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Moving Frames
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Élie Cartan

Modern developments: (1970’s)
Chern, Green, Griffiths, Jensen, . . .

The equivariant approach: (1997 – )

PJO, Fels, Mansfield, Maŕı–Beffa, Kogan, Pohjanpelto,
Kim, Boutin, Lewis, Hubert, Morozov, McLenaghan, Smirnov,
Valiquette, Thompson, Benson, Arnaldsson, Popovych, Bihlo,
Ruddy, Merker, Sabzevari, Z. Chen, . . .
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“I did not quite understand how he [Cartan] does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598–601



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

• finite-dimensional Lie group

• infinite-dimensional Lie pseudo-group

• finite or discrete group



Equivalence:
Determine when two p-dimensional submanifolds

N and N ⊂ M

are congruent :

N = g ·N for g ∈ G

Symmetry:
Find all symmetries,

i.e., self-equivalences or self-congruences :

N = g ·N



Classical Geometry — F. Klein

• Euclidean group: G =

⎧
⎨

⎩

SE(m) = SO(m)! R
m

E(m) = O(m)! R
m

z '−→ A · z + b A ∈ SO(m) or O(m), b ∈ R
m, z ∈ R

m

⇒ isometries: rotations, translations , (reflections)

• Equi-affine group: G = SA(m) = SL(m)! Rm

A ∈ SL(m) — volume-preserving

• Affine group: G = A(m) = GL(m)! Rm

A ∈ GL(m)

• Projective group: G = PSL(m+ 1)
acting on Rm ⊂ RPm

=⇒ Applications in computer vision



Tennis, Anyone?

⋆ Projective (equi-affine) equivalence and symmetries



Classical Invariant Theory

Binary form:

Q(x) =
n∑

k=0

(
n

k

)

ak x
k

Equivalence of polynomials (binary forms):

Q(x) = (γx+ δ)n Q

(
αx+ β

γx+ δ

)

g =

(
α β
γ δ

)

∈ GL(2)

• multiplier representation of GL(2)
• modular forms



Q(x) = (γx+ δ)n Q

(
αx+ β

γx+ δ

)

Transformation group:

g : (x, u) '−→
(
αx+ β

γx+ δ
,

u

(γx+ δ)n

)

Equivalence of functions ⇐⇒ equivalence of graphs

ΓQ = { (x, u) = (x,Q(x)) } ⊂ C
2



Invariants

The solution to an equivalence problem rests on
understanding its invariants.

⊙ Invariants describe the moduli space of objects
under group transformations.

⋆ If G acts transitively, there are no (non-constant)
invariants — in which case we need to “prolong”
the action to a higher dimensional space.
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Moving Frames

Definition.

A moving frame is a G-equivariant map

ρ : M −→ G

Equivariance:

ρ(g·z) =
{

g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame

ρleft(z) = ρright(z)
−1
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The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z ∈ M if and
only if G acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup of a point z ∈ M :

Gz = { g | g · z = z }

• free — the only group element g ∈ G which fixes one point
z ∈ M is the identity

=⇒ Gz = {e} for all z ∈ M

• locally free — the orbits all have the same dimension as G
=⇒ Gz ⊂ G is discrete for all z ∈ M

• regular — the orbits form a regular foliation
̸≈ irrational flow on the torus



Proof of the Main Theorem

Necessity: Let ρ : M → G be a left moving frame.

Freeness: If g ∈ Gz, so g · z = z, then by left equivariance:

ρ(z) = ρ(g · z) = g · ρ(z).

Therefore g = e, and hence Gz = {e} for all z ∈ M .

Regularity: Suppose zn = gn · z −→ z as n → ∞.

By continuity, ρ(zn) = ρ(gn · z) = gn · ρ(z) −→ ρ(z).
Hence gn −→ e in G.

Sufficiency: By direct construction — “normalization”.

Q.E.D.



Geometric Construction

z

Oz

Normalization = choice of cross-section to the group orbits
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K — cross-section to the group orbits

Oz — orbit through z ∈ M

k ∈ K ∩Oz — unique point in the intersection

• k is the canonical form of z

• the (nonconstant) coordinates of k are the fundamental
invariants

g ∈ G — unique group element mapping k to z
=⇒ freeness

ρ(z) = g left moving frame ρ(h · z) = h · ρ(z)

k = ρ−1(z) · z = ρright(z) · z



Algebraic Construction

r = dimG ≤ m = dimM

Coordinate cross-section

K = { z1 = c1, . . . , zr = cr }

left right

w(g, z) = g−1 · z w(g, z) = g · z

g = (g1, . . . , gr) — group parameters

z = (z1, . . . , zm) — coordinates on M



Choose r = dimG components to normalize:

w1(g, z)= c1 . . . wr(g, z)= cr

Solve for the group parameters g = (g1, . . . , gr)

=⇒ Implicit Function Theorem

The solution
g = ρ(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

g = ρ(z)

into the unnormalized components of w(g, z) produces the
fundamental invariants

I1(z) = wr+1(ρ(z), z) . . . Im−r(z) = wm(ρ(z), z)

=⇒ These are the coordinates of the canonical form k ∈ K.



Completeness of Invariants

Theorem. Every invariant I(z) can be (locally)
uniquely written as a function of the fundamental
invariants:

I(z) = H(I1(z), . . . , Im−r(z))



Invariantization

Definition. The invariantization of a function
F : M → R with respect to a right moving frame
g = ρ(z) is the the invariant function I = ι(F )
defined by

I(z) = F (ρ(z) · z).

ι(z1) = c1, . . . ι(zr) = cr, ι(zr+1) = I1(z), . . . ι(zm) = Im−r(z).

cross-section variables fundamental invariants
“phantom invariants”

ι [F (z1, . . . , zm) ] = F (c1, . . . , cr, I1(z), . . . , Im−r(z))
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Invariantization amounts to restricting F to the cross-
section: I |K = F |K, and then requiring that
I = ι(F ) be constant along the orbits.

In particular, if I(z) is an invariant, then ι(I) = I.

Replacement Rule:

I(z1, . . . , zm) = I(c1, . . . , cr, I1(z), . . . , Im−r(z))

Invariantization defines a canonical projection

ι : functions '−→ invariants
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The Rotation Group

G = SO(2) acting on R
2

z = (x, u) '−→ g · z = ( x cosφ− u sinφ , x sinφ+ u cosφ )

=⇒ Free on M = R2 \ {0}

Left moving frame:

w(g, z) = g−1 · z = (y, v)

y = x cosφ+ u sinφ v = −x sinφ+ u cosφ

Cross-section:

K = {u = 0, x > 0 }



Normalization equation:

v = −x sinφ+ u cosφ = 0

Left moving frame:

φ = tan−1 u

x
=⇒ φ = ρ(x, u) ∈ SO(2)

Fundamental invariant:

r = ι(x) =
√
x2 + u2

Invariantization:

ι[F (x, u) ] = F (r, 0)

Replacement theorem: if I is any invariant,

I(x, u) = I(r, 0)



Prolongation

Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r = dimG.

