space curves: C C R3

S={(k,n,7)} C R’

e K — curvature, 7 — torsion

Euclidean surfaces: S C R? (generic)

S={(H,K,H, Hy, K, K,)} c R

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R3 (generic)
s={(P,P,,Py,,P;,)} C R

e P — Pick invariant




Equivalence and Signature Curves

Theorem. Two regular curves C and C are equivalent:
C=gqg-C
if and only if their signature curves are identical:

S=S8

—> object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group
Gy={glg-NCN}

of a nonsingular submanifold N C M equals the

codimension of its signature:

dimG,y = dim N —dim



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

LN:min{#E_l{w}‘ w € }

— Self-intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ¢ .

—> Approximate symmetries



The Index






Nut 1 Nut 2

600
750

550 I_/f\
700
500
Closeness: 0.137673
450
400 500 400 50

650

0
Signature Curve Nut 1 Signature Curve Nut 2
0.01 0.01
0.005 0.005
0 0

/11 Z0.005 11 _0.005

—-0.01 -0.01




Hook 1 Nut 1

750
1000

900 700

800 650
Closeness: 0.031217

700

200 400 500

Signature Curve Hook 1 Signature Curve Nut 1

0.01

0.005

—-0.005

-0.01

-0.015
-0.05




Signature Metrics

Hausdorft

Monge—-Kantorovich transport
Electrostatic repulsion

Latent semantic analysis (Shakiban)
Histograms (Kemper—Boutin)
Diffusion metric

Gromov—Hausdorff
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The Baffler Jigsaw Puzzle
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The BafHer Solved




Advantages of the Signature Curve

Purely local — no ambiguities
Symmetries and approximate symmetries

Extends to surfaces and higher dimensional
submanifolds

Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to

dependence on high order derivatives.



*x Use lower order invariants to construct a signature:

e joint invariants
e joint differential invariants
e integral invariants

e topological invariants



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M X --- x M:

I(g-2yy--,9 - 2) = I(zg,...,2)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z,..., 2, € N on the submanifold:

I(g-z%n),...,g-z,gn)) — I(z%n),...,z,(fn))




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;, Zj) = || z; — Zj |

e

(/



Joint Equi—Affine Invariants

Theorem. Every planar joint equi—affine invariant is
a function of the triangular areas

[i 5 k] =3 (2—2) A (2 — 2)



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

AB

[zivzjvzkzvzlvzm] — N

v



e Three—point projective joint differential invariant
— tangent triangle ratio:

[(020][011][122]

[(010][121][022]




Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional
submanifold, then you need at least

C>kp

distinct invariants I;,...,I, in order to construct a syzygy.

Typically, the number of joint invariants is
¢ =km —r = (#points) (dim M) — dim G

Therefore, a purely joint invariant signature requires at least

k > +1

m—p
points on our p-dimensional submanifold N C M.



Joint Euclidean Signature




Joint signature map:

:C** — ScR°
a=|z —z| b=|zy— 2| c= 2 — 2|

d= |z — 25| e=| 2 — 2] f =12z — 2|

— six functions of four variables
Syzygies: ®,(a,b,c,d,e, f) =0 P,(a,b,c,d,e, f) =0

Universal Cayley-Menger syzygy <= C C R?
2 a? a’ +b%—d? a?®+c? — é?
det [a® + b2 — d? 252 b +c2—f2|=0
a’+c?—e® b2+ c?— f? 2 c?



Joint Equi—Afline Signature

Requires 7 triangular areas:

(012],[013],[014],[015],[023],[024], [025]




Joint Invariant Signatures

The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

Identification of landmarks can significantly reduce the
redundancies (Boutin)

It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”

Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by
increasingly dense point clouds obtained by multiply
sampling the original submanifold.

e The equivalence problem requires direct comparison of
signature point clouds.

e Continuous symmetry detection relies on determining the
underlying dimension of the signature point clouds.

e Discrete symmetry detection relies on determining densities of
the signature point clouds.



