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Amalie EmmyNoether
(1882–1935)



Fraulein Noether was the most significant creative
mathematician thus far produced since the higher
education of women began.

— Albert Einstein, obituary, New York Times

She was a great mathematician, the greatest, I
firmly believe that her sex has ever produced and a
great woman . . . And of all I have known, she was
certainly one of the happiest.

— Hermann Weyl



Emmy Noether was one of the most influential

mathematicians of the century. The development of

abstract algebra, which is one of the most distinctive

innovations of twentieth century mathematics, is

largely due to her — in published papers, in lectures,

and in personal influence on her contemporaries.

— Nathan Jacobson



Noether theMathematician



EmmyNoether —Biography

Born: 1882, Erlangen, Germany

Father: Max Noether (Nöther), German mathematician
— algebraic geometry

1907 Ph.D. under Paul Gordan, Erlangen (“King of invariants”)

— calculated all 331 invariants of ternary biquadratic forms

— “Formelgestrüpp”, “Mist” (E.N.)

1907–14: Teaches at University of Erlangen without pay

1915–33: Invited to University of Göttingen
by David Hilbert & Felix Klein

1918: Noether’s Theorems published



1919: Habilitation

1919–35: Established foundations of modern abstract algebra:
ideals, rings, noetherian condition, representation theory, etc.

“der Noether” & the Noether boys
van der Waerden: Moderne Algebra

1922: Appointed extraordinary professor in Göttingen

1923: Finally paid a small stipend for teaching!

1932: Plenary address at the
International Congress of Mathematicians, Zurich

1933: Placed on “leave of absence”;
tries to move to Soviet Union

1933: Moves to U.S. — Bryn Mawr College

1935: Dies after surgery, aged 53



Noether’s Three Fundamental Contributions

to Analysis and Physics
First Theorem. There is a one-to-one correspondence between

symmetry groups of a variational problem and
conservation laws of its Euler–Lagrange equations.

Second Theorem. An infinite-dimensional variational
symmetry group depending upon an arbitrary function
corresponds to a nontrivial differential relation among its
Euler–Lagrange equations.

! The conservation laws associated with the variational
symmetries in the Second Theorem are trivial — this
resolved Hilbert’s original paradox in relativity that was
the reason he and Klein invited Noether to Göttingen.



Noether’s Three Fundamental Contributions
to Analysis and Physics

First Theorem. There is a one-to-one correspondence between
symmetry groups of a variational problem and
conservation laws of its Euler–Lagrange equations.

Second Theorem. An infinite-dimensional variational
symmetry group depending upon an arbitrary function
corresponds to a nontrivial differential relation among its
Euler–Lagrange equations.

Introduction of higher order generalized symmetries.
=⇒ later (1960’s) to play a fundamental role in the discovery

and classification of integrable systems and solitons.



Symmetries =⇒ Conservation Laws

• symmetry under space translations
=⇒ conservation of linear momentum

• symmetry under time translations
=⇒ conservation of energy

• symmetry under rotations
=⇒ conservation of angular momentum

• symmetry under boosts (moving coordinates)
=⇒ linear motion of the center of mass



Precursors

Lagrange (1788) Lagrangian mechanics & energy conservation

Jacobi (1842–43 publ. 1866) Euclidean invariance
— linear and angular momentum

Schütz (1897) time translation — conservation of energy

Herglotz (1911) Poincaré invariance in relativity
— 10 conservation laws

Engel (1916) non-relativistic limit: Galilean invariance
— linear motion of center of mass



ACurious History

! Bessel–Hagen (1922) — divergence symmetries

♣ Hill (1951) — a very special case
(first order Lagrangians, geometrical symmetries)

♠ 1951–1980 Over 50 papers rediscover and/or prove
purported generalizations of Noether’s First Theorem

♠ 2011 Neuenschwander, Emmy Noether’s Wonderful Theorem
— back to special cases again!

Continuum mechanics: Rice, Eshelby (1950’s),
Günther (1962), Knowles & Sternberg (1972)

Optics: Baker & Tavel (1974)



TheNoether Triumvirate

! Variational Principle

! Symmetry

! Conservation Law



The Calculus of Variations

[Leibniz ] conceives God in the creation of the

world like a mathematician who is solving a minimum

problem, or rather, in our modern phraseology, a prob-

lem in the calculus of variations — the question being

to determine among an infinite number of possible

worlds, that for which the sum of necessary evil is a

minimum.

— Paul du Bois-Reymond



The Calculus of Variations

Nature is Leibnizian (Panglossian):

! A physical system in equilibrium chooses
“the best of all possible worlds” by minimizing some
overall cost: energy or force or time or money or . . .

Principle of least action:

“Nature is thrifty in all its actions.”

=⇒ Pierre Louis Maupertuis

! Analysis developed by various Bernoullis, Euler, Lagrange,
Hamilton, Jacobi, Weierstrass, Dirichlet, Hilbert, . . .