Thus, to make the action free, we must increase
the dimension of the space via some natural
prolongation process.



• Prolonging to derivatives (jet space)

G(n) : Jn(M,p) −→ Jn(M,p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · ·×M −→ M × · · ·×M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations
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Euclidean Plane Curves
Special Euclidean group: G = SE(2) = SO(2)! R2

acts on M = R2 via rigid motions: w = Rz + c

To obtain the classical (left) moving frame we invert
the group transformations:

y = cosφ (x− a) + sinφ (u− b)

v = − sinφ (x− a) + cosφ (u− b)

⎫
⎬

⎭ w = R−1(z − c)

Assume for simplicity the curve is (locally) a graph:

C = {u = f(x)}

=⇒ extensions to parametrized curves are straightforward



Prolong the action to Jn via implicit differentiation:

y = cosφ (x− a) + sinφ (u− b)

v = − sinφ (x− a) + cosφ (u− b)

vy =
− sinφ + ux cosφ

cosφ + ux sinφ

vyy =
uxx

(cosφ + ux sinφ )3

vyyy =
(cosφ + ux sinφ )uxxx − 3u2

xx sinφ

(cosφ + ux sinφ )5

...



Normalization: r = dimG = 3

y = cosφ (x− a) + sinφ (u− b) = 0

v = − sinφ (x− a) + cosφ (u− b) = 0

vy =
− sinφ + ux cosφ

cosφ + ux sinφ
= 0

vyy =
uxx

(cosφ + ux sinφ )3

vyyy =
(cosφ + ux sinφ )uxxx − 3u2

xx sinφ

(cosφ + ux sinφ )5

...



Solve for the group parameters:

y = cosφ (x− a) + sinφ (u− b) = 0

v = − sinφ (x− a) + cosφ (u− b) = 0

vy =
− sinφ + ux cosφ

cosφ + ux sinφ
= 0

=⇒ Left moving frame ρ : J1 −→ SE(2)

a = x b = u φ = tan−1 ux



a = x b = u φ = tan−1 ux

Differential invariants

vyy =
uxx

(cosφ + ux sinφ )3
'−→ κ =

uxx

(1 + u2
x)

3/2

vyyy = · · · '−→
dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3

vyyyy = · · · '−→
d2κ

ds2
− 3κ3 = · · ·

=⇒ recurrence formulae

Contact invariant one-form — arc length

dy = (cosφ+ ux sinφ) dx '−→ ds =
√
1 + u2

x dx



Dual invariant differential operator
— arc length derivative

d

dy
=

1

cosφ+ ux sinφ

d

dx
'−→

d

ds
=

1
√
1 + u2

x

d

dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to
arc length:

κ,
dκ

ds
,

d2κ

ds2
, · · ·



The Classical Picture:

z

t

n

Moving frame ρ : (x, u, ux) '−→ (R, c) ∈ SE(2)

R =
1

√
1 + u2

x

(
1 −ux

ux 1

)

= ( t, n ) c =

(
x
u

)

= z



Frenet frame

t =
dx

ds
=

(
xs

ys

)

, n = t⊥ =

(
− ys
xs

)

.

Frenet equations = Pulled-back Maurer–Cartan forms:

dx

ds
= t,

dt

ds
= κn,

dn

ds
= −κ t.



Equi-affine Curves G = SA(2)

z '−→ Az + c A ∈ SL(2), c ∈ R
2

Invert for left moving frame:

y = δ (x− a)− β (u− b)

v = − γ (x− a) + α (u− b)

⎫
⎬

⎭ w = A−1(z − c)

α δ − β γ = 1

Prolong to J3 via implicit differentiation

dy = (δ − β ux) dx Dy =
1

δ − β ux

Dx



Prolongation:

y = δ (x− a)− β (u− b)

v = − γ (x− a) + α (u− b)

vy = −
γ − αux

δ − β ux

vyy =
uxx

(δ − β ux)
3

vyyy =
(δ − β ux)uxxx + 3β u2

xx

(δ − β ux)
5

vyyyy =
uxxxx(δ − β ux)

2 + 10β (δ − β ux) uxx uxxx + 15β2 u3
xx

(δ − β ux)
7

vyyyyy = . . .



Normalization: r = dimG = 5

y = δ (x− a)− β (u− b) = 0

v = − γ (x− a) + α (u− b) = 0

vy = −
γ − αux

δ − β ux

= 0

vyy =
uxx

(δ − β ux)
3
= 1

vyyy =
(δ − β ux)uxxx + 3β u2

xx

(δ − β ux)
5

= 0

vyyyy =
uxxxx(δ − β ux)

2 + 10β (δ − β ux) uxx uxxx + 15β2 u3
xx

(δ − β ux)
7

vyyyyy = . . .



Equi-affine Moving Frame

ρ : (x, u, ux, uxx, uxxx) '−→ (A, c) ∈ SA(2)

A =

(
α β
γ δ

)

=

(
u−1/3
xx − 1

3 u
−5/3
xx uxxx

uxu
−1/3
xx u1/3

xx − 1
3 uxu

−5/3
xx uxxx

)

c =

(
a
b

)

=

(
x
u

)

Nondegeneracy condition (freeness): uxx ̸= 0.



Equi-affine arc length

dy = (δ − β ux) dx '−→ ds = 3

√
uxx dx

Equi-affine curvature

vyyyy '−→ κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

vyyyyy '−→
dκ

ds

vyyyyyy '−→
d2κ

ds2
− 5κ2

⋆ ⋆ recurrence formulae



The Classical Picture:

z

t

n

A =

(
u−1/3
xx − 1

3 u
−5/3
xx uxxx

uxu
−1/3
xx u1/3

xx − 1
3 uxu

−5/3
xx uxxx

)

= ( t, n )

c =

(
x
u

)

= z



Frenet frame

t =
dz

ds
, n =

d2z

ds2
.

Frenet equations = Pulled-back Maurer–Cartan forms:

dz

ds
= t,

dt

ds
= n,

dn

ds
= κ t.



