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Sur la théorie, st importante sans doute, mazis
pour nous st obscure, des <K groupes de Lie infinis>>,
nous ne savons rien que ce qui se trouve dans les
mémoires de Cartan, premaiere exploration a travers
une jungle presque impénétrable; mais cell-ct menace
de se refermer sur les sentiers déja tracés, si [’on

ne procede bientot a un indispensable travail de

défrichement.

— André Weil, 1947



What’s the Difficulty with Infinite—Dimensional Groups?

e Lie invented Lie groups to study symmetry and solution of
differential equations.

¢ In Lie’s time, there were no abstract Lie groups. All groups
were realized by their action on a space.

& Therefore, Lie saw no essential distinction between finite-
dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two
subjects have gone in radically different directions.

(" The general theory of finite-dimensional Lie groups has been
rigorously formalized and applied.

& But there is still no generally accepted abstract object that
represents an infinite-dimensional Lie pseudo-group!
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Lie Pseudo-groups — History

Lie, Medolaghi, Vessiot
E. Cartan
Ehresmann, Libermann

Kuranishi, Spencer, Singer, Sternberg, Guillemin,
Kumpera, ...



Lie Pseudo-groups — Applications

Relativity
Noether’s (Second) Theorem

Gauge theory and field theories:
Maxwell, Yang—Mills, conformal, string, ...

Fluid mechanics, metereology:
Navier—Stokes, Euler, boundary layer, quasi-geostropic, ...

Linear and linearizable PDEs

Solitons (in 2 4+ 1 dimensions): K-P, Davey-Stewartson, ...
Kac—Moody

Morphology and shape recognition

Control theory

Geometric numerical integration

Lie groups!



Lie Pseudo-groups — Moving Frames

{ Motivation: To develop an algorithmic invariant calculus for Lie group and
pseudo-group actions. Classify and construct differential invariants
— including their generators and syzygies — invariant differential
forms, invariant differential operators, invariant differential equa-
tions, invariant variational problems, etc.

& Tools: The equivariant approach to moving frames — which can be
implemented for arbitrary Lie group and most Lie pseudo-group
actions — along with the induced invariant variational bicomplex.

O Additional benefits: A new, elementary approach to the structure theory
for Lie pseudo-groups, including explicit construction of Maurer—
Cartan forms and direct, elementary determination of structure
equations from the infinitesimal generators.

= PJO, Fels, Pohjanpelto, Cheh, Itskov, Valiquette



Lie Pseudo-groups — Further applications

Symmetry groups of differential equations
Vessiot group splitting; explicit solutions
Gauge theories

Calculus of variations

Invariant geometric flows

Computer vision and mathematical morphology

Geometric numerical integration



Pseudo-groups
M — analytic (smooth) manifold

Definition. A pseudo-group is a collection of local analytic
diffeomorphisms ¢: dom¢ C M — M such that

o Identity: 1,, €6

e [nverses: o leg

o Restriction: U Cdom¢ — o¢|U€gG

e Continuation: dom¢p=J U, and ¢ |U_€G = ¢p€G

e (omposition: im¢ C domy — Yo ey




The Diffeomorphism Pseudo-group

M — m-dimensional manifold
D=D(M) — pseudo-group of
all local analytic diffeomorphisms
Z = ¢(2)
z=(z1,...,2™) — source coordinates
{ Z=(Z'...,Z™) — target coordinates

Ly(¢) =vo¢ — left action
{ Ry (¢) = potp™" — right action



Jets
For 0 <n < oc:

Given a smooth map ¢: M — M, written in local coordinates as
Z = ¢(2), let j, ¢|. denote its n—jet at z € M, i.e., its n'®

order Taylor polynomial or series based at z.
J*(M, M) is the n*® order jet bundle, whose points are the jets.

Local coordinates on J”(M, M):
0" Z°

(n)y _ a b b b _
(2, Z\")= (... 2% ... Z2° ... Z) ...), ZA_@zal---ﬁzak




Diffeomorphism Jets

The n'* order diffeomorphism jet bundle is the subbundle
D™ = DM (M) c JV(M, M)
consisting of n'™ order jets of local diffeomorphisms ¢: M — M.

The Inverse Function Theorem tells us that D™ is defined
by the non-vanishing of the Jacobian determinant:

det( Z{) = det(02%/02") # 0

* D) forms a groupoid under
composition of Taylor polynomials/series.



