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Moving Frames

Classical contributions:
Bartels (~1800), Serret, Frénet, Darboux, Cotton,

Elie Cartan

Modern developments: (1970’s)
Chern, Green, Griffiths, Jensen, ...

The equivariant approach: (1997 — )

PJO, Fels, Mansfield, Mari—Beffa, Kogan, Pohjanpelto,
Kim, Boutin, Lewis, Hubert, Morozov, McLenaghan, Smirnov,
Valiquette, Thompson, Benson, Arnaldsson, Popovych, Bihlo,
Ruddy, Merker, Sabzevari, Z. Chen, ...
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“I did not quite understand how he [Cartan| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598-601



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

(G — transformation group acting on M

e finite-dimensional Lie group
e infinite-dimensional Lie pseudo-group

e finite or discrete group



Equivalence:

Determine when two p-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g-N



Classical Geometry — F. Klein

Euclidean group:

o { SE(m) = SO(m) x R™
B E(m) = O(m) x R™

2 Az + € SO(m) or O(m), e R™, 2zeR™
= isometries: rotations, translations , (reflections)
Equi-affine group: G = SA(m) = SL(m) x R™
€ SL(m) — volume-preserving
Affine group: G =A(m) =GL(m) x R™
€ GL(m)
Projective group: G =PSL(m +1)

acting on R™ C RP™

—> Applications in computer vision



Tennis, Anyone?

* Projective (equi-affine) equivalence and symmetries



Binary form:

Q(x) = ﬁ: (Z) ay, "

k=0

Equivalence of polynomials (binary forms):

Q)= e+ @(2E7) 9= (2 ) ece

v + 0 Y 9

e multiplier representation of GL(2)
e modular forms



Q) = (o -+07 @ (2205

vy + 0

Transformation group:

. o ar + [ U
9: (z,u)! ’<7x+5’ (’yx+5)”>

Equivalence of functions <= equivalence of graphs

Lo ={ (&)= (Q)} cC?



Invariants

The solution to an equivalence problem rests on
understanding its invariants.
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Invariants

The solution to an equivalence problem rests on
understanding its invariants.

o Invariants describe the moduli space of objects
under group transformations.

* If G acts transitively, there are no (non-constant)
invariants — in which case we need to “prolong”
the action to a higher dimensional space.
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Definition.

A moving frame is a G-equivariant map

p: M — G
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Moving Frames

Definition.

A moving frame is a G-equivariant map

p: M — G
Equivariance:
g-p(z) left moving frame
p(g Z) — 1 ) )
p(z)-g right moving frame

-1
pleft(z) - pright(z)




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M it and
only if G acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup of a point z € M:
G.={9lg-z=2}

e free — the only group element ¢ € G which fixes one point
z € M is the identity
—> G, =A{e}forall ze M

° — the orbits all have the same dimension as G
—> G, C @ is discrete for all z € M

e regular — the orbits form a regular foliation
% irrational flow on the torus



Proof of the Main Theorem

Necessity: Let p: M — G be a left moving frame.

Freeness: If g € G,, so g-z = #z, then by left equivariance:
p(z) = plg-z) =g p(2).
Therefore g = e, and hence G, = {e} for all z € M.

Regularity:  Suppose 2z, =g, -2 — 2z as n — oo.

By continuity, p(2,) = p(g, - 2) =g, - p(z) — p(2).
Hence g, — e in G.

Sufficiency: By direct construction — “normalization”.
Q.E.D.



Geometric Construction

Normalization = choice of cross-section to the group orbits
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Geometric Construction

g = pm’ght(z)

NN

K

Normalization = choice of cross-section to the group orbits




K — cross-section to the group orbits

O, — orbit through z € M

k € K N O, — unique point in the intersection
e £k is the canonical form of z

e the (nonconstant) coordinates of k are the fundamental
invariants

g € G — unique group element mapping k to z
—> freeness

p(z) = g left moving frame p(h-2)=h-p(z)

k=p(2) -2 = prgne(2) - 2



Algebraic Construction
—dimG < m=dimM

Coordinate cross-section

K= =@ coa 4. =@, |

group parameters

coordinates on M



Choose " = dim G components to normalize:

wy(g,2)= ¢; w,.(g,2)=c,

Solve for the group parameters ¢ = (¢,,...,7,)
—> Implicit Function Theorem

The solution
= p(2)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(z)

into the unnormalized components of w(¢, z) produces the
fundamental invariants

I(2) = w14(p(2),2) - L, (2) = wy,(p(2),2)

— These are the coordinates of the canonical form k € K.



Completeness of Invariants

Theorem. Every invariant I(z) can be (locally)
uniquely written as a function of the fundamental
invariants:



Invariantization

Definition. The nvariantization of a function
F: M — R with respect to a right moving frame

g = p(2) is the the invariant function I = /(F)
defined by



Invariantization

Definition. The nvariantization of a function
F: M — R with respect to a right moving frame

g = p(2) is the the invariant function I = /(F)
defined by

(1) =cps - z) =cp Uzp0) = L(2), -0 U(z,) = 1, (2).

cross-section variables fundamental invariants
“phantom invariants”

| F(zy,-..,2,,)] = Flcyy...yc,Iy(2),...,1  _ (2))




Invariantization amounts to restricting F' to the cross-
section: I|K = F'| K, and then requiring that
I = /(F) be constant along the orbits.
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I = /(F) be constant along the orbits.
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Invariantization amounts to restricting F' to the cross-
section: I|K = F'| K, and then requiring that
I = /(F) be constant along the orbits.

In particular, if I(z) is an invariant, then /(1) = I.

Replacement Rule:

I(zy,...,2,) = I(c,...,c, 1(2),..., 1 (2))

Invariantization defines a canonical projection

. functions +—— Invariants




The Rotation Group

G = SO(2) acting on R
z=(x,u) —> g-z=(xcoso—usino , xrsinod+ ucoso)

— TFree on M = R?\ {0}

Left moving frame:

1°Z:(yav)

w(g,z) =g~
Yy = T COS & + u sin vV = —xsin o + ucos

Cross-section:

K={u=0, >0}



Normalization equation:

v=—xsino+ucosd =10

Left moving frame:

_1E

= tan — o =p(x,u) € SO(2)

€T
Fundamental invariant:

r=(z) = vz +u?
Invariantization:
| F(z,u)] = F(r,0)
Replacement theorem: if [ is any invariant,
I(z,u) = I(r,0)



Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r=dimG.