Inductive and Recursive Methods

Given H ⊂ G one can use a recursive method
to construct the moving frame for G in terms of
the moving frame and differential invariants of H.
The calculations also provide expressions for the G
differential invariants as functions of the H differential
invariants and their invariant derivatives.

Kogan, I.A., Inductive construction of moving frames,
Contemp. Math. 285 (2001), 157–170.

Olver, P.J., Recursive moving frames, Results Math.
60 (2011), 423–452.



Normal Forms

The moving frame normalizations based on a cross-
section in the jet space can be reinterpreted as placing
the submanifold in normal form, meaning that one uses
group transformations to move it to a distinguished
location and then successively normalizes the coeffi-
cients in the associated Taylor expansion. Once these
are fixed, the remaining unnormalized coefficients are
the differential invariants.



Normal Forms

For Euclidean plane curves C ⊂ R2, translations are used
to make the curve go through the origin, and then a rotation
makes its tangent horizontal there, producing the
Euclidean normal form

u0(x) =
1
2 κx

2 + 1
6 κsx

3 + 1
24 (κss + 3κ3 )x4 + · · ·

Similarly, by employing a sequence of equi-affine transformations
one deduces the equi-affine normal form for a plane curve:

u0(x) =
1
2 x

2 + 1
4! κx

4 + 1
5! κsx

5 + 1
6! (κss + 5κ2 )x6 + · · · ,

where κ is equi-affine curvature and ds equi-affine arc length

=⇒ The formulas for the coefficients are differential invariants
and found using the Recurrence Formulae.
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The General Set-Up

dimM = p+ q — for example M = Rp × Rq

p = # independent variables x = (x1, . . . , xp);

q = # dependent variables u = (u1, . . . , uq).

Jn = Jn(M,p) — jet space of order n

uα
J — jet coordinates on Jn (representing partial derivatives

of the u’s with respect to the x’s)

G — Lie (pseudo-)group of point transformations acting on M
or of contact transformations on J1 when p = 1

G(n) — prolonged action of G on Jn (implicit differentiation)

g(n) — prolonged infinitesimal generators



Differential Invariants

A differential invariant is a (locally defined) invariant
function I : Jn → R for the prolonged (pseudo-)group action

I(g(n) · (x, u(n))) = I(x, u(n))

=⇒ curvature, torsion, . . .

Invariant differential operators:

D1, . . . ,Dp =⇒ arc length derivative

• If I is a differential invariant, so is DjI.

I(G) — the algebra of differential invariants



The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , Iℓ

and p = dimS invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1Dj2 · · · DjnIκ.

=⇒ Lie groups: Lie, Ovsiannikov, Fels–O

=⇒ Lie pseudo-groups: Tresse, Kumpera, Kruglikov–Lychagin,
Muñoz–Muriel–Rodŕıguez, Pohjanpelto–O



Key Issues

• Minimal basis of generating invariants: I1, . . . , Iℓ

• Commutation formulae for

the invariant differential operators:

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

Y i
jk — commutator invariants

=⇒ Non-commutative differential algebra

• Syzygies (functional relations) among

the differentiated invariants:

Φ( . . . DJIκ . . . ) ≡ 0

=⇒ Codazzi relations



Recurrence Formulae
⋆ ⋆ Invariantization and differentiation do not commute.

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v(n)

κ (F ))

ωi = ι(dxi) — invariant horizontal coframe

Di = ι(Dxi) — dual invariant differential operators

v(n)
κ — basis for g(n) (prolonged infinitesimal generators)

Rκ
j — Maurer–Cartan invariants



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v(n)

κ (F ))

♠ If ι(F ) = c is a phantom differential invariant, then the left

hand side of the recurrence formula is zero. The collection

of all such phantom recurrence formulae form a linear

algebraic system of equations that can be uniquely solved

for the Maurer–Cartan invariants Rκ
j !

♥ Once the Maurer–Cartan invariants are replaced by their

explicit formulae, the induced recurrence relations com-

pletely determine the structure of the differential invariant

algebra I(G)!



The Maurer–Cartan Invariants

v1, . . . vr ∈ g — basis for infinitesimal generators

µ1, . . . µr ∈ g∗ — dual basis of Maurer–Cartan forms

Invariantized Maurer–Cartan forms:

γκ = ρ∗(µκ) ≡
p∑

j=1

Rκ
j ω

j

ω1, . . . ωp — invariant horizontal coframe

Rκ
j — Maurer–Cartan invariants



The Universal Recurrence Formula

For any function or differential form Ω on Jn:

d ι(Ω) = ι(dΩ) +
r∑

κ=1

γκ ∧ ι[v(n)
κ (Ω) ]

v(n)
1 , . . . ,v(n)

r — basis for prolonged infinitesimal generators

γ1, . . . , γr — dual invariantized Maurer–Cartan forms

⋆ ⋆ The γκ are uniquely determined by the recurrence
formulae for the phantom differential invariants



d ι(Ω) = ι(dΩ) +
r∑

κ=1

γκ ∧ ι[vκ(Ω) ]

⋆ ⋆ ⋆ All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally,
the invariant variational bicomplex follow from this
universal recurrence formula by letting Ω range over
the basic functions and differential forms!

⋆ ⋆ ⋆ Therefore, the entire structure of the differential invari-
ant algebra and invariant variational bicomplex can be
completely determined using only linear differential al-
gebra; this does not require explicit formulas for the
moving frame, the differential invariants, the invariant
differential forms, or the group transformations!
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The Commutator Invariants

Explicit formulae:

Y i
jk =

r∑

κ=1

Rκ
k ι(Djξ

i
κ)−Rκ

j ι(Dkξ
i
κ) .

Follows from the recurrence formulae for

dωi = d[ι(dxi)] = ι(d2xi) +
r∑

κ=1

γκ ∧ ι[vκ(dx
i)]

= −
∑

j<k

Y i
jk ω

j ∧ ωk + · · ·



Generating Differential Invariants

Theorem. (Fels–O) If the moving frame has order n, then the
set of normalized differential invariants of order ≤ n + 1
forms a generating set.

Theorem. (O–Hubert) Given a minimal order cross-section,
meaning that, for each k = 0, 1, . . . , n,

Z1(x, u
(k)) = c1, . . . Zrk

(x, u(k)) = crk,

defines a cross-section for the action of G(k) on Jk, then the
differential invariants ι(DiZj) for i = 1, . . . , p, j = 1, . . . , r
and, in the intransitive case, the order zero invariants, form
a generating set.

Theorem. (Hubert) The Maurer–Cartan invariants and, in
the intransitive case, the order zero invariants serve to
generate the differential invariant algebra I(G).



