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Given a transformation group acting on a space, determine when two 
subsets can be mapped to each other by a transformation in the group.

The Basic Equivalence Problem

A symmetry of a subset is a self-equivalence.

Symmetry



Rigid equivalence

When are two shapes related by a rigid motion?

?



Scaling (similarity) equivalence



Projective and Equiaffine Equivalence



Transformation groups

Projective Transformation



Transformation groups

Projective Transformation



Projective transformations in art and photography

Albrecht Durer  — 1500



Tennis, anyone?

Projective or equi-affine equivalence & symmetry

?



Duck = Rabbit?



Limitations of Projective Equivalence

=⇒ K. Åström (1995)
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Fig. 4 
(Si) yare placed around CO in the case m = 4. The curve rj is projected into 
an almost circular curve nj(rj) with a small ripple around Pj. This is illus- 
trated in the right figure. 

The left figure illustrates how the points (P,) :and the closed regions 

around P, smaller but at the same time the contractive properties of 
the inverse transformation on a region like U,,, S, is increased, cf. the 
discussion after (1 1). By the construction in the proof of Theorem 1 it 
is thus possible to select a transformation n,, and also to cut each 
curve r’ into two pieces r,,local, and r,,,,,, so that the following prop- 
erties are obtained: 

~, ( r ’ . l oco / )  = U, #, S, 
n,(r,,rev) c S, 
d(qr,),C,,) < 1 1 m. 
l(Z,(r, ,,,*)) < 3 1 m. 
q, = n,-’ shrinks all curves in U, +, S, of arclength less than 
a constant M = 3n + 2 into a curve with arclength less than 
d2. The reason for the choice of constant will become 
clear later. 

Let C be constructed by gluing the patches nj(rj,,,,s,) and the line 
segments obtained by radially connecting the endpoints of nj(rj,re,J 
Both C \ nj(rj.rcsr) and nf(rj./ocoJ are in U i  Si. Since C is a patch of 
m curves each with arclength less than 3 n lm, and of m radial line 
segments of length less than 2/m, the total arclength of C \ nj(T;,rpsr) is 
certainly less than M = 3x + 2. By the contractive properties of qj, 
this means that l(qj(C \ zj(rj,re.J)) < d2. The curve nj(rj,/oco/) also has 
arclength less than M, so l(r,,,,,,,)) < d2. Since these curves have the 
same endpoints, it follows that 

The remaining part of C is nj(rj,re.vr), which is mapped identically into 

Notice that the transformations qj are physically realisable in the 
pinhole camera model. The construction of C and qi in the proof can 
be done by explicit formulas. An algorithm based on the proof has 
been implemented in MATLAB. Fig. 3. has been constructed using 
this algorithm. Fig. 5. shows what the mixed curve C looks like from 
eight different viewpoints. Observe that these eight different views 
are all projectively equivalent. Notice the kind of extreme, but non- 
singular, projective transformations that are involved. 

rj,rtw by 4,. Hence d(qj(C),r,) < E. 

IV. IMPLICATIONS FOR INVARIANTS 
By an invariant under a set of transformations P on @ is meant a 

function $ on & with values in some set V such that $(C) = $@(C)) 
for every curve C E @ and every transformation p E P. If @ and V 
are metric spaces, we can talk about continuity of invariants. 

One consequence of Theorem 1 is that in every neighbourhood of 
the circle Ne,c8, = (C  I d(C,C,,) < E), $ attains every value that it at- 

__ 

tains on g. In particular if c$ is non-constant on 2, this means that c$ 
is discontinuous at Co. 

This is however not a very useful observation. Discontinuities of 
this kind appear for many of the most valuable invariants. For in- 
stance whenever the group of transformations contains the similarity 
group, each object can be contracted into an €-neighbourhood of the 
origin, where thus @ attains all its values and becomes discontinuous. 
Thus e.g. even the crossratio has discontinuities in this sense, which 

Fig. 5.  Eight projectively equivalent views of the same planar curve. The duck 
transforms into something that looks like a circle and then into a rabbit. A 
closer look at the fourth curve reveals that the north and south pole is slightly 
rippled, see the magnifications. 

tells us that the property of having a discontinuity at one point is not 
very informative. 

More interesting conclusions about invariants can be obtained 
from Theorem 3. 

CorolrcUy 4: Every projective invariant + from @ to a metric 
space V, e.g. the real line, maps all curves at which it is continuous 
onto the same value. 

