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Symmetry

Definition. A symmetry of a set S is a transformation
that preserves it:

g · S = S

⋆ ⋆ The set of symmetries forms a group, called the
symmetry group of the set S.



Discrete Symmetry Group

Rotations by 90◦:

GS = Z4

Rotations + reflections:

GS = Z2 ! Z4



Continuous Symmetry Group

Rotations:

GS = SO(2)

Rotations + reflections:

GS = O(2)

Conformal Inversions:

x =
x

x2 + y2
y =

y

x2 + y2

⋆ A continuous group is known as a Lie group
— in honor of Sophus Lie.



Continuous Symmetries of a Square

−→ −→R −→



Symmetry

⋆ To define the set of symmetries requires a priori
specification of the allowable transformations

G — transformation group containing all allowable
transformations of the ambient space M

Definition. A symmetry of a subset S ⊂ M is an
allowable transformation g ∈ G that preserves it:

g · S = S



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = Z4 ! Z2



What is the Symmetry Group?

Allowable transformations:

Rigid motions

G = SE(2) = SO(2)! R2

GS = {e}



Local Symmetries

Definition. g ∈ G is a local symmetry of S ⊂ M
based at a point z ∈ S if there is an
open neighborhood z ∈ U ⊂ M such that

g · (S ∩ U) = S ∩ (g · U)

⋆ ⋆ The set of all local symmetries forms a groupoid!

=⇒ Groupoids form the appropriate framework for
studying objects with variable symmetry.

Definition. A groupoid is a small category such that
every morphism has an inverse.



Groupoids

=⇒ In practice you are only allowed to multiply
groupoid elements g · h when

source (domain) of g = target (range) of h

Similarly for inverses g−1 and the identities e.

A groupoid is a “collection of arrows”:

hg

g · h



Geometry = Group(oid) Theory

Felix Klein’s Erlanger Programm (1872):

Each type of geometry is founded on
an underlying transformation group



Plane Geometries/Groups

Euclidean geometry:
SE(2) — rigid motions (rotations and translations)

(
x
y

)

=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

+

(
a
b

)

E(2) — plus reflections?

Equi-affine geometry:
SA(2) — area-preserving affine transformations:
(
x
y

)

=

(
α β
γ δ

)(
x
y

)

+

(
a
b

)

α δ − β γ = 1

Projective geometry:
PSL(3) — projective transformations:

x =
αx+ β y + γ

ρx+ σ y + τ
y =

λx+ µ y + ν

ρx+ σ y + τ



The Equivalence Problem
=⇒ É Cartan

G — transformation group acting on M

Equivalence:
Determine when two subsets

S and S ⊂ M

are congruent:

S = g · S for g ∈ G

Symmetry:
Find all symmetries or self-congruences:

S = g · S



Euclidean Equivalence



Projective/Equi-Affine Equivalence

=⇒ Symmetries



Duck =Rabbit?



Limitations of Projective Equivalence

=⇒ K. Åström (1995)



Thatcher Illusion

=⇒ Groupoid equivalence?



Invariants

The solution to an equivalence problem rests on understanding
its invariants.

Definition. If G is a group acting on M , then an invariant is a
real-valued function I : M → R that does not change under
the action of G:

I(g · z) = I(z) for all g ∈ G, z ∈ M

⋆ If G acts transitively, there are no (non-constant) invariants.



Differential Invariants

Given a submanifold (curve, surface, . . . )

S ⊂ M

a differential invariant is an invariant of the prolonged action of
G on its Taylor coefficients (jets):

I(g · z(k)) = I(z(k))



Euclidean Plane Curves

G = SE(2) acts on curves C ⊂ M = R
2

The simplest differential invariant is the curvature, defined as
the reciprocal of the radius of the osculating circle:

κ =
1

r



Curvature

r = 1/κ



Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc
length element ds is an invariant differential operator,
meaning that it maps differential invariants to differential
invariants.