Thus, to make the action free, we must increase
the dimension of the space via some natural
prolongation process.



e Prolonging to derivatives (jet space)
G(n) . J"(M,p) — J™(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
elSONN V(O R V()

— joint or semi-differential invariants
—> invariant numerical approximations



e Prolonging to derivatives (jet space)
G . J"(M,p) — J™(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G Mx---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
eSOV (O N Vi ()

— joint or semi-differential invariants
—> invariant numerical approximations



Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) x R?
acts on M = R? via rigid motions: w = 7z +

To obtain the classical (left) moving frame we invert
the group transformations:

= coso(x—a)+sino (u—
y (— a) +sim >} P

v=—sino(xr—a)+cosd(u—>)

Assume for simplicity the curve is (locally) a graph:

C = {u=f(x)}

—> extensions to parametrized curves are straightforward



Prolong the action to J™ via implicit differentiation:

Trax

(u—=1)
(u—=1)

2 .
— 3uz,, sin

y= coso(x—a)—+sin
v=—sino(xr — a)+ cos
—sin ¢ + u,, COS

v, = .

Y cos ¢ + u,, sin
v — uﬂfﬂf
Yo (cosd +u,sino )3
~ (cosd +uysing)u
Yyyy =

(cos

+ u,, sin o )°



Normalization: r=dimG =3

y= coso(x—a)+sino(u—>0)=0
v=—sin)(x—a)+coso(u—>0) =0
. _ —sin +uwf:os — 0
Y coso +u,sin
VU — uﬂffﬁ'
Yo (cosd +u,sino )3
(cos o +u,sin o )u,  — 3u_sin

yvy (cos o +u, sin o )?



Solve for the group parameters:

y= cosd(x—a)+sind(u—>0)=0
v=—sing(x—a)+coso(u—>0) =0
—sin ¢ + u, CoS
v, = , =0
Y cos ¢ + u,, sin
—> Left moving frame p:JI — SE(2)

= = U — tan_l (.



= = U — tan ~u

Differential invariants

Yo (cosd +u,sino )3 (14 u2)3/2
vy ds (1+wu2)3
d’k 3
vyyyy — e e } > dSQ — 3/§ — e e

— recurrence formulae

Contact invariant one-form — arc length

dy = (coso +u,sino)de +—— ds=/1+u2 dx



Dual invariant differential operator
— arc length derivative

d 1 d  d 1 d
dy  cos +u,sino dr - ds M1+ u2 dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to
arc length:

dk d?k

ds’ ds?’

K,



The Classical Picture: T
/I

Moving frame p: (z,u,u,) — ([7,c) € SE(2)

el T)en ()



Frenet frame

dX T i
t:—: S :t —
ds <y8>’ .

|
N
SR
w
[V2)
N~

Frenet equations = Pulled-back Maurer—Cartan forms:
dx ¢ dt dn
ds ds ds

K1, — K t.



Equi-affine Curves

Z— Az -+

Invert for left moving frame:

y=0(x—a)=7(u="0)

G = SA(2)

c SL(2), c R?




Prolongation:

y=o(r—a)-
v=—7(r—a)+
v, =— L%
y — Ju,
_ umm
Uyy B ( o um)3
v L ( T u:c) u
yyy (0 —
Uppaa
Yyyyy -
. _



Normalization:

r=dimG =5

y=0(@=a)=5u=1) =0

v=—7(—a)+a(u—>0) =0
— ru/m_
Yy = T 534 =0
u
Yoy T e )3:1
v _( _ u)uxscsc+3 u:2c:v_0
yyy (_ u)5
X
ummmx( o ua;)2+10 ( o ux)uxxuxxx+15 zuim
Yyyyy = (0 —Bu )7
X
v _



Equi-affine Moving Frame

p: (x7u7ux7u:csc7uxxsc) } ( 9 ) € SA(2)
—1/3 1.-5/3
- - —1/3 1/3 1 —5/3
Uy Uy Uy _§ua:uxx Uprx

()62

Nondegeneracy condition (freeness): U, 7 0.



Equi-affine arc length

dy=(0—fu,)de +— ds= Ju,, dx

rxr

Equi-affine curvature

2
" o = 5 UprUppor — 3 Uy rr
YYyy 5 9 ,8/3
Taxr
dr
Yyyyyy N
d*k 2
L \ R
Uyyyyyy 7 ds2 K

* % recurrence formulae



n
The Classical Picture: ¢
z
~1/3 1, -5/3
_< Uy y /_guazaz u:z:/a::z: >—(t 1’1)
- —1/3 1/3 1 —5/3 - 9
UypUyye Uy _§ua:ua:a: U



Frenet frame

B dz d?z

t=—, n—-—.
ds ds?

Frenet equations = Pulled-back Maurer—Cartan forms:

& _
ds

dt
ds

dn_

n, — =k t.
ds

t,



Inductive and Recursive Methods

Given H C G one can use a recursive method
to construct the moving frame for GG in terms of
the moving frame and differential invariants of H.
The calculations also provide expressions for the G
differential invariants as functions of the H differential
invariants and their invariant derivatives.

Kogan, I.A., Inductive construction of moving frames,
Contemp. Math. 285 (2001), 157-170.

Olver, P.J., Recursive moving frames, Results Math.
60 (2011), 423-452.



Normal Forms

The moving frame normalizations based on a cross-
section in the jet space can be reinterpreted as placing
the submanifold in normal form, meaning that one uses
group transformations to move it to a distinguished
location and then successively normalizes the coeffi-
cients in the associated Taylor expansion. Once these
are fixed, the remaining unnormalized coefficients are
the differential invariants.



Normal Forms

For Euclidean plane curves C C R?, translations are used
to make the curve go through the origin, and then a rotation
makes its tangent horizontal there, producing the

Euclidean normal form

ug(z) =1k + tr,a’ 4+ & (g, +36% ) + -+
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For Euclidean plane curves C C R?, translations are used
to make the curve go through the origin, and then a rotation
makes its tangent horizontal there, producing the

Euclidean normal form
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Similarly, by employing a sequence of equi-affine transformations
one deduces the equi-affine normal form for a plane curve:

1.2, 1 4, 1 5, 1 2\ 6
uo(a:)—§a? + g RT + g R +§(/<;88+5/<; Y 4+ e

where k is equi-affine curvature and ds equi-affine arc length



Normal Forms

For Euclidean plane curves C C R?, translations are used
to make the curve go through the origin, and then a rotation
makes its tangent horizontal there, producing the

Euclidean normal form

ug(z) =1k + tr,a’ 4+ & (g, +36% ) + -+

Similarly, by employing a sequence of equi-affine transformations
one deduces the equi-affine normal form for a plane curve:

1.2, 1 4, 1 5, 1 2\ 6
uo(a:)—§a? + g RT + g R +§(/<;88+5/<; Y 4+ e

where k is equi-affine curvature and ds equi-affine arc length

— The formulas for the coeflicients are differential invariants
and found using the Recurrence Formulae.



The General Set-Up

dim M = p+q — for example M = RP x R?

p = # independent variables z = (!, ..., 2P);

q = # dependent variables u = (ul,..., u).