TheDifferential Invariant Algebra

Thus, remarkably, the structure of I(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so I(G) is a rational, non-
commutative differential algebra.



Curves

Theorem. Let G be an ordinary⋆ Lie group acting on the m-

dimensional manifold M . Then, locally, there exist m − 1

generating differential invariants κ1, . . . ,κm−1. Every other

differential invariant can be written as a function of the

generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

⋆ ordinary = transitive + no pseudo-stabilization.

=⇒ m = 3 — curvature κ & torsion τ
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Euclidean Surfaces

Euclidean group SE(3) = SO(3)! R3 acts on surfaces S ⊂ R3.

For simplicity, we assume the surface is (locally) the graph of a function

z = u(x, y)

Infinitesimal generators:

v1 = −y∂x + x∂y, v2 = −u∂x + x∂u, v3 = −u∂y + y∂u,

w1 = ∂x, w2 = ∂y, w3 = ∂u.

• The translations w1,w2,w3 will be ignored, as they play no role in the
higher order recurrence formulae.



Cross-section (Darboux frame):

x = y = u = ux = uy = uxy = 0.

Phantom differential invariants:

ι(x) = ι(y) = ι(u) = ι(ux) = ι(uy) = ι(uxy) = 0

Principal curvatures
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Higher order differential invariants — invariantized jet coordinates:

Ijk = ι(ujk) where ujk =
∂j+ku

∂xj∂yk

⋆ ⋆ Nondegeneracy condition: non-umbilic point κ1 ̸= κ2.



Algebra of Euclidean Differential Invariants

Principal curvatures:
κ1 = ι(uxx), κ2 = ι(uyy)

Mean curvature and Gauss curvature:

H = 1
2(κ1 + κ2), K = κ1κ2

Invariant differentiation operators:

D1 = ι(Dx), D2 = ι(Dy)

=⇒ Differentiation with respect to the diagonalizing Darboux frame.

The recurrence formulae enable one to express the higher order differential
invariants in terms of the principal curvatures, or, equivalently, the mean and
Gauss curvatures, and their invariant derivatives:

Ijk = ι(ujk) = Φ̃jk(κ1,κ2,D1κ1,D2κ1,D1κ2,D2κ2,D
2
1κ1, . . . )

= Φjk(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )
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Recurrence Formulae

ι(Diujk) = Di ι(ujk)−
3∑

κ=1

Rκ
i ι[ϕ

jk
κ (x, y, u(j+k)) ], j + k ≥ 1

Ijk = ι(ujk) — normalized differential invariants

Rκ
i — Maurer–Cartan invariants

ϕjk
κ (0, 0, I(j+k)) = ι[ϕjk

κ (x, y, u(j+k)) ]

— invariantized prolonged infinitesimal generator coefficients.

Ij+1,k = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

1

Ij,k+1 = D1Ijk −
3∑

κ=1

ϕjk
κ (0, 0, I(j+k))Rκ

2
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Prolonged infinitesimal generators:

pr v1 = −y∂x + x∂y − uy∂ux
+ ux∂uy

− 2uxy∂uxx
+ (uxx − uyy)∂uxy

− 2uxy∂uyy
+ · · · ,

pr v2 = −u∂x + x∂u + (1 + u2
x)∂ux

+ uxuy∂uy

+ 3uxuxx∂uxx
+ (uyuxx + 2uxuxy)∂uxy

+ (2uyuxy + uxuyy)∂uyy
+ · · · ,

pr v3 = −u∂y + y∂u + uxuy∂ux
+ (1 + u2

y)∂uy

+ (uyuxx + 2uxuxy)∂uxx
+ (2uyuxy + uxuyy)∂uxy

+ 3uyuyy∂uyy
+ · · · .

Ijk = ι(ujk)

Phantom differential invariants:

I00 = I10 = I01 = I11 = 0

Principal curvatures:
I20 = κ1 I02 = κ2
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Phantom recurrence formulae:
κ1 = I20 = D1I10 − R2

1 = −R2
1,

0 = I11 = D1I01 − R3
1 = −R3

1,

I21 = D1I11 − (κ1 − κ2)R
1
1 = −(κ1 − κ2)R

1
1,

0 = I11 = D2I10 − R2
2 = −R2

2,

κ2 = I02 = D2I01 − R3
2 = −R3

2,

I12 = D2I11 − (κ1 − κ2)R
1
2 = −(κ1 − κ2)R

1
2.

Maurer–Cartan invariants:
R1

1 = −Y1, R2
1 = −κ1, R3

1 = 0,

R1
2 = −Y2, R2

2 = 0, R3
2 = −κ2.

Commutator invariants:

Y1 =
I21

κ1 − κ2

=
D1κ2

κ1 − κ2

Y2 =
I12

κ1 − κ2

=
D2κ1

κ2 − κ1

[D1,D2 ] = D1D2 −D2D1 = Y2D1 − Y1 D2,
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1
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1
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R1
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2 = 0, R3
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Third order recurrence relations:

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2,

Fourth order recurrence relations:

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1,

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

,

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2

+ κ1κ
2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2

+ κ2
1κ2,

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2

= κ2,12 −
κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2

,

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2

+ 3κ3
2.

⋆ The two expressions for I31 and I13 follow from the commutator formula.



Third order recurrence relations:

I30 = D1κ1 = κ1,1, I21 = D2κ1 = κ1,2, I12 = D1κ2 = κ2,1, I03 = D2κ2 = κ2,2,

Fourth order recurrence relations:

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1,

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

,

I22 = κ1,22 +
κ1,1κ2,1 − 2κ2

2,1

κ1 − κ2

+ κ1κ
2
2 = κ2,11 −

κ1,2κ2,2 − 2κ2
1,2

κ1 − κ2

+ κ2
1κ2,

I13 = κ2,21 +
3κ1,2κ2,1

κ1 − κ2

= κ2,12 −
κ2,1κ2,2 − 2κ1,2κ2,1

κ1 − κ2

,

I04 = κ2,22 +
3κ2

2,1

κ1 − κ2

+ 3κ3
2.

⋆ The two expressions for I31 and I13 follow from the commutator formula.



Fourth order recurrence relations

I40 = κ1,11 −
3κ2

1,2

κ1 − κ2

+ 3κ3
1,

I31 = κ1,12 −
3κ1,2κ2,1

κ1 − κ2

= κ1,21 +
κ1,1κ1,2 − 2κ1,2κ2,1

κ1 − κ2

,
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2.