Thus, starting with curvature κ, we can generate an infinite
collection of higher order Euclidean differential invariants:

κ,
dκ

ds
,

d2κ

ds2
,

d3κ

ds3
, · · ·

Theorem. All Euclidean differential invariants are functions of
the derivatives of curvature with respect to arc length:
κ, κs, κss, · · ·



Euclidean Plane Curves: G = SE(2)

Assume the curve C ⊂ M is a graph: y = u(x)

Differential invariants:

κ =
uxx

(1 + u2
x)

3/2
,

dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3
,

d2κ

ds2
= · · ·

Arc length (invariant one-form):

ds =
√
1 + u2

x dx,
d

ds
=

1
√
1 + u2

x

d

dx



Equi-affine Plane Curves: G = SA(2) = SL(2)! R2

Equi-affine curvature:

κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

dκ

ds
= · · ·

Equi-affine arc length:

ds = 3

√
uxx dx

d

ds
=

1
3
√
uxx

d

dx

Theorem. All equi-affine differential invariants are functions
of the derivatives of equi-affine curvature with respect to
equi-affine arc length: κ, κs, κss, · · ·



Projective Plane Curves: G = PSL(2)

Projective curvature:

κ = K(u(7), · · · )
dκ

ds
= · · ·

d2κ

ds2
= · · ·

Projective arc length:

ds = L(u(5), · · · ) dx
d

ds
=

1

L

d

dx

Theorem. All projective differential invariants are functions
of the derivatives of projective curvature with respect to
projective arc length:

κ, κs, κss, · · ·



Moving Frames

The equivariant method of moving frames provides a
systematic and algorithmic calculus for
determining complete systems of differential
invariants, joint invariants, invariant differential
operators, invariant differential forms, invariant
variational problems, invariant numerical algo-
rithms, etc., etc.



Equivalence & Invariants

• Equivalent submanifolds S ≈ S
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are locally equivalent if
and only if they have identical syzygies among all
their differential invariants.



Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of
differential invariants and hence an infinite
number of syzygies must be compared to
establish equivalence.

♥ But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!



Example — Plane Curves

If non-constant, both κ and κs depend on a single
parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!



Signature Curves

Definition. The signature curve Σ ⊂ R2 of a plane curve
C ⊂ R2 is parametrized by the two lowest order differential
invariants

χ : C −→ Σ =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are locally
equivalent:

C = g · C
if and only if their signature curves are identical:

Σ = Σ

=⇒ regular: (κs,κss) ̸= 0.



Continuous Symmetries of Curves

Theorem. For a connected curve, the following are
equivalent:

• All the differential invariants are constant on C:
κ = c, κs = 0, . . .

• The signature Σ degenerates to a point: dimΣ = 0

• C admits a one-dimensional (local) symmetry group

• C is a piece of an orbit of a 1-dimensional subgroup H ⊂ G



Discrete Symmetries of Curves

Definition. The index of a completely regular point ζ ∈ Σ

equals the number of points in C which map to it:

iζ = # χ−1{ζ}

Regular means that, in a neighborhood of ζ, the signature is an

embedded curve — no self-intersections.

Theorem. If χ(z) = ζ is completely regular, then its index

counts the number of discrete local symmetries of C.



The Index

χ

−→

C Σ



The Curve x = cos t+ 1
5 cos

2 t, y = sin t+ 1
10 sin

2 t
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The Curve x = cos t+ 1
5 cos

2 t, y = 1
2 x+ sin t+ 1

10 sin
2 t
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Canine Left Ventricle Signature

Original Canine Heart
MRI Image

Boundary of Left Ventricle



Smoothed Ventricle Signature
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Object Recognition

=⇒ Steve Haker
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Signatures

s

κ

Classical Signature−→

Original curve
κ

κs

Differential invariant signature



Occlusions

s

κ

Classical Signature−→

Original curve
κ

κs

Differential invariant signature



3DDifferential Invariant Signatures

Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



Vertices of Euclidean Curves

Ordinary vertex: local extremum of curvature

Generalized vertex: κs ≡ 0

• critical point

• circular arc

• straight line segment

Mukhopadhya’s Four Vertex Theorem:

A simple closed, non-circular plane curve has n ≥ 4 generalized
vertices.



“Counterexamples”

⋆ Generalized vertices map to a single point of the signature.

Hence, the (degenerate) curves obtained by replace ordinary
vertices with circular arcs of the same radius all have identical
signature:

!2 2 4 6
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!6
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4

=⇒ Musso–Nicoldi



Bivertex Arcs

Bivertex arc: κs ̸= 0 everywhere on the arc B ⊂ C
except κs = 0 at the two endpoints

The signature Σ = χ(B) of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



Bivertex Decomposition
v-regular curve — finitely many generalized vertices

C =
m⋃

j=1
Bj ∪

n⋃

k=1
Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176–185.