J' =J"(M,p) — jet space of order n

uG — jet coordinates on J" (representing partial derivatives
of the u’s with respect to the x’s)

G — Lie (pseudo-)group of point transformations acting on M
or of contact transformations on J! when p =1

G — prolonged action of G on J” (implicit differentiation)
(
9

n) prolonged infinitesimal generators



Differential Invariants

A differential invariant is a (locally defined) invariant
function 7: J™ — R for the prolonged (pseudo-)group action

I(g"™ - (w,u™)) = I(z,u™)

—> curvature, torsion, ...

Invariant differential operators:

D,,....,D

. — arc length derivative

e If [ is a differential invariant, so is D;I.

Z(G) — the algebra of differential invariants




The Basis Theorem

Theorem. The differential invariant algebra Z(G) is locally
generated by a finite number of differential invariants

L, ... .1,
and p = dim S invariant differential operators

D, ... ,D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJ]K;:’D.’D. ..D. T

J1 J2 In~ K°

= Lie groups: Lie, Ousiannikov, Fels—O

— Lie pseudo-groups: Tresse, Kumpera, Kruglikov-Lychagin,
Munoz—Muriel-Rodriguez, Pohjanpelto—QO



Key Issues

e Minimal basis of generating invariants: I;,...,1,

e Commutation formulae for

the invariant differential operators:
p .
1
[DjaDk;] — Z ng Di
i=1

Yj’bk, — commutator invariants

—> Non-commutative differential algebra

e Syzygies (functional relations) among

the differentiated invariants:

0

(... D, ...)

—> (Codazzi relations



Recurrence Formulae

* % Invariantization and differentiation do not commaute.

w'=(dr') — invariant horizontal coframe
D,=(D,;) — dual invariant differential operators
v basis for g") (prolonged infinitesimal generators)

Maurer—Cartan invariants



Recurrence Formulae

& If /(F) = cis a phantom differential invariant, then the left
hand side of the recurrence formula is zero. The collection
of all such phantom recurrence formulae form a linear
algebraic system of equations that can be uniquely solved

for the Maurer—Cartan invariants R";!

¢ Once the Maurer-Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations com-

pletely determine the structure of the differential invariant
algebra Z(G)!



The Maurer—Cartan Invariants

Vi, ... V., €g — basis for infinitesimal generators

pt, ... pum€g®  — dual basis of Maurer-Cartan forms

Invariantized Maurer—Cartan forms:
p

K X K — K, ]
V= (p") =) Rjw
J=1
wl, ... wP  — invariant horizontal coframe

R® — Maurer—Cartan invariants



The Universal Recurrence Formula

For any function or differential form €2 on J":

Q) = 1(d) + 3 A A (V@)

k=1
vﬁ”), - ,Vfﬂ”) — basis for prolonged infinitesimal generators
vt ...,y"  — dual invariantized Maurer—Cartan forms

* & The " are uniquely determined by the recurrence
formulae for the phantom differential invariants



Q) = 1(dD) + 32 7 A v, ()]

K =

* % % All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting €2 range over
the basic functions and differential forms!



d () = 1(d2) + 27“: YN v, (Q)]

k=1

* % % All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting €2 range over
the basic functions and differential forms!

% x % Therefore, the entire structure of the differential invari-
ant algebra and invariant variational bicomplex can be
completely determined using only linear differential al-
gebra; this does not require explicit formulas for the
moving frame, the differential invariants, the invariant
differential forms, or the group transformations!



The Commutator Invariants

Explicit formulae:

Vi, =23 RiuD;&) — R7 (Dygy).
k=1

Follows from the recurrence formulae for

dw' = di(de?)] = 1(d*2) + 3 4" A[v, (dz?)]
k=1
=— > Viw Awi4 -
i<k



Generating Differential Invariants

Theorem. (Fels-O) If the moving frame has order n, then the
set of normalized differential invariants of order < n + 1
forms a generating set.

Theorem. (O-Hubert) Given a minimal order cross-section,
meaning that, for each £ =0,1,...,n,

Z(z, ) =¢,, ... Z (x,u®)=c

Tk Tk

defines a cross-section for the action of G(*) on J*, then the
differential invariants (D, Z;) fori =1,...,p, j = 1,...,r
and, in the intransitive case, the order zero invariants, form
a generating set.

Theorem. (Hubert) The Maurer—Cartan invariants and, in
the intransitive case, the order zero invariants serve to
generate the differential invariant algebra Z(G).



The Differential Invariant Algebra

Thus, remarkably, the structure of Z(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so Z(G) is a rational, non-
commutative differential algebra.



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1
generating differential invariants <,,...,x,, ;. Every other
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive 4+ no pseudo-stabilization.



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1
generating differential invariants <,,...,x,, ;. Every other
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive 4+ no pseudo-stabilization.

— m=3 — curvature K & torsion 7



Euclidean Surfaces

Euclidean group SE(3) = SO(3) x R3 acts on surfaces S C R3.

For simplicity, we assume the surface is (locally) the graph of a function

z = u(x,y)

Infinitesimal generators:

v, =-y0,+x0,, vy =—ud, +20,, vy =—ud, +y0,,

e The translations w,, w,, w,; will be ignored, as they play no role in the
higher order recurrence formulae.



Cross-section (Darboux frame):

Principal curvatures
K1 = (U’mm)7 Ko = (uyy)

Mean curvature and Gauss curvature:

H = 5(ky + Ky), K =k,

Higher order differential invariants — invariantized jet coordinates:

HItky

I'ki = (ujk:) where U’jk} = W

J

% & Nondegeneracy condition: non-umbilic point x, # ..



Algebra of Euclidean Differential Invariants

Principal curvatures:
| = (U’x:c)7 iy = (uyy)

Mean curvature and Gauss curvature:
_ 1 _
H = 5(ky + Ky), K = Kk
Invariant differentiation operators:

D, = (D:c)7 D, = (Dy>

—> Differentiation with respect to the diagonalizing Darboux frame.



Algebra of Euclidean Differential Invariants

Principal curvatures:
| = (U’x:c)7 iy = (uyy)

Mean curvature and Gauss curvature:
_ 1 _
H = 5(ky + Ky), K = Kk
Invariant differentiation operators:

D, = (‘D:c)7 D, = (Dy>

—> Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential
invariants in terms of the principal curvatures, or, equivalently, the mean and
Gauss curvatures, and their invariant derivatives:

_ _F 2
fop, = (U]k) = (I)jk(’fla""327D1"‘31aDz’f17D1"327D2’f2aD1"31a o )

= ¢, (H,K,D,H,D,H,D,K,D,K,DH, ...)



Recurrence Formulae

3 . .
(Diujk> = (U’jk) - Z R; [wﬁk(x’y’u(frk))]’

k=1

jtk=>1

% = ((u;,)  — mnormalized differential invariants

R —  Maurer-Cartan invariants




Recurrence Formulae

3
(Dyujy) =D, i(ugy) — > R [@P*(z,y, TP, Jt+k=>1
k=1
I, = (uj,) — mnormalized differential invariants
R? — Maurer—Cartan invariants

@I5(0,0, IUTR)) = /[ pik(z, y,ulTTH)]

— invariantized prolonged infinitesimal generator coefficients.

