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Moving Frames

Classical contributions:

G. Darboux, E. Cotton, E. Cartan

Modern contributions:

P. Griffiths, M. Green, G. Jensen

“I did not quite understand how he [Cartan]| does this in
general, though in the examples he gives the procedure
is clear.”

“Nevertheless, I must admit I found the book, like most of
Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598-601
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Applications of Moving Frames

Differential geometry
Equivalence
Symmetry
Differential invariants
Rigidity
Joint Invariants and Semi-Differential Invariants
Invariant differential forms and tensors
Identities and syzygies
Classical invariant theory
Computer vision
o object recognition
o symmetry detection
Invariant numerical methods
Poisson geometry & solitons

Lie pseudogroups

mx 4




The Basic Equivalence Problem

M — smooth m-dimensional manifold.

(G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group

Equivalence:

Determine when two n-dimensional submanifolds

N and N c M

are congruent:

N=g-N for ge G

Symmetry:
Self-equivalence or self-congruence:

N=g-N
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Classical Geometry

Equivalence Problem: Determine whether or not two given
submanifolds N and N are congruent under a group
transformation: N =g¢g-N.

Symmetry Problem: Given a submanifold NV, find all its
symmetries (belonging to the group).

Fuclidean group — G = SE(n) or E(n)
= isometries of Euclidean space
= translations, rotations (& reflections)

(R € SO(n) or O(n)

z— R-z+a { a€R"
| z € R"
e Fqui-affine group: G = SA(n)
R € SL(n) — area-preserving
o Affine group: G = A(n)
R € GL(n)
e Projective group: G = PSL(n)

acting on RP"~1

—> Applications in computer vision

mx 6




Classical Invariant Theory
Binary form:

k=0

Equivalence of polynomials (binary forms):

Q) = Ga+or @ () g (2 F)eare)

= multiplier representation of GL(2)
= modular forms

Transformation group:

g: (z,u) (

ax + 3 u )
yr+48 " (yr+ )"

Equivalence of functions <= equivalence of graphs

N ={(z,u) = (z,Q(x)) } C C*
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Moving Frames

Definition.

A moving frame is a G-equivariant map

p: M —G
Equivariance:
g-p(z) left moving frame
plg-2) = . . .
p(z) g right moving frame

pleft(z) = Pm'ght(z) !
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The Main Result

Theorem. A moving frame exists in a neighborhood of a
point z € M if and only if G acts freely and regularly
near z.

G,={glg-z2=2} — Isotropy subgroup

e free — the only group element g € G which fixes one point
z € M is the identity:
—> G, ={e} forall ze M.

e locally free — the orbits all have the same dimension as G:
—> (G, is a discrete subgroup of G.

e regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once
% irrational flow on the torus
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Theorem. A moving frame exists in a neighborhood of a
point z € M if and only if G acts freely and regularly near z.

Necessity: Let z € M.
Let p: M — G be a left moving frame.

Freeness: If g € G, so g-z = z, then by left equivariance:
p(z) =p(g-2) =g p(2).
Therefore g = e, and hence G, = {e} for all z € M.

Regularity:  Suppose

2, =, 2 — % as n — oo
By continuity,

p(2,) = P9y - 2) = gy - p(2) — p(2)

Hence g, — e in G.

Sufficiency: By construction — “normalization”.

Q.E.D.

mx 10




Isotropy

Isotropy subgroup for z € M:

G,={g9|g- 2=z}

free — the only group element g € G which fixes one point
z S M is the identity:
G, ={e} for all z € M.

locally free — the orbits all have the same dimension as G-
G, is a discrete subgroup of G.

regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once
( % irrational flow on the torus)

effective — the only group element g € GG which fixes every
point z € M is the identity: g - z = z for all z € M iff
g=e¢€:
Gy= N G, ={e}

zeM

mx 11




Geometrical Construction

Normalization = choice of cross-section to the group orbits

K

K — cross-section to the group orbits

O, — orbit through z € M

k € K N O, — unique point in the intersection
e k is the canonical form of z

e the (nonconstant) coordinates of k are the fundamental
invariants

g € G — unique group element mapping k to z
—> freeness

p(z) =g left moving frame p(h-z) =h- p(z)

k=0 (2) 2 = pragne(2) - 2
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Construction of Moving Frames

r=dmG < m=dmM

Coordinate cross-section

K={z=c¢, ... ,2,=c¢,.}

left right

w(g,z) =g "'z w(g,2) =g 2

Choose r = dim GG components to normalize:

wq(g,2) = ¢y . w,.(g9,2) =c,

The solution
g=p(2)

is a (local) moving frame.