Signature Metrics

Used to compare signatures:

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic/gravitational attraction

• Latent semantic analysis

• Histograms

• Geodesic distance

• Diffusion metric

• Gromov–Hausdorff & Gromov–Wasserstein



Gravitational/Electrostatic Attraction

♥ Treat the two signature curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

♠ In practice, we are dealing with discrete data (pixels) and so
treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



The Baffler Jigsaw Puzzle



Piece Locking

⋆ ⋆ Minimize force and torque based on gravitational
attraction of the two matching edges.



The Baffler Solved



The Rain Forest Giant Floor Puzzle



The Rain Forest Puzzle Solved

=⇒ D. Hoff & PJO, Automatic solution of jigsaw puzzles,
J. Math. Imaging Vision 49 (2014) 234–250.



3DJigsawPuzzles

=⇒ Anna Grim, Tim O’Connor, Ryan Schlecta
Cheri Shakiban, Rob Thompson, PJO



ReassemblingHumptyDumpty
Broken ostrich egg shell — Marshall Bern



Archaeology



=⇒ Virtual Archaeology



Surgery



Benign vs. Malignant Tumors

=⇒ A. Grim, C. Shakiban



Benign vs. Malignant Tumors



Benign vs. Malignant Tumors



Noise Resistant Signatures

Use lower order invariants to construct a signature:

• joint invariants

• joint differential invariants

• integral invariants

• topological invariants

• . . .



Invariant Histograms

Euclidean geometry:

Definition. The distance histogram of a finite set of points
P = {z1, . . . , zn} ⊂ V is the function

ηP (r) = #
{
(i, j)

∣∣∣ 1 ≤ i < j ≤ n, d(zi, zj) = r
}
.



Characterization of Point Sets

⋆ ⋆ If P̃ = g · P is obtained from P ⊂ Rm by a rigid motion
g ∈ E(n), then they have the same distance histogram:
ηP = ηP̃ .

Question: Can one uniquely characterize, up to rigid motion, a
set of points P{z1, . . . , zn} ⊂ Rm by its distance histogram?

=⇒ Tinkertoy problem.



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.



No:

Kite Trapezoid

η =
√
2,

√
2, 2,

√
10,

√
10, 4.



No:

P = {0, 1, 4, 10, 12, 17}

Q = {0, 1, 8, 11, 13, 17}
⊂ R

η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17

=⇒ G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378–379



Theorem. (Boutin–Kemper) Suppose n ≤ 3 or n ≥ m + 2.
Then there is a Zariski dense open subset in the space of n
point configurations in Rm that are uniquely characterized,
up to rigid motion, by their distance histograms.

=⇒ M. Boutin, G. Kemper, Adv. Appl. Math. 32 (2004) 709–735



Limiting Curve Histogram

D. Brinkman & PJO, Invariant histograms,

Amer. Math. Monthly 118 (2011) 2–24.



Limiting Curve Histogram Functions

Length of a curve

l(C) =
∫

C
ds < ∞

Local curve distance histogram function z ∈ V

hC(r, z) =
l(C ∩ Br(z))

l(C)

=⇒ The fraction of the curve contained in the ball of radius r
centered at z.

Global curve distance histogram function:

HC(r) =
1

l(C)

∫

C
hC(r, z(s)) ds.



Square Curve Histogramwith Bounds



Kite and Trapezoid Curve Histograms



Histogram–Based Shape Recognition
500 sample points

Shape (a) (b) (c) (d) (e) (f)

(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8

(b) square 28.2 .5 81.2 73.6 34.8 72.1

(c) circle 66.9 79.6 .5 137.0 89.2 138.0

(d) 2× 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9

(e) 1× 3 rectangle 31.8 36.7 83.7 55.7 4.0 46.5

(f) star 81.0 74.3 139.0 9.3 60.5 .9



Distinguishing Melanomas from Moles

Melanoma Mole

=⇒ A. Rodriguez, J. Stangl, C. Shakiban



Cumulative Global Histograms

200 400 600 800 1000
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Red: melanoma Green: mole



Logistic Function Fitting

Melanoma Mole



Logistic Function Fitting — Residuals

0.5

1.0

1.5

2.0

2.5

�.0

Melanoma = 17.1336 ± 1.02253

Mole = 19.5819 ± 1.42892

⎫
⎪⎬

⎪⎭
58.7% Confidence



Curve HistogramConjecture

Two sufficiently regular plane curves C and C̃

have identical global distance histogram functions, so

HC(r) = HC̃(r) for all r ≥ 0, if and only if they are

rigidly equivalent: C ≃ C̃.