Iiv1 e = Dily, — Z ©1°(0,0 [(jJrk))Rl

k=1

I o1 = Dol — Z ©1°(0,0 I(ﬁk))RQ

k=1




Prolonged infinitesimal generators:
prv, =—-y9,+x9, —u,0, +u,0,

— 2w, 0, + (Upp — Uy )8, —2uy 8, + -,

V) Usy
prvy=—ud, +x0, —|—(1+u )@ +u, u@

+3u.u. .0 _|_

0 Yooz, T (ty Us x Cay z Vyy) Cuy,

pr vy =—ud, +y0, +u,u,0 +(1+u )0,

T Y T Uy

+2u, u )8 "‘(QUU +u,u,, )0, + -

(g Ugy + 205U ) Oy, (2Uy Uy + Ug Uy, ) Oy + 31Uy Uy Oy + oo

r vy Y Yy Puy



Prolonged infinitesimal generators:
prv, =—-y9,+x9, —u,0, +u,0,

— 2w, 0, + (Upp — Uy )8, —2uy 8, + -,

yy) Ugy
prvy, = —ud, +x0d, + (1 +u? )0y, +uy w0,

+3u. w0 .t

48 “aBa8 W (ymm T "y x yy Yy

prvs =—ud, +y0, +u,u,0 +(1+u )0,

T YT Uy

+2u_ u )8 , T Quyuy, +u,u, )0, + -

+ (uy g, +2uyu,, )0, + (2u,u,, +u,u,,)0, +3u,u, o, + -

T yy Y Yy Uy

Ijk = (ng)

Phantom differential invariants:
Ioo — 110 - Io1 — 111 =0

Principal curvatures:



Phantom recurrence formulae:
_ _ 2 2
ky = I,g =D11 — RY = — Ry,

0= 111 - D1101 - Rzl)) - _sza
Iy, =Dy — (kg — “2)1“?& = —(ky — “2)317

0= 111 - D2110 - R% - —RS,

Ko = lgg = Dylyy — RS’ = —R;’,

Iy =Dylyy — (kg — “2)R% = —(ky — “2)35



Phantom recurrence formulae:
_ _ 2 2
ky = I,g =D11 — RY = — Ry,

0= 111 - D1101 - Rzl)) - —R‘;’,
Iy, =Dy — (kg — “2)1“?& = —(ky — “2)317

0= 111 - D2110 - R% - —Rg,

Ko = lgg = Dylyy — R;’ = —R;’,

Iy =Dylyy — (kg — “2)R% = —(ky — “2)35

Maurer—Cartan invariants:

Ri=-Y, R:=-k, R}=0,
1 2 3
Commutator invariants:
vV — Iy . DRy V. — I . Dyky
1= = 2 = =



Phantom recurrence formulae:
_ _ 2 2
ky = I,g =D11 — RY = — Ry,

0= 111 - D1101 - Rzl)) - —R‘;’,
Iy, =Dy — (kg — “2)3& = —(ky — ’12)317

0= 111 - D2110 - Rg - —R%,

Ko = lgg = Dylyy — R;’ = —R;’,

Iy =Dylyy — (kg — “2)R% = —(ky — “2)35-

Maurer—Cartan invariants:

1 _ 2 3 _
1 _ 2 3 _
Commutator invariants:
vV — Iy . DRy V. — I . Dyky
1= — = — 2 = — = —
Ky — Ky Ky — Kg K1 — Ko Ko — Kq

[D17D2] :D1D2_D2D1 :Y2Dl _Y1D27




Third order recurrence relations:

Iyo = Diky = Ky s Iy = Doy = Ky g, Ljg = Dikg = Ky, Loz = Dokig = Ky,



Third order recurrence relations:

Iyo = Diky = Ky s Iy = Doy = Ky g, Ljg = Dikg = Ky, Loz = Dokig = Ky,

Fourth order recurrence relations:

2
_ 1,2 3
Lyo = k111 — ——'— + 341,
1 2
3”‘31,2"“2,1 Kii1K1,2 — 2"7J1,2"€2,1
I.., =k — = e S = K +
31 1,12 — 1,21 — )
K1 — Ko Ky — Ko
KK 2 K2 K1 oK 2 K2
1,1%21 2,1 2 1,2R22 1,2 2
I = K — + KK =K + KK
22 1,22 1R2 2,11 1K2,
K, — K K, — K
1 2 1 2
I — 3“1,2"92,1 Ko 1R2 2 2K1 9Kg 1
13 = Ko21 T — = Kg 12 — 3
K1 — ko K1 — Ko
2
K
_ 2,1 3
Ioy = Ko 90 + + 3Ky
K1 — Ko

* The two expressions for I, and I, follow from the commutator formula.



Fourth order recurrence relations

3 K2
_ 1,2 3
Iyg = K111 — ——— +3k7,
1 2
3"<¢1,2"92,1 Ki1R1,2 — 2"51,2"92,1
I.. =k - o =K +
31 1,12 — 1,21 — 3
K1 — Ko K1 — Kg
2 2
I Ki1K21 — 2’“7J2,1 2 Ki,2K9 2 — 2"7J1,2 2
92 = Kq92 T T K1k = Ko 11 — + KiKa,
I — 3"‘31,2"@2,1 - Ko 1Ko 2 — 2"31,2"32,1
13 = Roo1 T —— = Ko 12 — — ;
K1 — ko k1 — Ko
2
K
_ 2,1 3
Ioy = Ko 09 T + 3Ky
K1 — Ko
% & The two expressions for I,, imply the Codazzi syzygy
2 2
Ki1Ko1 t Kiokeog —2K5 1 —2K] 9 0
Kigo — Ko 11 T — Ky Ko (k) — Ky) =0,

iy iy
which can be written compactly as
K =riky=—(D+Y)Y, = (D +Y,) Y.
—> Gauss’ Theorema Egregium



Generating Differential Invariants

(¢ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra Zgp 5 is generated by the prin-
cipal curvatures ,, K, or, equivalently, the mean and Gauss curvatures,
H, K, through the process of invariant differentiation:

I = ®(H,K,D,H,D,H,D,K,D,K,D>H, ...)



Generating Differential Invariants

(¢ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra Zgp 5 is generated by the prin-
cipal curvatures ,, K, or, equivalently, the mean and Gauss curvatures,
H, K, through the process of invariant differentiation:

[ = ®(H,K,D,H,D,H,D,K,D,K,D?H, ...)

¢ Remarkably, for suitably generic surfaces, the Gauss curvature can be
written as a universal rational function of the mean curvature and its
invariant derivatives of order < 4:

K =V (H,D,H,D,H,D?H, ... ,D3H)

and hence Zgp 5y is generated by mean curvature alone!