—> Implicit Function Theorem

mx 13




The Fundamental Invariants

Substituting the moving frame formulae

9= p(2)

into the unnormalized components of w(g, z) produces the
fundamental invariants:

1(2) = w, 1 (p(2),2) oor Ly (2) = w,,(p(2),2)

— These are the coordinates of the canonical form k£ € K.

Theorem. Every invariant I(z) can be (locally) uniquely
written as a function of the
fundamental invariants:

I(z) = H(I,(2),....1, _ (2))

YTm—r
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Invariantization

Definition. The invariantization of a function F': M —

R with respect to a right moving frame p is the the
invariant function I = ((F") defined by I(z) = F(p(z) - 2).

L F(20y..0,2,,)] = Fley,,...c, Ii(2),..., 1, .(2))

Invariantization amounts to restricting F' to the cross-section
I|K=F|K

and then requiring that I = ¢(F') be constant along the
orbits.

In particular, if I(z) is an invariant, then ¢(I) = I.

Invariantization defines a canonical projection

t: functions +— Invariants
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The Rotation Group
G = S0(2) acting on R?
z=(x,u) — g -z=(xcosh —usinf , rsinf + ucosf)

— Free on M = R?\ {0}

Left moving frame:

1'Z:(yvv)

y = xcost + usinf v=—xsinf +wucosb

w(g,z) =g~

Cross-section
K={u=0, x>0}

Normalization equation

v=—xsinf +wucosf =0

Left moving frame:

6 = tan_lg — 0 =p(x,u) € SO(2)

Fundamental invariant
r=ux)=vVr2+ u?

Invariantization

L F(z,u)] = F(r,0)
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Prolongation

Most interesting group actions (Euclidean, affine, projective,
etc.) are not free!

An effective action can usually be made free by:

e Prolonging to derivatives (jet space)

—

G J(M,p) — J"(M, p)

differential invariants

e Prolonging to Cartesian product actions

G"  Mx---xM—Mx---xM

—> joint invariants

e Prolonging to “multi-space”

a .

—> joint or semi-differential invariants

—

invariant numerical approximations
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Jet Space

e Although in use since the time of Lie and
Darboux, jet space was first formally defined by Ehres-
mann in 1950.

e Jet space is the proper setting for the geometry of partial
differential equations.

M — smooth m-dimensional manifold

I<p<m-—1
JV=J"(M,p) — (extended) jet bundle

—> Defined as the space of equivalence classes of p-
dimensional submanifolds under the equivalence re-
lation of n*" order contact at a single point.

— Can be identified as the space of n'® order Taylor poly-
nomials for submanifolds given as graphs u = f(x)
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Local Coordinates on Jet Space

Jn = J*(M,p) — n*® extended jet bundle for
p-dimensional submanifolds N C M

Local coordinates:
Assume N = {u = f(x)} is a graph (section).
r=(a%,...,2P) — independent variables
u=(u,...,u9) — dependent variables
p+qg=m=dmM
2 = (pu™)y=(... 2" ... ug ...)

u%=du®  0<#J<n

— induced jet coordinates

e No bundle structure assumed on M.

e Projective completion of J”FE when EF — X is a bundle.

mx 19




Prolongation of Group Actions
G — transformation group acting on M

—> ( maps submanifolds to submanifolds
and preserves the order of contact

G — prolonged action of G on the jet space J”

The prolonged group formulae
w™ = (y,v™) = g . z()

are obtained by implicit differentiation:

p . .
dy' =" Pl(g,2")da
J=1 T
— Q=P
Dy] — ; Q;(ng(l)) Daﬂ
’U?; = Dyjl Dyjk ('Ua)

Differential invariant [:J" — R
I(g™ - 2™y = 1(z(™)

—> curvatures
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Freeness

Theorem. If G acts (locally) effectively on M, then G acts
(locally) freely on a dense open subset V" C J" for n > 0.

Definition. N C M is regular at order n if j N C V".

Corollary. Any regular submanifold admits a (local) moving
frame.