⋆ ⋆ The two expressions for I22 imply the Codazzi syzygy

κ1,22 − κ2,11 +
κ1,1κ2,1 + κ1,2κ2,2 − 2κ2

2,1 − 2κ2
1,2

κ1 − κ2

− κ1κ2 (κ1 − κ2) = 0,

which can be written compactly as

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2.

=⇒ Gauss’ Theorema Egregium



Generating Differential Invariants

♥ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra ISE(3) is generated by the prin-
cipal curvatures κ1,κ2 or, equivalently, the mean and Gauss curvatures,
H,K, through the process of invariant differentiation:

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

♦ Remarkably, for suitably generic surfaces, the Gauss curvature can be
written as a universal rational function of the mean curvature and its
invariant derivatives of order ≤ 4:

K = Ψ(H,D1H,D2H,D2
1H, . . . ,D4

2H)

and hence ISE(3) is generated by mean curvature alone!

♠ To prove this, in view of the Codazzi syzygy

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2,

it suffices to write the commutator invariants Y1, Y2 in terms of H.



Generating Differential Invariants

♥ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra ISE(3) is generated by the prin-
cipal curvatures κ1,κ2 or, equivalently, the mean and Gauss curvatures,
H,K, through the process of invariant differentiation:

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

♦ Remarkably, for suitably generic surfaces, the Gauss curvature can be
written as a universal rational function of the mean curvature and its
invariant derivatives of order ≤ 4:

K = Ψ(H,D1H,D2H,D2
1H, . . . ,D4

2H)

and hence ISE(3) is generated by mean curvature alone!

♠ To prove this, in view of the Codazzi syzygy

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2,

it suffices to write the commutator invariants Y1, Y2 in terms of H.



Generating Differential Invariants

♥ From the general structure of the recurrence relations, one proves that the
Euclidean differential invariant algebra ISE(3) is generated by the prin-
cipal curvatures κ1,κ2 or, equivalently, the mean and Gauss curvatures,
H,K, through the process of invariant differentiation:

I = Φ(H,K,D1H,D2H,D1K,D2K,D2
1H, . . . )

♦ Remarkably, for suitably generic surfaces, the Gauss curvature can be
written as a universal rational function of the mean curvature and its
invariant derivatives of order ≤ 4:

K = Ψ(H,D1H,D2H,D2
1H, . . . ,D4

2H)

and hence ISE(3) is generated by mean curvature alone!

♠ To prove this, in view of the Codazzi syzygy

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2,
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The Commutator Trick

K = κ1κ2 = − (D1 + Y1)Y1 − (D2 + Y2)Y2

To determine the commutator invariants:

D1D2H −D2D1H = Y2 D1H − Y1D2H

D1D2DJH −D2D1DJH = Y2 D1DJH − Y1D2DJH
(∗)

Non-degeneracy condition:

det

(
D1H D2H

D1DJH D2DJH

)

̸= 0,

Solve (∗) for Y1, Y2 in terms of derivatives of H, producing a universal formula

K = Ψ(H,D1H,D2H, . . . )

for the Gauss curvature as a rational function of the mean curvature and its
invariant derivatives!



Definition. A surface S ⊂ R3 is mean curvature degenerate if, near any
non-umbilic point p0 ∈ S, there exist scalar functions F1(t), F2(t) such that

D1H = F1(H), D2H = F2(H).

• surfaces with symmetry: rotation, helical;

• minimal surfaces;

• constant mean curvature surfaces;

• ???

Theorem. If a surface is mean curvature non-degenerate
then the algebra of Euclidean differential invariants
is generated entirely by the mean curvature and its
successive invariant derivatives.



Minimal Generating Invariants

Euclidean curves C ⊂ R3: curvature κ and torsion τ

Equi–affine curves C ⊂ R3: affine curvature κ and torsion τ

Euclidean surfaces S ⊂ R3: mean curvature H

Equi–affine surfaces S ⊂ R3: Pick invariant P .

Conformal surfaces S ⊂ R3: third order invariant J3.

Projective surfaces S ⊂ R3: fourth order invariant K4.

Ternary forms u = P (x, y): third order invariant L3.

=⇒ For any n ≥ 1, there exists a Lie group GN acting on surfaces S ⊂ R3

such that its differential invariant algebra requires n generating invariants!

♠ Finding a minimal generating set appears to be a very difficult problem.
(No known bound on order of syzygies.)
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Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx
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However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.



However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.



However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan) Two regular submanifolds
are (locally) equivalent if and only if they have
identical syzygies among all their differential
invariants.



Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of differential
invariants and hence an infinite number of syzygies
must be compared to establish equivalence.

♥ But the higher order differential invariants are always
generated by invariant differentiation from a finite
collection of basic differential invariants, and the higher
order syzygies are all consequences of a finite number
of low order syzygies!

♦ A suitable collection of low order fundamental differential
invariants will parametrize a signature Σ of the original
submanifold N . Two regular submanifolds are (locally)
equivalent: N = g ·N if and only if they have identical
signatures: Σ = Σ.
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Example — Plane Curves

If non-constant, both κ and κs depend on a single parame-
ter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated by
the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between the
fundamental differential invariants κ and κs in order to establish
equivalence!



The Signature Map

The generating syzygies are encoded by the
signature map

χ : N −→ Σ

of the submanifold N , which is parametrized by
the fundamental differential invariants:

χ(x) = (I1(x), . . . , Im(x))

The image
Σ = Im χ

is the signature subset (or submanifold) of N .



Equivalence & Signature

Theorem. Two regular submanifolds are

equivalent:

N = g ·N

if and only if their signatures are identical:

Σ = Σ



Signature Curves

Definition. The signature curve Σ ⊂ R2 of a plane curve
C ⊂ R2 is parametrized by the two lowest order differential
invariants

χ : C −→ Σ =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are locally
equivalent:

C = g · C
if and only if their signature curves are identical:

Σ = Σ

=⇒ regular: (κs,κss) ̸= 0.
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3D Differential Invariant Signatures
Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant
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Symmetry and Signature

GS = (local) symmetry group(oid) of S

= { g ∈ G | g · (S ∩ U) ⊂ S }

⋆ Regular submanifolds:
the (local) dimension of the signature equals
the co-dimension of the (local) symmetry group:

dimΣ = dimS − dimGS

• Maximally symmetric: dimΣ = 0
⇐⇒ all the differential invariants are constant
⇐⇒ dimGS = dimS = p
⇐⇒ S ⊂ H · z0 is a piece of

an orbit of a p-dimensional subgroup H ⊂ G
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GS = (local) symmetry group(oid) of S

= { g ∈ G | g · (S ∩ U) ⊂ S }

⋆ Regular submanifolds:
the (local) dimension of the signature equals
the co-dimension of the (local) symmetry group:

dimΣ = dimS − dimGS

• Maximally symmetric: dimΣ = 0
⇐⇒ all the differential invariants are constant
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⇐⇒ S ⊂ H · z0 is a piece of
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• Discrete symmetries: dimΣ = p = dimS
The number of discrete (local) symmetries: # GS

equals the (local) index of the signature.