Generating Differential Invariants

(¢ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra Zgp 5 is generated by the prin-
cipal curvatures ,, K, or, equivalently, the mean and Gauss curvatures,
H, K, through the process of invariant differentiation:

[ = ®(H,K,D,H,D,H,D,K,D,K,D?H, ...)

¢ Remarkably, for suitably generic surfaces, the Gauss curvature can be
written as a universal rational function of the mean curvature and its
invariant derivatives of order < 4:

K =V (H,D,H,D,H,D?H, ... ,D3H)

and hence Zgp 5y is generated by mean curvature alone!

& To prove this, in view of the Codazzi syzygy
K =#fikg=— (D1 + Y)Y, = (D + Y)Yy,

it suffices to write the commutator invariants Y|, Y, in terms of H.



The Commutator Trick

K = kiky = — (D + Y)Y, — (D, + Y,)Y,

To determine the commutator invariants:
D,D,H-D,D;H=Y,D,H-Y,D,H
D,D,D;H -D,D,D;H =Y,D,D;H -Y,D,D;H

Non-degeneracy condition:

D,H  D,H
det (DlpJH D2DJH> # O’

Solve (x) for Y}, Y, in terms of derivatives of H, producing a universal formula

K =VU(H,D,H,D,H, ...)

for the Gauss curvature as a rational function of the mean curvature and its
invariant derivatives!



Definition. A surface S C R?3 is mean curvature degenerate if, near any
non-umbilic point p, € S, there exist scalar functions F(t), F,(t) such that

D,H = F,(H), D,H = F,(H).

e surfaces with symmetry: rotation, helical;
e minimal surfaces;

e constant mean curvature surfaces;
o 777

Theorem. If a surface is mean curvature non-degenerate
then the algebra of Euclidean differential invariants
is generated entirely by the mean curvature and its
successive invariant derivatives.



Minimal Generating Invariants

Euclidean curves C' C R3: curvature s and torsion 7

Equi-affine curves C' C R3: affine curvature xk and torsion 7




Minimal Generating Invariants

Euclidean curves C' C R3:

Equi-affine curves C' C R3:

curvature s and torsion 7

affine curvature s and torsion 7

Euclidean surfaces S C R3:
Equi-affine surfaces S C R3:
Conformal surfaces S C R3:
Projective surfaces S C R3:

Ternary forms u = P(z,y):

mean curvature H

Pick invariant P.

third order invariant Js.
fourth order invariant K.

third order invariant L.




Minimal Generating Invariants

Euclidean curves C' C R3: curvature s and torsion 7
Equi-affine curves C' C R3: affine curvature xk and torsion 7
Euclidean surfaces S c R3: mean curvature H

Equi-affine surfaces S C R3: Pick invariant P.

Conformal surfaces S C R3: third order invariant Jj.
Projective surfaces S C R?: fourth order invariant K.
Ternary forms u = P(x,y): third order invariant L.

— For any n > 1, there exists a Lie group Gy acting on surfaces S C R3
such that its differential invariant algebra requires n generating invariants!

& Finding a minimal generating set appears to be a very difficult problem.
(No known bound on order of syzygies.)



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = I.




Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = I.

Constant invariants provide immediate information:

e.g. k=2 < K=2



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = I.

Constant invariants provide immediate information:
e.g. k=2 < K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. k= a2’ Versus Kk = sinhx



However, a functional dependency or
the invariants ¢s intrinsic:

e.g. k.=kK —1 <<=

S



However, a functional dependency or among
the invariants ¢s intrinsic:

e.g. "‘35:”3_1 — R.=r -1

Ol

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.




However, a functional dependency or among
the invariants ¢s intrinsic:

3

e.g. "‘35:”3_1 &~ R.=Fkr —1

Ol

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.

Theorem. (Cartan) Two regular submanifolds
are (locally) equivalent if and only if they have
identical syzygies among all their differential
invariants.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.

¢ But the higher order differential invariants are always
generated by invariant differentiation from a finite
collection of basic differential invariants, and the higher
order syzygies are all consequences of a finite number
of low order syzygies!



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.

¢ But the higher order differential invariants are always
generated by invariant differentiation from a finite
collection of basic differential invariants, and the higher
order syzygies are all consequences of a finite number
of low order syzygies!

{> A suitable collection of low order fundamental differential
invariants will parametrize a of the original
submanifold V. Two regular submanifolds are (locally)
equivalent: N = ¢ - N if and only if they have identical
signatures: >, =



Example — Plane Curves

If non-constant, both « and ~, depend on a single parame-
ter, and so, locally, are subject to a syzygy:

kg = H(r) (*)

But then
K, = iH(Ii) = H'(k) k, = H'(r) H(k)

SS_CZS

and similarly for k___, etc.

CEER

Consequently, all the higher order syzygies are generated by
the fundamental first order syzygy ().

Thus, for Euclidean (or equi-affine or projective or ... )
plane curves we need only know a single syzygy between the
fundamental differential invariants x and x, in order to establish
equivalence!



The Signature Map

The generating syzygies are encoded by the
signature map
N —
of the submanifold N, which is parametrized by
the fundamental differential invariants:

() = (I(2), ..., 1, (2))

The image
= Im

is the subset (or submanifold) of .



Equivalence & Signature

Theorem. Two regular submanifolds are

equivalent:
N=g¢g-N
if and only if their signatures are identical:

Y =X



Signature Curves

Definition. The signature curve > C R? of a plane curve
C' C R? is parametrized by the two lowest order differential

invariants
. C — :{</ﬁ,d—ﬁ>}CR2
ds

= Calabi, PJO, Shakiban, Tannenbaum, Haker




Signature Curves

Definition. The signature curve > C R? of a plane curve
C' C R? is parametrized by the two lowest order differential

invariants
. C — :{</ﬁ,d—ﬁ>}CR2
ds

= Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C' and C are locally
equivalent:

C=gqg-C
if and only if their signature curves are identical:
X=X
—> regular: (K, k,,) # 0.



3D Differential Invariant Signatures

Euclidean space curves: C C R3
E:{(/{vﬁsvT)} C R’

e Kk — curvature, 7 — torsion



3D Differential Invariant Signatures

Euclidean space curves: C C R?
V={(r, K, T)} C R

e Kk — curvature, 7 — torsion

Euclidean surfaces: S C R? (generic)
v={(H,K,H, ,Hy, K, K,)} C RS
oo V={(H,H, Hy H, )} Cc R

e H — mean curvature, K — Gauss curvature



3D Differential Invariant Signatures

Euclidean space curves: C C R?
D={(r,rg,T)} C R’

e Kk — curvature, 7 — torsion

Euclidean surfaces: S C R? (generic)
v={(H,K,Hy,Hy, K,,K,)} C R®
oo V={(H,H, Hy H, )} Cc R

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R3 (generic)
w={(P,P,, P, Py, )} C R

e P — Pick invariant



Symmetry and Signature

G ¢ = (local) symmetry group(oid) of S
={geG|g-(SNU)CS}



Symmetry and Signature

G ¢ = (local) symmetry group(oid) of S
={geG|g-(SNU)CS}

* Regular submanifolds:
the (local) dimension of the signature equals
the co-dimension of the (local) symmetry group:

dim > = dim S —dimGg



Symmetry and Signature

G ¢ = (local) symmetry group(oid) of S
={geG|g-(SNU)CS}

* Regular submanifolds:
the (local) dimension of the signature equals
the co-dimension of the (local) symmetry group:

dim > = dim S —dimGg

e Maximally symmetric: dim> =0
<= all the differential invariants are constant
<= dimGg=dimS =p
<= S C H -z, is a piece of
an orbit of a p-dimensional subgroup H C G



e Discrete symmetries: dim> =p=dimS
The number of discrete (local) symmetries: # Gg
equals the (local) index of the signature.