Theorem. A submanifold is totally singular, j, N C J*\ V"
for all n, if and only if its symmetry group

Gy=19| g-NCN}

does not act freely on N.
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Moving Frames on Jet Space

(n) . ,(n) iocht
g z rlg
w® = (y,0(") =
(g~ () left

Choose r =dim G jet coordinates

Ziyeny 2y z' or u%
Coordinate cross-section K C J"”
Z1=¢ ... Z.=¢,
Corresponding lifted differential invariants:
Wy, n ., W, yiorvg‘
Normalization Equations
w, (g, z,u™)=¢, ... w(gz,uM)=c,

Solution:

g =p™ M) = p) (g, ™) —> moving frame
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The Fundamental Differential Invariants

[(n)(z(n)) — w™ (p(n)(z(n)), z(”))

Hi(z,u™) =y (o™ (z,u™), z,u)

I (,ut) = v (0" (2, u ™), 2, u™)

Phantom differential invariants

wy=c¢; ... W, =c, — normalizations

Theorem. Every n'" order differential invariant can be
locally uniquely written as a function of the non-phantom

fundamental differential invariants in I,
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Invariant Differentiation

Contact-invariant coframe
. . p . .
dy' W= Y PN (), ) dot
j=1
— arc length element

Invariant differential operators:

p .
D, +— DJ:;Q;(p(n)(z(n)),z(n))Dmi

— arc length derivative
Duality:
dF =Y D,F-u'

Theorem. The higher order differential invariants are
obtained by invariant differentiation with respect to

D,,...,D,.
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Euclidean Curves G = SE(2)

Assume the curve is (locally) a graph:

C={u=f(z)}

Prolong to J? via implicit differentiation

y=cosf(r—a)+sinf (u—>b)
} w=R"1z—-0)
v=—sinf(x —a)+ cosf (u—b)
~ —sin6 +wu, cosd
T Teost + u, siné
v _ u$$
YW (cos® + u,sinf )3
A (cos® +u,sinf)u,  — 3u2_sind
vy (cos® +wu,sinf)°
Normalization r=dimG =3
y =0, v =20, v, = 0
Left moving frame p:J — SE(2)
a =z, b=u, 6 =tan" ! u

x
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Differential invariants

U
Vyy F— K — (1 n 2%)3/2
v —_ — =
yuy ds (1+wu2)3
d’k 3
Yyyyy ds2 3k” =

Invariant one-form — arc length

dy = (cos@ +u,sinf)der +—— ds=,/14+u2 dz

Invariant differential operator

d 1 d d 1 d
- = —_— | — Ei— —_—
dy cost+wu,sind dx ds /14 u? dx

Theorem. All differential invariants are functions of the
derivatives of curvature with respect to arc length:

dk d?k

ds’ ds?’

K,
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Euclidean Curves

Moving frame p: (x,u,u,) — (R,a) € SE(2)

1 1 —u,\ (=
we e 1) == (0)

Frenet frame

dx T, —y,

Frenet equations = Maurer—Cartan equations:

dx de, de,

— =e —— =Ke —f = —Ke
ds 1 ds 2 ds 1
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The Replacement Theorem

Any differential invariant has the form

[ =F(z,u™) = F(y,w™) = FI™)

— T.Y. Thomas
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Equi-affine Curves G = SA(2)

z— Az+Db A € SL(2), b € R?

Prolong to J3 via implicit differentiation

dy = (0 —u,f) dz D, = D

y=0(z—a)=pu—-b)
v=—2(r—a)+ alu—0>)

VT au, Uy
v, = — Vyy = — 7o—2——
VT W= (5= Bu,)?
v _ (5 — ﬁuw)u:ﬁxw + Sﬁuix
w0 )
yyyy (a + 5”:;:)7
Nondegeneracy Uy, =0

—> Straight lines are totally singular
(three-dimensional equi-affine symmetry group)

Normalization r=dimG =25

y:O, U:O, vy:O’ Uyyzl? v = 0.
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Left Moving frame p:J3 — SA(2)

1. —-5/3
—1/3 1..—-5/3
U, Y Up uxa:/ _ §uxa;/ Uprx <ZIZ>
b =z = u

B dz d?z
N ds ds?

€,

€
X
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Frenet frame
B dz d?z

= — e, = ——
ds 2

e
1 ds?