Proof: 
Assume to the contrary that r l  = $(I-,) # r, = ~ r 2 ) ,  and that 4 is 

continuous both at rl and r2. It is possible to find disjoint open sets 
0, 3 r ,  and O2 3 r2. According to Theorem 3 the inverse images $’ (0,) and @‘ (O,), which are open sets around TI and r,, contain a 
projectively equivalent pair of curves, contradicting the assumption. 

a 

V. CONCLUSIONS 

Corollary 4 tells that for invariants the properties of being con- 
tinuous and discriminating are contradictory. Notice that the theorem 
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Thatcher Illusion

=⇒ Groupoid equivalence?



Thatcher Illusion

=⇒ Groupoid equivalence?



Thatcher Illusion

=⇒ Groupoid equivalence?Local equivalence and symmetry  — groupoids?



Local equivalence of puzzle pieces



Local equivalence of puzzle pieces





















The key to understanding and solving 
an equivalence problem lies in the invariants 

For Cartan, the differential invariants are fundamental. 



Differential Invariants

Given a submanifold (curve, surface, . . . )

S ⊂ M

a differential invariant is an invariant of the prolonged
action of G on its derivatives (jets):

I(g · z(k)) = I(z(k))



Curvature

r = 1/κ

Curvature  =   reciprocal of radius of osculating circle





“... the theory of differential invariants is to the theory of curvature
as projective geometry is to elementary geometry.”

—Poincaré



Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc
length element ds is an invariant differential operator,
meaning that it maps differential invariants to differential
invariants.

Thus, starting with curvature κ, we can generate an infinite
collection of higher order Euclidean differential invariants:

κ,
dκ

ds
,

d2κ

ds2
,

d3κ

ds3
, · · ·

Theorem. All Euclidean differential invariants are functions of
the derivatives of curvature with respect to arc length:
κ, κs, κss, · · ·
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Euclidean Plane Curves: G = SE(2)

Assume the curve C ⊂ M is a graph: y = u(x)

Differential invariants:

κ =
uxx

(1 + u2
x)

3/2
,

dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3
,

d2κ

ds2
= · · ·

Arc length (invariant one-form):

ds =
√
1 + u2

x dx,
d

ds
=

1
√
1 + u2

x

d

dx



Equi-affine Plane Curves: G = SA(2) = SL(2)! R2

Equi-affine curvature:

κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

dκ

ds
= · · ·

Equi-affine arc length:

ds = 3

√
uxx dx

d

ds
=

1
3
√
uxx

d

dx

Theorem. All equi-affine differential invariants are functions
of the derivatives of equi-affine curvature with respect to
equi-affine arc length: κ, κs, κss, · · ·



Projective Plane Curves: G = PSL(2)

Projective curvature:

κ = K(u(7), · · · )
dκ

ds
= · · ·

d2κ

ds2
= · · ·

Projective arc length:

ds = L(u(5), · · · ) dx
d

ds
=

1

L

d

dx

Theorem. All projective differential invariants are functions
of the derivatives of projective curvature with respect to
projective arc length:

κ, κs, κss, · · ·



Euclidean Space Curves C ⊂ R3

• κ — curvature: order = 2

• τ — torsion: order = 3

• κs, τs,κss, . . . — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C ⊂ R3 can be written

I = H(κ, τ,κs, τs,κss, . . . )

Thus, κ and τ generate the differential invariants of
space curves under the Euclidean group.



Euclidean Surfaces S ⊂ R3

• H = 1
2 (κ1 + κ2) — mean curvature: order = 2

• K = κ1 κ2 — Gauss curvature: order = 2

• D1H,D2H,D1K,D2K,D2
1H, . . . — derivatives

with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S ⊂ R3 can be written

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

Thus, H,K generate the differential invariant algebra
of (generic) Euclidean surfaces.



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for suitably
non-degenerate surfaces is generated by only the mean curvature
through invariant differentiation.

In particular:

K = Φ(H,D1H,D2H, . . . )



The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , Iℓ

and p = dimS invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1Dj2 · · · DjnIκ.

⋆ Lie groups: Lie, Ovsiannikov, Fels–PJO

⋆ Lie pseudo-groups: Tresse, Kumpera,

Pohjanpelto–PJO, Kruglikov–Lychagin



Themathematical theory is all basedon the
equivariantmethodofmoving frames (Fels+PJO, 1999) 
whichprovides a systematic andalgorithmic calculus for
constructing complete systemsof differential invariants,
joint invariants, joint differential invariants,
invariant differential operators, invariant differential
forms, invariant variational problems, invariant
conservation laws, invariant numerical algorithms,
invariant signatures, etc., etc.

Moving Frames



Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx



However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are (locally) equivalent
if and only if they have identical syzygies among
all their differential invariants.