The Curve = = cost + %COSZ t, y=sint + 1—10811’1275

The Original Curve  Euclidean Signature  Equi-affine Signature



The Curve x = cost + %coszt, Yy = %az+sint+ 1—108111275

The Original Curve  Euclidean Signature  Equi-affine Signature



Canine Left Ventricle Signature

Original Canine Heart

MRI Image Boundary of Left Ventricle



Smoothed Ventricle Signature




Xe)

— Steve Haker
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400 500

Signature Curve Nut 2

Closeness: 0.137673




Hook 1 Nut 1

750
1000
900 700

800 650
Closeness: 0.031217

700
200 400 500

Signature Curve Hook 1 Signature Curve Nut 1

0.01

0.005

-0.005

-0.01

-0.015

-0.05



Signatures

S

Classical signature

H K,
Original curve m K

S/

Differential invariant signature



Signatures

S

Classical signature

H K,
Original curve m K

S/

Differential invariant signature



Occlusions /\

\/\/

Classical Signature

S

Original curve /m K

Differential invariant signature



Automatic puzzle reassembly

P =

Step 0. Digitally photograph and smooth the puzzle pieces.

Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1-3 until puzzle is assembled....



Vertices of Euclidean Curves

Ordinary vertex: local extremum of curvature

Generalized vertex: x, =0
e critical point
e circular arc

e straight line segment

Mukhopadhya’s Four Vertex Theorem:

A simple closed, non-circular plane curve has n > 4
generalized vertices.



Localization of Signatures

Bivertex arc: K, # 0 everywhere on the arc B C C
except kK, = 0 at the two endpoints

The signature > = (B) of a bivertex arc is a single arc that
starts and ends on the xk—axis.

kg




Bivertex Decomposition

v-regular curve — finitely many generalized vertices

By,...,B — bivertex arcs

Vi,...,V, — generalized vertices: n >4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176-185.



Measuring Closeness of Signatures

Hausdorff distance
Monge—Kantorovich optimal transport
Electrostatic repulsion

Latent semantic analysis

Histograms

Gromov—Hausdorflf & Gromov—Wasserstein metric



Gravitational /Electrostatic Attraction

* Treat the two bivertex arc sigantures as masses or as
oppositely charged wires. The higher their mutual
attraction, the closer they are together.

* In practice, we are dealing with discrete data (pixels)
and so treat the curves and signatures as point
masses/charges.
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The Baffler Jigsaw Puzzle

Tl wd® Lod N
TN N N P A v R AR
R T n PO IR N
3 95 @58 £y £F AL [ Qw €8
T D U R da i@
Ey e ) b m G
ol ey ¥ 4D



Piece Locking

* % Minimize force and torque based on gravitational
attraction of the two matching edges.



The Baffler Solved




The Rain Forest Giant Floor Puzzle
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The Rain Forest Puzzle Solved

—> D. Hoff & PJO, Automatic solution of jigsaw puzzles,
J. Math. Imaging Vision 49 (2014) 234-250.



3D Jigsaw Puzzles

—> Anna Grim, Tim O’Connor, Ryan Schlecta
Cheri Shakiban, Rob Thompson, PJO



A broken ostrich egg




An Eggshell Piece




Reassembling Humpty Dumpty

0.04

0.02

-0.02 .
-0.04

-0.06




Archaeology
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— Virtual Archaeology






Anthropology

guardian

Could history of humans in North America be
rewritten by broken bones?

Smashed mastodon bones show humans arrived over 100,000 years earlier than previously
thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT




AMAAZE

QBreaEing ‘Bones

Carnivore Hominin Geological

Crocuta crocuta =

hyena Hammerstone and z
anvil Rock fall

amaaze .umn.edu




Worﬁing ‘J—[yjaotﬁesis

The geometry of the bone fragments,
their identity (taxon and element),
and how they are reassembled
will tell us the actor of breakage



S egmenmtion

(a) Bone fragment (b) Face segmentation (c) Edge tracing

FIGURE 1: Results of preliminary experiments with face segmentation and edge tracing.









Benign vs. Malignant Tumors

—> A. Grim, C. Shakiban



Benign vs. Malignant Tumors




Benign vs. Malignant Tumors

30

25

20

15

10

A

LOCAL INDIVIDUAL SYMMETRY

1—k-axis—A2

B TYPICAL BENIGN
TYPICAL MALIGNANT

Al—nsaxis— A2

I ATYPICAL BENIGN
I ATYPICAL MALIGNANT






Prolongation:

ar—+
= o=~vx+9
< Yy +9 U
v=0 "u A=ad— By
_ouy—nyu
Uy_ A gn—1
o?u, —2(n—1)you, +n(n—1)v*u
Yyy = A2 g2

yyy



Normalization:

T+
v=0c "u=1 =ad—
U, —Nyu
Uy: n—1 =0
_fuy, —2(n—1)you, +n(n—1)yu 1
Vyy = 2 n—2 - n(n—l)



Moving frame:

_ u(l—n)/n\/ﬁ — u(l—n)/n\/ﬁ
—1,@0-n)/n — yl/n _ 1 ,,(0=-n)/n
Hessian:
H=n(n—-1uu,, —(n—1)%u2 #0

Note: H=0 if and only if Q(z) = (axz+b)"
—> Totally singular forms

Differential invariants:
J K +3n—-2) dk

yyy ' >n2(n— 1) ~ R Yyyyy 7 n3(n —1) ~ ds




Absolute rational covariants:

deg@Q =n degH =2n—-4 degT =3n—26

2
~ Quolyy — Way

~ QxTy T QyTx

degU = 4n — 8



Signatures of Binary Forms

of a nonsingular binary form Q(x):

o= {(J(a:)2,K(x)) = ( Z[((?; ! JEI]((:f))2 >}

Nonsingular: H(x) #0 and (J'(z), K'(x)) # 0.

Theorem. Two nonsingular binary forms are equiva-
lent if and only if their signature curves are identical.