Frenet equations = Maurer—Cartan equations:

dz . de, . de, .
e - = = — = K
ds 1 ds 2 ds 1

Equi-affine arc length
dy +— ds= Ju,, dv=JzAzdt
Invariant differential operator

D, — —= D, = D,

Yy ds 3 x 3/ -
Uy V2N Z

Equi-affine curvature

U, U — 3u?
T " XTAXLXX Trxr _
Vyy +— K WIE =2z, NZzg
rx
dk d*k 52
v — - v — —— — OK
5y s 6y ds2
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Equivalence & Signature

Cartan’s main idea: 'The equivalence and symmetry
properties of submanifolds will be found by restricting the
differential invariants to the submanifold J(x) = I(j,,N|, ).

Equivalent submanifolds should have the same invariants.

However, unless an invariant J(z) is constant, it carries
little information by itself, since the equivalence map will
typically drastically change the dependence of the invariant

on the parameter .

— (Constant curvature submanifolds

However, a functional dependency or syzygy among the

invariants 2s intrinsic:

Jp(x) = ©(J1(2), . -, I (7))
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The Signature Map

Equivalence and symmetry properties of submanifolds are
governed by the functional
dependencies — “syzygies” — among the

differential invariants.

Jp(x) = ©(Jy(2), .-, I (7))

The syzygies are encoded by the signature map
>: N — S

of the submanifold N, which is parametrized by the funda-

mental differential invariants:

Y(x) = (Ji(2), s T ()
=(I,|N, ... , I |N)

The image § = Im ¥ is the signature subset (or submanifold)
of N.

mx 33




Geometrically, the signature

SckK

is the image of j, N in the cross-section K C J", where n > 0

is sufficiently large.

N — jN — S§ScK

Theorem. Two submanifolds are equivalent
N=g-

if and only if their signatures are identical

S

S
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Signature Curves

Definition. The signature curve S C R? of a curve C C R? is
parametrized by the first two differential invariants x and

kg

Theorem. Two curves C and C are equivalent
C=gqg-C
if and only if their signature curves are identical

S=S8

—> object recognition
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Symmetry

Signature map
> N — S

Theorem. Let S denote the signature of the submanifold

N. Then the dimension of its symmetry group G =
{glg-N C N } equals

dimGy = dim N —dimS

Corollary. For a regular submanifold N C M,

0 < dimGy < dimN

= Only totally singular submanifolds can have larger symmetry groups!
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Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

e The submanifold N has a p-dimensional

symmetry group

e The signature S degenerates to a point

dimS =0

HCd

The submanifold has all constant differential invariants

N = H - {%,} is the orbit of a p-dimensional subgroup

—> In Euclidean geometry, these are the circles, straight

lines, spheres & planes.

— In equi-affine plane geometry, these are the conic sec-

tions.
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Discrete Symmetries

Definition. The index of a submanifold N equals the
number of points in N which map to a generic point of

its signature S:

LN:min{#E_l{w}‘ wES}

— Self-intersections

Theorem. The cardinality of the symmetry group of N

equals its index ¢ .

—> Approximate symmetries
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Transformation Groups and Jets

(x%,...,2P) — independent variables
(ul,...,u?) — dependent variables

2" = (z,u™) € J* — n*" order jet space
uG — derivative coordinates on J"

G — transformation group

G™  —  prolonged action on J”

veg — Lie algebra

v(®) e g™ Prolonged inf. gens.

The Prolongation Formula

P 0 n NC,
(n) — i o Gy 2
PR T T

p .
05 =D;Q% + Z 3 u?;z
i—1

Characteristic
Q(au) = o — 3 ¢ I
’ oxt

1=1
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Rotation group — SO(2)

(z,u) — (xcos —usinf, rsinf + ucosb)
Transformed function v = f(y):
y=wxcosh — f(x)sinb,
v=uxsinf + f(z)cosb,
Second prolongation
(x,u,u,,u,,) — (rcosf —usind,xsinf + ucosb,

rx

sinf + u, cos 0 u
cosf —u,sinf’ (cosh — u,sin )3

Infinitesimal generator

vV =-u 2 +T 2
B Ox ou
Second prolongation
0 0 0 0
@2 - _, = = 2y _“2
v Upot T+ (14 uy) o, + 3u,u,, .
Q=z+uu,

p" = D,Q + uy, = Do+ uu,) — utty, =1+ ug

Tx 2 2
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Differential invariant:

1(g™ - (2, u™)) = Iz, u™)
Infinitesimal criterion:

vit(I) =0 for all v e g

— Solve the first order linear partial differential equation by
the method of characteristics.

—> Moving frames avoids integration!
Note: If I, ..., I, are differential invariants, so is ®(1,...,I}).