Examples of Variational Problems:

The shortest path between two points in space is a
straight line.



Geodesics
The shortest path between two points on a sphere is a

great circular arc.

The shortest path between two points on a curved
surface is a geodesic arc.



Fermat’s Principle in Optics

Light travels along the path that takes the least time:

=⇒ Snell’s Law = Loi de Descartes



Plateau’s Problem
The surface of least area spanning a space curve

is a minimal surface. =⇒ soap films



The Brachistochrone

A bead slides down a wire fastest

when it has the shape of a cycloid



The Brachistochrone Cycloid

Galileo (1638) says it is a circular arc

Tautochrone problem — solved by Huygens (1659)

! produces great increase in accuracy of time-keeping,

leading to the solution to the Problem of the Longitude

Johann Bernoulli’s contest (1696)

=⇒ Correct entries by Newton, Leibniz, Jakob Bernoulli,
l’Hôpital, Tschirnhaus

Thus began the calculus of variations!



Minimization

How do you minimize a function?



Minimization

• At any minimum of a function the tangent line is horizontal:



The First Derivative Test

A minimum of a (nice) function f(x) of one variable satisfies

f ′(x) = 0

• But this also holds at maxima and inflection points!

! Distinguishing minima from maxima from inflection points
requires the second derivative test — not used here!



The First Derivative Test

A minimum of a (nice) function of one variable f(x) satisfies

f ′(x) = 0

♣ But this also holds at maxima and inflection points!

! Distinguishing minima from maxima from inflection points
requires the second derivative test — not used here!



How do you find the peaks in a mountain range?

=⇒ maxima of the height function.

• The tangent plane is horizontal.

Similarly at minima — bottom of valleys.



How do you find the peaks in a mountain range?

A better solution:

The gradient of the height function is the vector that points in
the direction of steepest increase, i.e., uphill



The gradient ∇F of the height function F is the vector that
points in the direction of steepest increase.

Thus, at the summit, you cannot go any further up, and hence
the gradient must vanish: ∇F = 0.

Similarly at minima — bottom of valleys.



The Variational Principle

In general, a variational problem requires minimizing a
function F over an infinite-dimensional space, in the form
of an action functional, which depends on the space/time
coordinates and the physical fields.

! The functional gradient vanishes at the minima: δF = 0.

=⇒ This gives a system of differential equations, whose
solutions are the minimizers.

♦ Modern Physics: The action functional should incorpo-
rate all of the symmetries of Nature.



A Brief History of Symmetry

Symmetry =⇒ Group Theory!

• Abel, Galois — polynomials

• Lie — differential equations and
variational principles

• Noether — conservation laws and
higher order symmetries

• Weyl, Wigner, etc. — quantum mechanics
“der Gruppenpest” (J. Slater)



Next to the concept of a function, which is the

most important concept pervading the whole of math-

ematics, the concept of a group is of the greatest signif-

icance in the various branches of mathematics and its

applications.

— P.S. Alexandroff



Discrete Symmetry Group

Symmetry group = rotations by 0◦, 90◦, 180◦, 270◦



Discrete Symmetry Group



Continuous Symmetry Group

Symmetry group = all rotations

! A continuous group is known as a Lie group
— in honor of Sophus Lie (1842–1899)



ABrief History of Conservation Laws

In physics, a conservation law asserts that a particular measur-
able property P of an isolated physical system does not
change as the system evolves.

Conservation of momentum: Wallis (1670), Newton (1687)

Conservation of mass: Lomonosov (1748), Lavoisier (1774)

Conservation of energy: Lagrange (1788), Helmholtz (1847),
Rankine (1850), also: Mohr, Mayer, Joule, Faraday, . . .



In Summary . . .

Noether’s Theorem states that to

each continuous symmetry group of the

action functional there is a corresponding

conservation law of the physical equations

and vice versa.



TheModernManual for Physics
♠ To construct a physical theory:

Step 1: Determine the allowed group of symmetries:

• translations

• rotations

• conformal (angle-preserving) transformations

• Galilean boosts

• Poincaré transformations (relativity)

• gauge transformations

• CPT (charge, parity, time reversal) symmetry

• supersymmetry

• SU(3), G
2
, E

8
× E

8
, SO(32), . . .

• etc., etc.



Step 2: Construct a variational principle (“energy”) that
admits the given symmetry group.

Step 3: Invoke Nature’s obsession with minimization to deter-
mine the corresponding field equations associated with the
variational principle.

Step 4: Use Noether’s First and Second Theorems to write
down (a) conservation laws, and (b) differential identities
satisfied by the field equations.

Step 5: Try to solve the field equations.

Even special solutions are of immense interest

=⇒ black holes.
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Amalie EmmyNoether
(1882–1935)