Maximally Symmetric Binary Forms

Theorem. If u = Q(z) is a polynomial, then the
following are equivalent:

e (Q(x) admits a one-parameter symmetry group

e 77 is a constant multiple of H?

e (Q(x)~ 2" is complex-equivalent to a monomial
e the signature curve degenerates to a single point

e all the (absolute) differential invariants of ) are
constant

e the graph of () coincides with the orbit of a
one-parameter subgroup



Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form

Q(x) £ 0 of degree n is:

e A two-parameter group if and only if H = 0 if and only if
() is equivalent to a constant. — totally singular

e A one-parameter group if and only if H # 0 and T? = ¢ H3
if and only if Q is complex-equivalent to a monomial z*,
with k& # 0, n. —> maximally symmetric

e In all other cases, a finite group whose cardinality equals
the index of the signature curve, and is bounded by

{6n—12 U = cH?

<
4n — 8 otherwise

Q@



Strategy #1:

Use lower order invariants to construct a signature:

e joint invariants
e joint differential invariants
e integral invariants

e topological invariants



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M X --- x M:

I(g-2zy--,9 - 2,) = I(zg,...,2)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z{,...,2, € N on the submanifold:

I(g-z%n),...,g-z,gn)) — I(z%n),...,z,(fn))




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;, Zj) = || z; — 7 |

Z ¢

1



Joint Equi—Affine Invariants

Theorem. Every planar joint equi—affine invariant is
a function of the triangular areas

[ij k] :%(Zi_zj)/\(zi_zk)



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

AB

[zivzjvzkvzlvzm] — N

v



e Three—point projective joint differential invariant
— tangent triangle ratio:

(020][011][122]

[010][121][022]




Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional
submanifold, then you need at least

C>kp

distinct invariants I;,...,I, in order to construct a syzygy.

Typically, the number of joint invariants is
¢ =km —r = (#points) (dim M) — dim G

Therefore, a purely joint invariant signature requires at least

T

k > + 1

m-—p

points on our p-dimensional submanifold N C M.



Joint Euclidean Signature




Joint signature map:
$:C** — Y CRS
a=|z— 2| b=z — 2| c=|lzg— 2|l
d= |z — 2] e=|z —z| f=12z— 2]
—> six functions of four variables
Syzygies:
¢, (a,b,c,d,e, f) =0 ®,(a,b,c,d, e, f) =0

Universal Cayley-Menger syzygy <= C C R?
2 a? a’+b%—d? a’>+c®—¢€?
det [a® + b2 — d? 252 b +c2—f2=0
a®+c?—e® b2+ — f? 2 c?



Joint Equi—Affine Signature

Requires 7 triangular areas:

(012],[013],[014],[015],[023],[024], [025]




Joint Invariant Signatures

The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

Identification of landmarks can significantly reduce the
redundancies (Boutin)

It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”

Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Numerical approximation to curvature

Heron’s formula

k(A,B,C) :4324\/3(8—@(8—17)(3_@)

abc abe

_a+b+c
2

’ —  semi-perimeter



Invariantization of Numerical Schemes

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge-Kutta Method for ordi-
nary differential equations, or the Crank—Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriately chosen moving frame to
the numerical scheme, leading to an invariant nu-
merical scheme that preserves the symmetry group. In challeng-
ing regimes, the resulting invariantized numerical scheme can,
with an inspired choice of moving frame, perform significantly
better than its progenitor.



=37 _ ~ NoInv|
4t J
v=8

= U=
,_,_*3—5 Vo0
=
-6
-
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Invariant Runge-Kutta schemes

Uy, +xu, —(x+1u=sinzx, u(0)=1u,0)



Invariantization of Crank—Nicolson
for Burgers’ Equation

Uy = €U, T UU,

1 1 1 1 1 1
0.5 0.5 05 05 05 05
0 0 0 0 0 0
-0.5 -0.5 -0.5 -05 -0.5 -0.5
-1 -1 -1 -1 -1 -1
1% 0.5 17 0.5 1% 0.5 1 5 0.5 175 0.5 175 0.5

—> Pilwon Kim



Morphological PDEs

Hamilton—Jacobi partial differential equation:
u, = = |Vul
Symmetry Group:
u — p(u)

Here, we focus on the one-parameter subgroup

s AU
1+ =1u




Invariantization of 1D Morphology

uy = [u]
: t x
Upwind scheme:
k+1 _ _ k At k k ,k k
u; = Uyt A—max{ui+1 iy Uiy — Ui, 0} -
X
1.4 T T T L
original —+—
theoretical -~ %--
12k upwind without invariantization - % -- _|
: upwind with invariantization - TF -
1+ XX EZRRR R BRSO R ) -
5 ¥ " @
06 L % .
04 - * * -
r

1D dilation of a single peak, 20 iterations,
At = Ax = 0.5, without and with invariantization.



Invariantization of 2D Morphology

Non-invariant upwind scheme:

Invariantized upwind scheme:

&3 3




The Calculus of Variations

— / L(z,u™)dx — variational problem

L(z,u™) — Lagrangian

To construct the Euler-Lagrange equations: E(L) =0

e Take the first variation:

oL
d(Ldx) = az,:] s dug dx
e Integrate by parts:
s(Lax) =Y 2 b (sur) dx
o,J 8uJ
=% (-D)’ OL 5o ax — Z E,(
a,J auJ =1

L) ou® dx



Invariant Variational Problems

According to Lie, any G—invariant variational problem can
be written in terms of the differential invariants:

I[u]:/L(x,u(”))dx:/P(... D I% ... ) w

... If — fundamental differential invariants
Dy,...,D, — invariant differential operators
Dy I — differentiated invariants

wW=wA---AwP — invariant volume form



If the variational problem is G-invariant, so
T[u] = /L(a:,u(”))dx: /P( DRI ) w

then its Euler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

Main Problem:

Construct F' directly from P.
(P. Griffiths, 1. Anderson )



Planar Euclidean group G = SE(2)

uLEiE

K= — curvature (differential invariant)
(1+u2)3/?

ds = /1 +u2dx — arc length
d 1 d

D=—= — arc length derivative

ds 1+ w2 dr

Euclidean—invariant variational problem

/L:r;u dZC—/P/i,KJS,KSS,.. ) ds

Euler-Lagrange equations

E(L)~ F(k,k K,y --.) =0

77787 77ss)



Euclidean Curve Examples

Minimal curves (geodesics):

I[u]:/ds:/ 1 +u2 dx
E(L) = —

)=—Kk=0

—> straight lines

The Elastica (Euler):

2
_ 1.2 _ ummdx
I[u]—/—/i dS_/(1+u2)5/2

\}

E(L)=k,, +5Kk>=0
582 — elliptic functions



General Euclidean—invariant variational problem
T[u] = /L(w,u("))dac = /P(/i,lﬂ)s,/{ss, ... )ds

To construct the invariant Euler-Lagrange equations:

Take the first variation:
OP
0(Pds) =) ——0r;ds+ Pd(ds)
7 Ok
Invariant variation of curvature:

ok = A, (0u) A =D?+ K’