— Classify differential invariants up to functional indepen-
dence.

— Local results on open subsets of jet space.

mx 41




Theorem. Any transformation group admits a finite

system of fundamental differential invariants
Ji, oo dy
and p invariant differential operators

D,,...,D

p

such that every differential invariant is a function of the
differentiated invariants:
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Classification Problem.

How many fundamental differential invariants J4,...,J, are

required?

— For curves (p = 1), we have ¢ = q.

Syzygy Problem.

Determine the algebraic relations
O(... D J, ... ) =0

among the differentiated invariants.

Commutation Formulae.

The order of invariant differentiation matters
| D, , Dj] = 777

—> Only an issue when p > 1.
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The Fundamental Differential Invariants

I (M) = ) (5 m)=1 . (n)

Hi(z,u™) =y (o™ (z,u™), z,u)

I (z,ut®) = v (o1 (2, u™), 2, u ™)

Recurrence Formulae:

D,H' =68+ M!

DIy = Ik + Mg,

3 « :
M;, M ; —  correction terms

Commutation Formulae:

D
k
[Di7 Dj] — ; Aij Dk:

e The correction terms can be computed directly from the
infinitesimal generators!
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Generating Invariants

Theorem. A generating system of differential invariants
consists of

e all non-phantom differential invariants H* and I* coming
from the un-normalized zero*" order lifted invariants y?,

o

v®, and

e all non-phantom differential invariants of the form 17,
where I§ is a phantom differential invariant.

order < orderp+1

In other words, every other differential invariant can, locally,
be written as a function of the generating invariants and
their invariant derivatives, D H*, DI T

—> Not necessarily a minimal set!

mx 45




Syzygies

A syzygy is a functional relation among
differentiated invariants:

|l
-

H(... D, ...)

Derivatives of syzygies are syzygies
—> find a minimal basis

Remark: There are no syzygies among the normalized differ-
ential invariants I(™ except for the “phantom syzygies”

IV:CV

corresponding to the normalizations.
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Classification of Syzygies

Theorem. All syzygies among the differentiated invariants
are differential consequences of the following three fundamen-
tal types:

D,H' = §i + M!

— H* non-phantom

— Iz generating

— I§ ) = w, = ¢, phantom

(8 8 _ (6% (6%
Dylf i —Dglp; = MLK,J - MLJ,K

— I, I, generating, K NJ =@

—> Not necessarily a minimal system!
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Invariant Variational Problems

I[u]:/L(w,u(”))dX:/P( DI ) w

I,...,1, — fundamental differential invariants
Dy I — differentiated invariants
w=w!A---AwP — contact-invariant volume form

Invariant Euler-Lagrange equations

E(L)=F(... D I* ...)=0

Problem.
Construct F' directly from P.

—> P. Griffiths, I. Anderson
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Example. Planar Euclidean group G = SE(2)

Invariant variational problem

/P(m,ms,mss, ... )ds

Fuler-Lagrange equations

E(L)=F(k,kgKggy ... ) =0

The Elastica (Euler):

2
us, dx

I[u]:/%KQdS:/(1+u%)5/2

Fuler-Lagrange equation

E(L) =k, +3K°> =0

—

elliptic functions
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/P(/’i,/’is,ﬁjss, ... )ds
Invariantized Euler operator
e 0 d
E = —D)" — D=—
nz::O (=D) Ok, ds
Invariantized Hamiltonian operator
. OP
P) = .. (=D)Y) — =P
HP)= 3 ks (DY 5
1> )
Invariant Euler-Lagrange formula
E(L) = (D* + k%) £(P) + s H(P).
Elastica
P =1k’ EP)=r  HP)=-P=-34r°
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Euler-Lagrange Equations

Integration by Parts:

o QP — Fl= QP /d, Qr b

— Source forms

Variational derivative or Euler operator:

§=mody, : ° — F'

Variational Problems ——  Source Forms

q
b:A=Ldx — Y E_|(L)6“Adx

a=1
Hamiltonian
m - 0L
H(L) = ) ug (=D, — — L
a=1 i>;j>0 ous
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The Simplest Example. M =R? z,u€R

Lagrangian form
A= L(z,u™)dzx

Vertical derivative

X\ = dy, A
oL oL oL
— - - o« o Ql’l
<8u9+8ux9$+8um9m+ )/\dsce

Integration by parts

dy (A0) = (D, A)dxNO— A0, Ndx
=—[(D,A) 0+ A0, | Ndx

Variational derivative

L oL ., OL
A = (%_Dwau$+Dwaum_”'>9A dx

=E(L)OA dx e F!
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Plane Curves