χ

−→

N Σ



The Curve x = cos t+ 1
5 cos
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The Curve x = cos t+ 1
5 cos

2 t, y = 1
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Canine Left Ventricle Signature

Original Canine Heart
MRI Image

Boundary of Left Ventricle



Smoothed Ventricle Signature
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=⇒ Steve Haker
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Signatures

s

κ

Classical signature

−→

Original curve κ

κs

Differential invariant signature
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Occlusions

s

κ

Classical Signature

−→

Original curve κ

κs

Differential invariant signature



Step 1. Numerically compute invariant signatures of (parts of) pieces.
Step 2. Compare signatures to find potential fits.

Automatic puzzle reassembly

Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1–3 until puzzle is assembled….

Step 0. Digitally photograph and smooth the puzzle pieces.



Vertices of Euclidean Curves

Ordinary vertex: local extremum of curvature

Generalized vertex: κs ≡ 0

• critical point

• circular arc

• straight line segment

Mukhopadhya’s Four Vertex Theorem:

A simple closed, non-circular plane curve has n ≥ 4
generalized vertices.



Localization of Signatures

Bivertex arc: κs ̸= 0 everywhere on the arc B ⊂ C
except κs = 0 at the two endpoints

The signature Σ = χ(B) of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



Bivertex Decomposition

v-regular curve — finitely many generalized vertices

C =
⋃m
j=1Bj ∪ ⋃n

k=1Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176–185.



Measuring Closeness of Signatures

• Hausdorff distance

• Monge–Kantorovich optimal transport

• Electrostatic repulsion

• Latent semantic analysis

• Histograms

• Gromov–Hausdorff & Gromov–Wasserstein metric



Gravitational/Electrostatic Attraction

⋆ Treat the two bivertex arc sigantures as masses or as
oppositely charged wires. The higher their mutual
attraction, the closer they are together.

⋆ In practice, we are dealing with discrete data (pixels)
and so treat the curves and signatures as point
masses/charges.

κ

κs

κ

κs







The Baffler Jigsaw Puzzle



Piece Locking

⋆ ⋆ Minimize force and torque based on gravitational
attraction of the two matching edges.



The Baffler Solved



The Rain Forest Giant Floor Puzzle



The Rain Forest Puzzle Solved

=⇒ D. Hoff & PJO, Automatic solution of jigsaw puzzles,
J. Math. Imaging Vision 49 (2014) 234–250.



3DJigsawPuzzles

=⇒ Anna Grim, Tim O’Connor, Ryan Schlecta
Cheri Shakiban, Rob Thompson, PJO



A broken ostrich egg

(Scanned by M. Bern, Xerox PARC)



AnEggshell Piece



ReassemblingHumptyDumpty



Archaeology



=⇒ Virtual Archaeology



Surgery



Anthropology

 

Could history of humans in North America be
rewritten by broken bones?
Smashed mastodon bones show humans arrived over 100,000 years earlier than previously
thought say researchers, although other experts are sceptical

Ian Sample Science editor
Wednesday 26 April 2017 13.00 EDT



AMAAZE

Breaking Bones
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Working Hypothesis
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Segmentation







Benign vs. Malignant Tumors

=⇒ A. Grim, C. Shakiban



Benign vs. Malignant Tumors



Benign vs. Malignant Tumors



Classical Invariant Theory

M = R
2 \ {u = 0}

G = GL(2) =

{ (
α β
γ δ

) ∣∣∣∣∣ ∆ = α δ − β γ ̸= 0

}

(x, u) '−→
(
αx+ β

γx+ δ
,

u

(γx+ δ)n

)

n ̸= 0, 1



Prolongation:

y =
αx+ β

γ x+ δ
σ = γ x+ δ

v = σ−n u ∆ = α δ − β γ

vy =
σ ux − n γ u

∆ σn−1

vyy =
σ2 uxx − 2(n− 1)γ σ ux + n(n− 1)γ2 u

∆2 σn−2

vyyy = · · ·



Normalization:

y =
α x+ β

γ x+ δ
= 0 σ = γ x+ δ

v = σ−n u = 1 ∆ = α δ − β γ

vy =
σ ux − n γ u

∆ σn−1
= 0

vyy =
σ2 uxx − 2(n− 1) γ σ ux + n(n− 1)γ2 u

∆2 σn−2
=

1

n(n− 1)

vyyy = · · ·



Moving frame:

α = u(1−n)/n
√
H β = −xu(1−n)/n

√
H

γ = 1
n u(1−n)/n δ = u1/n − 1

n xu(1−n)/n

Hessian:

H = n(n− 1)uuxx − (n− 1)2u2
x ̸= 0

Note: H ≡ 0 if and only if Q(x) = (a x+ b)n

=⇒ Totally singular forms

Differential invariants:

vyyy '−→
J

n2(n− 1)
≈ κ vyyyy '−→

K + 3(n− 2)

n3(n− 1)
≈

dκ

ds



Absolute rational covariants:

J2 =
T 2

H3
K =

U

H2

H = 1
2(Q, Q)(2) = n(n− 1)QQ′′ − (n− 1)2Q′2 ∼ QxxQyy −Q2

xy

T = (Q, H)(1) = (2n− 4)Q′H − nQH ′ ∼ QxHy −QyHx

U = (Q, T )(1) = (3n− 6)Q′T − nQT ′ ∼ QxTy −QyTx

degQ = n degH = 2n− 4 deg T = 3n− 6 degU = 4n− 8



Signatures of Binary Forms

Signature curve of a nonsingular binary form Q(x):

ΣQ =

{

(J(x)2,K(x)) =

(
T (x)2

H(x)3
,
U(x)

H(x)2

)}

Nonsingular : H(x) ̸= 0 and (J ′(x),K ′(x)) ̸= 0.

Theorem. Two nonsingular binary forms are equiva-
lent if and only if their signature curves are identical.