Proof : Cartan’s technique of the graph:
Construct the graph of the equivalence map as the solu-
tion to a (Frobenius) integrable differential system, which
can be integrated by solving ordinary differential equations.



Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of
differential invariants and hence an infinite
number of syzygies must be compared to
establish equivalence.

♥ But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!



Example — Plane Curves
If non-constant, both κ and κs depend on a single

parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!







Signature Curves
Definition. Given an (ordinary) planar action of a Lie group
G, the signature curve Σ ⊂ R2 of a plane curve C ⊂ R2 is
parametrized by the two lowest order differential invariants

χ : C −→ Σ =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are (locally) equivalent:

C = g · C

if and only if their signature curves are identical:

Σ = Σ

=⇒ regular: (κs,κss) ≠ 0.
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Diagnosing breast tumors

Benign   — cyst Malignant   — cancerous

Anna Grim, Cheri Shakiban



A BENIGN TUMOR

Contour Signature Curve



A MALIGNANT TUMOR

Contour Signature Curve



3DDifferential Invariant Signatures

Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant











Reassembly of 
Broken Objects





The Baffler Nonagon



The Baffler Nonagon  — Solved

Dan Hoff





Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.

Automatic puzzle reassembly

Step 3. Put them together, if they fit, as closely as possible.
Repeat steps 1–3 until puzzle is assembled….

Step 0. Digitally photograph and smooth the puzzle pieces.



Localization of Signatures

Generalized vertex: κs ≡ 0
=⇒ critical point; circular arc; straight line segment

Bivertex arc: κs ≠ 0 everywhere
except κs = 0 at the two endpoints

Localization of Signatures

Generalized vertex: κs ≡ 0
=⇒ critical point; circular arc; straight line segment

Bivertex arc: κs ≠ 0 everywhere
except κs = 0 at the two endpoints

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs

Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



Bivertex Decomposition
v-regular curve — finitely many generalized vertices

C =
m⋃

j=1
Bj ∪

n⋃

k=1
Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176–185.



Signature Metrics

Used to compare signatures:

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic/gravitational attraction

• Latent semantic analysis

• Histograms

• Geodesic distance

• Diffusion metric

• Gromov–Hausdorff & Gromov–Wasserstein



Gravitational/Electrostatic Attraction

⋆ Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

⋆ In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Gravitational/Electrostatic Attraction

⋆ Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

⋆ In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Piece Locking

⋆ ⋆ Minimize force and torque based on gravitational
attraction of the two matching edges.





Putting Humpty Dumpty Together Again

Anna Grim, Ryan Slechta, Tim O’Connor, Rob Thompson, Cheri Shakiban, PJO



A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)



Assembly of Synthetic Ellipsoidal Puzzle

• Uses curvature and torsion invariants



An egg piece



All the king’s horses and men



The elephant bird of Madagascar

more than 3 meters tall

extinct by the 1700’s

one egg could make about 160 omelets

(Image from wikipedia.org)

http://wikipedia.org/


The elephant bird of Madagascar

pictured egg is 70% complete

complete egg recently sold for $100,000

(Image from Tennant’s Auctioneers)



Puzzles in archaeology



Puzzles in archaeology



Puzzles in surgery





AMAAZE
Anthropological and Mathematical Analysis of 

Archaeological and Zooarchaeological Evidence
https://amaaze.umn.edu





Katrina Yezzi-Woodley

Undergrad Students

Owen Cody

David Floeder
Thomas Huffstutler

Jiafeng Li
Riley O'Neill
Meredith Shipp

Chloe Siewart
Alexander Terwilliger 

Jacob Theis

Pedro Angulo-Umaña

Jacob Elafandi
Bo Hessburg

Jeff Calder

Grad Students

Cora Brown

Carter Chain
Annie Melton

Samantha Porter

The AMAAZE Broken Bones Team

Cheri Shakiban Reed Coil
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Breaking Bones

Carnivore Hominin

Rock fall

Batting

Hammerstone and 
anvil

Crocuta crocuta = 
hyena

Hammerstone only

Geological
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Working Hypothesis

The geometry of the bone fragments,
their identity (taxon and element),

and how they are reassembled 
can tell us the actor of breakage
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Broken Bone Fragments
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Segmentation



Bone Fragment Segmentation using
Semi-supervised Graph-based Poisson Learning

David Floeder



David Floeder



David Floeder



David Floeder



Reassembly  (Refit)



Reassembly  (Refit)



Gradient descent on SE(3) using an objective function
based on segmented break edges and surface normals

Riley O'Neill



Thanks for your attention!