Invariant variation of arc length:

d(ds) = B(ou) ds B=—-k

—> moving frame recurrence formulae



Integrate by parts:

d(Pds)=[E(P)A(du) — H(P)B(du) ] ds
= [A*E(P) — B*H(P)]duds = E(L) 6uds

Invariantized Euler-Lagrange expression

. OP d
D= —
zz: (’9/% ds
Invariantized Hamiltonian
- OP
- _(=D) _Pp
z’z>:j iy (7P) Ok

Fuclidean—invariant Euler-Lagrange formula

E(L) = A*E(P) — B*H(P) = (D? + k?) £(P) + k H(P) =



The Elastica:

I[u]:/%/des P:%li
E(P) =k H(P)=—P=—1k"
E(L):(D2+H2)H+H(—%H2)—/€SS+



LETTERS

The shape of a Mobius strip

E. L STAROSTIN AND G. H. M. VAN DER HELJDEN*

T E———

Futsins oning: 15 July A007; do 10, 108Bmat 1929

The Mobius sirip, obtzined by taking a rectangular strip of
plastic or paper, iwisting one end theough 1807, and then
joining the ends, is the canonic] example of u ome-sided surface,
Finding its characteristic developable shape has been an open
problem ever ginee its first formulation in refs 1,2, Here we
wse the imvariant varistional bicomplex formalism to derive
the first eguilibrivm eguations for & wide developable strip
undergoing large deformations, thereby giving the first non-
trivial demonstration of the potential of this approach, We then
formulate the boundary-value prollem for the Mobies stzip and
salve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat rinngular regions, a
leature also familiar from fabric draping” and paper crumpling™,
This could give new insight into enerpy localization phenomena
in unsteelchable sheets®, which might help to predict points
of omset of tearing. 10 could also aid our understanding of the
relationship between geametry and physical properties of nana-
and microstmpic Mibies strig structores” ",

It i Bxir to day that the Mobius steip 3 one of the few ons
af mathematies that have been absorbed into wider cultune.
hats rsthematical besuty and inspired artists such as Escher™, In
englneering, pulley belts are often used i the form of Mibdus sieips
et "otk sddes equally. At a mocls seraller seabe, Miibius stsips
have recently been formed in ribbon-shaped Nhie; crystals under
certadn erowth conditions invalvine a Bree emverature eradient™.

iy College Lendos, Londsn WETE 88T, UK

Figure 1 Fhoto of a paper Mabius strip of aspect ratin 2. Tr srip adopts 2
thermrlerstc stape lestesiily of e materal causes the surfaca o be
devepahie. hs simight genarators A crawn and S coinusng wres actonding 1o
he bending ensngy Cansly.



Figare: 2 Compubed Milhivs airips. The kit paned shove Teir thres-gmensional sheces 1or w--0.7 (8], D2 (b1, 0.5 ). 0.8 o). 1.0 e and 1.5 T, and the righ’ pare! the
coeresponding cradpmeels on Bn plane. The olawing crangess aocoeding i the local bending iy density, from violef for regiens of e breging fo red dor eogions of

tigh bending fscales e individusly edusted). SoluBon ¢ may be compared vath the pper modad in Fig. © on which Ta generator Tiekd anc density coicaring have
eon prinind



Evolution of Invariants and Signatures

G — Lie group acting on R?
C'(t) — parametrized family of plane curves

G—invariant curve flow:

dC
— =V =71t+Jn
dt

e [, J — differential invariants

e t — ‘“unit tangent”

e n — ‘“unit normal”

e The tangential component It only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

C,=Jn
Examples — Euclidean—invariant curve flows
e (,=n — geometric optics or grassfire flow;
e U, =kKn — curve shortening flow;
e C,=r'3n — equi-affine invariant curve shortening flow:
Ct - nequi—afﬁne ;

e O, =rk,n — modified Korteweg—deVries flow;
C

= K,.n — thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by
v=It+Jn

preserves arc length if and only if

B(J)+DI=0.
D — invariant arc length derivative
B — invariant arc length variation

d(ds) = B(du) ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow C, = Jn,

Ok Oky
ToAL), Sr=AL0)

Invariant variations:

ok = A,_(du), ok, = A, (0u).
A=A — invariant variation of curvature;
A, =DA+ kK, — invariant variation of r .



Euclidean—invariant Curve Evolution
Normal flow: C,=Jn

(9/4_ 0 5
8lis 3 2
5 =A,  (J)= (D’ +~r"D+3kk,)J.

Warning: For non-intrinsic flows, 0, and J, do not commute!



Euclidean—invariant Curve Evolution
Normal flow: C,=Jn

(9/4_ 0 5
8K’8 3 2
5 =A,  (J)= (D’ +~r"D+3kk,)J.

Warning: For non-intrinsic flows, 0, and J, do not commute!

Grassfire low: J =1
0k 2 0K
o

> =3Kkk,,

ot §

— caustics



Euclidean—invariant Curve Evolution
Normal flow: C,=Jn

(9/4_ 0 5
8K’8 3 2
5 =A,  (J)= (D’ +~r"D+3kk,)J.

Warning: For non-intrinsic flows, 0, and J, do not commute!

Grassfire low: J =1
Ok 0K

— =K, *=3KK
ot

Ot §7

— caustics

* Signature evolution: >, = ---



Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

k, =R(J)  where R=A-rD'B (%)

In surprisingly many situations,
(*) is a well-known integrable evolution equation,
and R is (closely related to) its recursion operator!
—> Hasimoto
—> Langer, Singer, Perline
—> Mari—Beffa, Sanders, Wang, Qu, Chou, Anco,
=

Benson, and many more ...



Euclidean plane curves
G = SE(2) = SO(2) x R?

A:D2—|—K,2 B:_K»

R:A—KSD_182D2—|—KJ2—|—KJSD_1-/€

K;t - R(K’s) - K’sss + %/{255

—> modified Korteweg-deVries equation



Equi-affine plane curves
G = SA(2) = SL(2) x R?
A=D' 4 5rD2+3rD+ hr, + 42
_ 1712 2
B = gD ) K

R=A—-xD'B
_ A 5,2 4 1 4,2 | 2 ~1
=D +3kD°+ 38D+ 3Kr,, +gr + 56D -k

+ 2k K +8/<e2/£8

_ _ 5
Ky = R(’%s) = Ry + gK/K'SSS 3 "vs'vss

—> Sawada—Kotera equation

P

Recursion operator: R=R-(D*+ %,{ + %’%D—l)



G = SE(3) = SO(3) x R3

D? + (k* — 12)
A =
2_7'D2 3KT, — 2K,T KT,, — K T, + 25T
ko ° K2 s K2
—27D, — T
ng &Dg L K2 — 2Ds 1187'2 — 2KTT,
K K2 K K2
B=(—-x 0)

rea-(C)ees (7)) ==(3)

—> vortex filament flow (Hasimoto)