Maximally Symmetric Binary Forms

Theorem. If u = Q(x) is a polynomial, then the
following are equivalent:

• Q(x) admits a one-parameter symmetry group

• T 2 is a constant multiple of H3

• Q(x) ≃ xk is complex-equivalent to a monomial

• the signature curve degenerates to a single point

• all the (absolute) differential invariants of Q are
constant

• the graph of Q coincides with the orbit of a
one-parameter subgroup



Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form
Q(x) ̸≡ 0 of degree n is:

• A two-parameter group if and only if H ≡ 0 if and only if
Q is equivalent to a constant. =⇒ totally singular

• A one-parameter group if and only if H ̸≡ 0 and T 2 = cH3

if and only if Q is complex-equivalent to a monomial xk,
with k ̸= 0, n. =⇒ maximally symmetric

• In all other cases, a finite group whose cardinality equals
the index of the signature curve, and is bounded by

ιQ ≤
{

6n− 12 U = cH2

4n− 8 otherwise



Noise Reduction

Strategy #1:

Use lower order invariants to construct a signature:

• joint invariants

• joint differential invariants

• integral invariants

• topological invariants

• . . .



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M × · · ·×M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)

A joint differential invariant or semi-differential
invariant is an invariant depending on the derivatives
at several points z1, . . . , zk ∈ N on the submanifold:

I(g · z(n)1 , . . . , g · z(n)k ) = I(z(n)1 , . . . , z
(n)
k )



Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(zi, zj) = ∥ zi − zj ∥

zi

zj



Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is
a function of the triangular areas

[ i j k ] = 1
2 (zi − zj) ∧ (zi − zk)

zi

zj

zk



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

[ zi, zj, zk, zl, zm ] =
AB

C D

A B

C

D



• Three–point projective joint differential invariant
— tangent triangle ratio:

[ 0 2
!

0 ] [ 0 1
!

1 ] [ 1 2
!

2 ]

[ 0 1
!

0 ] [ 1 2
!

1 ] [ 0 2
!

2 ]

z0 z1

z2

z0 z1

z2



Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional

submanifold, then you need at least

ℓ > k p

distinct invariants I1, . . . , Iℓ in order to construct a syzygy.

Typically, the number of joint invariants is

ℓ = km− r = (#points) (dimM)− dimG

Therefore, a purely joint invariant signature requires at least

k ≥
r

m− p
+ 1

points on our p-dimensional submanifold N ⊂ M .



Joint Euclidean Signature

z 0

z 1 z 2

z 3

a
b

c

d

e

f



Joint signature map:

Σ : C×4 −→ Σ ⊂ R
6

a = ∥ z0 − z1 ∥ b = ∥ z0 − z2 ∥ c = ∥ z0 − z3 ∥

d = ∥ z1 − z2 ∥ e = ∥ z1 − z3 ∥ f = ∥ z2 − z3 ∥

=⇒ six functions of four variables

Syzygies:

Φ1(a, b, c, d, e, f) = 0 Φ2(a, b, c, d, e, f) = 0

Universal Cayley–Menger syzygy ⇐⇒ C ⊂ R2

det

∣∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣∣
= 0



Joint Equi–Affine Signature

Requires 7 triangular areas:

[ 0 1 2 ] , [ 0 1 3 ] , [ 0 1 4 ] , [ 0 1 5 ] , [ 0 2 3 ] , [ 0 2 4 ] , [ 0 2 5 ]

z0

z1

z2

z3

z4

z5



Joint Invariant Signatures

• The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

• Identification of landmarks can significantly reduce the
redundancies (Boutin)

• It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”.

• Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Symmetry–Preserving Numerical Methods

• Invariant numerical approximations to differential
invariants.

• Invariantization of numerical integration methods.

=⇒ Structure-preserving algorithms



Numerical approximation to curvature

a
b

cA

B

C

Heron’s formula

κ̃(A,B,C) = 4
∆

abc
= 4

√
s(s− a)(s− b)(s− c)

abc

s =
a+ b+ c

2
— semi-perimeter



Invariantization of Numerical Schemes

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge–Kutta Method for ordi-
nary differential equations, or the Crank–Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriately chosen moving frame to
invariantize the numerical scheme, leading to an invariant nu-
merical scheme that preserves the symmetry group. In challeng-
ing regimes, the resulting invariantized numerical scheme can,
with an inspired choice of moving frame, perform significantly
better than its progenitor.
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Invariant Runge–Kutta schemes

uxx + xux − (x+ 1)u = sinx, u(0) = ux(0) = 1.



Invariantization of Crank–Nicolson
for Burgers’ Equation

ut = εuxx + uux
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=⇒ Pilwon Kim



Morphological PDEs

Hamilton–Jacobi partial differential equation:

ut = ± |∇u|

Symmetry Group:
u '−→ ϕ(u)

Here, we focus on the one-parameter subgroup

u '−→
λu

1 + (λ− 1)u



Invariantization of 1D Morphology

ut = |ux|Upwind scheme:

uk+1
i = uk

i +
∆t

∆x
max{uk

i+1 − uk
i , u

k
i−1 − uk

i , 0} .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  10  20  30  40  50

original
theoretical

upwind without invariantization
upwind with invariantization

1D dilation of a single peak, 20 iterations,
∆t = ∆x = 0.5, without and with invariantization.



Invariantization of 2DMorphology
Non-invariant upwind scheme:

Invariantized upwind scheme:



The Calculus of Variations

I[u ] =
∫
L(x, u(n)) dx — variational problem

L(x, u(n)) — Lagrangian

To construct the Euler-Lagrange equations: E(L) = 0

• Take the first variation:

δ(Ldx) =
∑

α,J

∂L

∂uα
J

δuα
J dx

• Integrate by parts:

δ(Ldx) =
∑

α,J

∂L

∂uα
J

DJ(δu
α) dx

≡
∑

α,J

(−D)J
∂L

∂uα
J

δuα dx =
q∑

α=1

Eα(L) δu
α dx



Invariant Variational Problems

According to Lie, any G–invariant variational problem can
be written in terms of the differential invariants:

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

I1, . . . , Iℓ — fundamental differential invariants

D1, . . . ,Dp — invariant differential operators

DKIα — differentiated invariants

ω = ω1 ∧ · · · ∧ ωp — invariant volume form



If the variational problem is G-invariant, so

I[u ] =
∫
L(x, u(n)) dx =

∫
P ( . . . DKIα . . . ) ω

then its Euler–Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

E(L) ≃ F ( . . . DKIα . . . ) = 0

Main Problem:

Construct F directly from P .