Invariant Lagrangian
/ P(k,Kgy,y...)w

x — fundamental differential invariant (curvature)
w = w + n — fully invariant horizontal form
w = ds — contact-invariant arc length

Invariant integration by parts

dy, (Pw)=&(P) dy,k Nw—H(P) d,w

Vertical differentiation formulae
dy, k = A(V) A — Eulerian operator
dyw =B(W) ANw B — Hamiltonian operator

=—> The explicit formulae follow from our fundamental recurrence
formula, based on the infinitesimal generators of the action.

Invariant Euler-Lagrange equation

A*E(P) — B*H(P) =0
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General Framework

Fundamental differential invariants

1 ¢
I ..., 1
Invariant horizontal coframe
wl, Novid

Dual invariant differential operators

Dy, ... ,Dp
Invariant volume form

w=w' A AP
Differentiated invariants

[% =D"J*=D, ---D, J°

—> order is important!
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FEulerian operator

q
dy I* =" AG(07)

=—> m X q matrix of invariant differential operators

B=

1

A= (A3)

Hamaltonian operator complex

) q . . . :
by = X BN A B = (Bl,)
B=1

—> p? row vectors of invariant differential operators

Twist tnvariants

Twisted adjoint

AT AT A

D

[

1

1

(D; + Z3)

A P
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Invariant variational problem

/ PI™) =

Invariant Eulerian

oOP
(P D}
Of( ) %: K ala
Invariant Hamiltonian tensor
. . d oP
H.Y(P)=—P6: +
’ g az:: ZI:( K o1, J,z,K
Invariant Euler-Lagrange equations
p
ATE(P Z (B])TH(P) = 0.
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Euclidean Surfaces

SCcM=R3 coordinates z = (z,y,u)

Group: G = E(3)

z— Rz+a, R € O(3)

Normalization — coordinate cross-section

Left moving frame
a=z R=(t, t,n)

o t,,t, €TSS — Frenet frame

o n — unit normal
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Fundamental differential invariants

k! = v(u,,) K2 = L(uyy)

—> principal curvatures

Frenet coframe
w = u(dat) = w + 7! w? = 1(dx?) = w? +n?
Invariant differential operators

D, D,
— Frenet differentiation

Fundamental Syzygy:
Use the recurrence formula to compare

— (Codazzi equations
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Twisted adjoints

Gauss curvature —  Codazzi equations:

K =r's" = D1T(Z1) + DzT(Zz)
- = (D1 + Zl)Zl - (Dz + Z2)Z2

K is an invariant divergence
— Gauss—Bonnet Theorem!
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Invariant contact form
¥ =(0) = v(du — u, dx — u, dy)

Invariant vertical derivatives

dV K“l - [’(eacx) (D%—l—ZQ D2+ (/{1)2)7‘9

dy, k% = (0 (D3 + Z, D, + (k%)*) ¥

yy>

Eulerian operator

A= D} + Z, Dy + (K')°
D% +7Z, D, + ("‘”132)2

dyw' = —k'"INw + ———(D,D, — Z,D, )9 ANw?,

kKl — K2
1
Hamiltonian operator complex

Bi=—r mi_ 1 pp _gpy—_p
B%:_Kg, 5’2:&1_&2( 172 7 42 1)—_ 1
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Euclidean-invariant variational problem

/ P(k™)w! A w? :/ P(k™) dA

Fuler-Lagrange equations

E(L) = ATEP) - B H(P) =0,

Special case: P(kl, k?)

E(L) = [(D{)?+DJ - Z, + (x")*] % +

oL .
+ (D3 +D - 2+ (+7)?] 5 5 = (' + ) L.

Minimal surfaces: P=1

—(k'+ k) =-2H=0

Minimizing mean curvature: P=H= %(/ﬂl + K?)

% [(Fol)Q + (k*)? = (k' + /£2)2} kK2 =—-K =0.

Willmore surfaces: P =1(k")? 4 L(k?)?

A"+ k%) + 3"+ ) (k' — k*)*=2AH +4(H* - K)H =0

Laplace—Beltrami operator

A= (D1+Z1)D1+(D2+Z2)D2: _DlT‘Dl_DzT‘Dz

mx 61