(P. Griffiths, I. Anderson )



Planar Euclidean group G = SE(2)

κ =
uxx

(1 + u2
x)

3/2
— curvature (differential invariant)

ds =
√
1 + u2

x dx — arc length

D =
d

ds
=

1
√
1 + u2

x

d

dx
— arc length derivative

Euclidean–invariant variational problem

I[u ] =
∫
L(x, u(n)) dx =

∫
P (κ,κs,κss, . . . ) ds

Euler-Lagrange equations

E(L) ≃ F (κ,κs,κss, . . . ) = 0



Euclidean Curve Examples

Minimal curves (geodesics):

I[u ] =
∫

ds =
∫ √

1 + u2
x dx

E(L) = −κ = 0
=⇒ straight lines

The Elastica (Euler):

I[u ] =
∫

1
2 κ

2 ds =
∫ u2

xx dx

(1 + u2
x)

5/2

E(L) = κss +
1
2 κ

3 = 0
=⇒ elliptic functions



General Euclidean–invariant variational problem

I[u ] =
∫
L(x, u(n)) dx =

∫
P (κ,κs,κss, . . . ) ds

To construct the invariant Euler-Lagrange equations:

Take the first variation:

δ(P ds) =
∑

j

∂P

∂κj

δκj ds+ P δ(ds)

Invariant variation of curvature:

δκ = Aκ(δu) Aκ = D2 + κ2

Invariant variation of arc length:

δ(ds) = B(δu) ds B = −κ

=⇒ moving frame recurrence formulae



Integrate by parts:

δ(P ds) ≡ [ E(P )A(δu)−H(P )B(δu) ] ds
≡ [A∗E(P )− B∗H(P ) ] δu ds = E(L) δu ds

Invariantized Euler–Lagrange expression

E(P ) =
∞∑

n=0

(−D)n
∂P

∂κn

D =
d

ds

Invariantized Hamiltonian

H(P ) =
∑

i>j

κi−j (−D)j
∂P

∂κi

− P

Euclidean–invariant Euler-Lagrange formula

E(L) = A∗E(P )− B∗H(P ) = (D2 + κ2) E(P ) + κH(P ) = 0.



The Elastica:

I[u ] =
∫

1
2 κ

2 ds P = 1
2 κ

2

E(P ) = κ H(P ) = −P = − 1
2 κ

2

E(L) = (D2 + κ2) κ+ κ (− 1
2 κ

2 ) = κss +
1
2 κ

3 = 0







Evolution of Invariants and Signatures

G — Lie group acting on R2

C(t) — parametrized family of plane curves

G–invariant curve flow:

dC

dt
= V = I t+ J n

• I, J — differential invariants

• t — “unit tangent”

• n — “unit normal”

• The tangential component I t only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

Ct = J n

Examples — Euclidean–invariant curve flows

• Ct = n — geometric optics or grassfire flow;

• Ct = κn — curve shortening flow;

• Ct = κ1/3 n — equi-affine invariant curve shortening flow:
Ct = nequi−affine ;

• Ct = κs n — modified Korteweg–deVries flow;

• Ct = κss n — thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by

v = I t+ J n

preserves arc length if and only if

B(J) +D I = 0.

D — invariant arc length derivative

B — invariant arc length variation

δ(ds) = B(δu) ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow Ct = J n,

∂κ

∂t
= Aκ(J),

∂κs

∂t
= Aκs

(J).

Invariant variations:

δκ = Aκ(δu), δκs = Aκs
(δu).

Aκ = A — invariant variation of curvature;

Aκs
= DA+ κκs — invariant variation of κs.



Euclidean–invariant Curve Evolution
Normal flow: Ct = J n

∂κ

∂t
= Aκ(J) = (D2 + κ2) J,

∂κs

∂t
= Aκs

(J) = (D3 + κ2D + 3κκs)J.

Warning : For non-intrinsic flows, ∂t and ∂s do not commute!

Grassfire flow: J = 1

∂κ

∂t
= κ2,

∂κs

∂t
= 3κκs, . . .

=⇒ caustics

⋆ Signature evolution: Σt = · · ·



Euclidean–invariant Curve Evolution
Normal flow: Ct = J n

∂κ

∂t
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∂t
= Aκs
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Grassfire flow: J = 1

∂κ

∂t
= κ2,

∂κs

∂t
= 3κκs, . . .

=⇒ caustics
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Euclidean–invariant Curve Evolution
Normal flow: Ct = J n

∂κ

∂t
= Aκ(J) = (D2 + κ2) J,

∂κs

∂t
= Aκs

(J) = (D3 + κ2D + 3κκs)J.

Warning : For non-intrinsic flows, ∂t and ∂s do not commute!

Grassfire flow: J = 1

∂κ

∂t
= κ2,

∂κs

∂t
= 3κκs, . . .

=⇒ caustics

⋆ Signature evolution: Σt = · · ·



Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

κt = R(J) where R = A− κsD
−1B (∗)

In surprisingly many situations,
(*) is a well-known integrable evolution equation,

and R is (closely related to) its recursion operator!

=⇒ Hasimoto

=⇒ Langer, Singer, Perline

=⇒ Maŕı–Beffa, Sanders, Wang, Qu, Chou, Anco,

=⇒ Benson, and many more ...



Euclidean plane curves
G = SE(2) = SO(2)! R2

A = D2 + κ2 B = −κ

R = A− κsD
−1B = D2 + κ2 + κsD

−1 · κ

κt = R(κs) = κsss +
3
2 κ

2κs

=⇒ modified Korteweg-deVries equation



Equi-affine plane curves

G = SA(2) = SL(2)! R2

A = D4 + 5
3 κD

2 + 5
3 κsD + 1

3 κss +
4
9 κ

2

B = 1
3 D

2 − 2
9 κ

R = A− κsD
−1B

= D4 + 5
3 κD

2 + 4
3 κsD + 1

3 κss +
4
9 κ

2 + 2
9 κsD

−1 · κ

κt = R(κs) = κ5s +
5
3 κκsss +

5
3 κsκss +

5
9 κ

2κs

=⇒ Sawada–Kotera equation

Recursion operator: R̂ = R · (D2 + 1
3 κ+ 1

3 κsD−1)



Euclidean space curves

G = SE(3) = SO(3)! R3

A =

⎛

⎜⎜⎜⎜⎝

D2
s + (κ2 − τ2)

2τ

κ
D2

s +
3κτs − 2κsτ

κ2
Ds +

κτss − κsτs + 2κ3τ

κ2

−2τDs − τs

1

κ
D3

s −
κs

κ2
D2

s +
κ2 − τ2

κ
Ds +

κsτ
2 − 2κττs
κ2

⎞

⎟⎟⎟⎟⎠

B = (−κ 0 )

R = A−
(
κs

τs

)

D−1B
(
κt

τt

)

= R
(
0
κ

)

=⇒ vortex filament flow (Hasimoto)