Groupoid Structure
Double fibration:

D(n)
U(ny \\T(”)
M M
a'(’n')(z7 Z(n)) = Z — source map
T(n) (Z, Z(n)) = Z — target map

You are only allowed to multiply h(™ . () if
o™ (hM)) = +() (g(n))
¢ Composition of Taylor polynomials/series is well-defined

only when the source of the second matches the target of
the first.



One-dimensional case: M =R

Source coordinate: x Target coordinate: X

Local coordinates on D) (R)

g™ = (2, X,X_, X X

T rxxrxr? °°

5 Xp)

Diffeomorphism jet:

X[h]=X+X, h+iX K +i1X h+

—> Taylor polynomial /series at a source point x



Groupoid multiplication of diffeomorphism jets:
(X, X, X, Xyyy oo ) (2, XX, Xy o)
= (2, X, X X, Xy X+ Xy X2, ...)

—> Composition of Taylor polynomials/series

e The groupoid multiplication (or Taylor composition) is only
defined when the source coordinate X of the first multipli-
cand matches the target coordinate X of the second.

e The higher order terms are expressed in terms of Bell polyno-
mials according to the general Faa—di—Bruno formula.



Pseudo-group Jets

Any pseudo-group G C D defines
a Lie sub-groupoid G c pn),

Definition. G is regular if, for n > 0, its jets o: G — M
form an embedded subbundle of o: D™ — M and the
projection 771 G(n+1) 5 G() ig g fibration.

Definition. A regular, analytic pseudo-group G is called a
Lie pseudo-group of order n* > 1 if every local diffeomor-
phism ¢ € D satistying j,,.¢ C G(™") belongs it: ¢ € G.



In local coordinates, G (") < D) forms a system of
differential equations

F(”*)(z, Z(n*)) -0

called the determining system of the pseudo-group. The Lie
condition requires that every local solution to the determining
system belongs to the pseudo-group.
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In local coordinates, G (") < D) forms a system of
differential equations

F(”*)(z, Z(n*)) -0

called the determining system of the pseudo-group. The Lie
condition requires that every local solution to the determining
system belongs to the pseudo-group.

What about integrability /involutivity?

Lemma. In the analytic category, for sufficiently large n > 0
the determining system G < D) of a regular pseudo-
group is an involutive system of partial differential equations.

Proof: regularity + Cartan—Kuranishi + local solvability.



Lie Completion of a Pseudo-group

Definition. The Lie completion G D G of a regular pseudo-
group is defined as the space of all analytic diffeomorphisms
6 that solve the determining system G,




Lie Completion of a Pseudo-group

Definition. The Lie completion G D G of a regular pseudo-
group is defined as the space of all analytic diffeomorphisms
6 that solve the determining system G,

Theorem. G and G have the same differential invariants, the
same invariant differential forms, etc.

% Thus, for local geometry, there is no loss in generality assum-
ing all (regular) pseudo-groups are Lie pseudo-groups!



A Non-Lie Pseudo-group

X = ¢(x) Y = ¢(y) where » € D(R)

On the off-diagonal set M = {(x,y) |z # y }, the pseudo-
group G is regular of order 1, and G ¢ DM is defined by the
first order determining system

X, =Y, =0  X,Y, #0

The general solution to the determining system G forms
the Lie completion G:

X=0¢(x)  Y=1u(y)  where ¢ ¢ cDR)



Structure of Lie Pseudo-groups

Recall:

The structure of a finite-dimensional Lie group
(G is specified by its Maurer—Cartan forms — a basis
pt, ..., u" for the right-invariant one-forms:

dp® =" CF ot Ay
1<J
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What should be the Maurer—Cartan forms of a
Lie pseudo-group?
Cartan: Use exterior differential systems and

prolongation to determine the structure equations.

I propose a direct approach based on the following
observation:

The Maurer—Cartan forms for a Lie group and hence
Lie pseudo-group can be identified with the right-
invariant one-forms on the jet groupoid G(°°.

The structure equations can be determined immediately
from the infinitesimal determining equations.



The Variational Bicomplex

The differential one-forms on an infinite jet bundle split into
two types:

e horizontal forms

e contact forms

Consequently, the exterior derivative on D(*) gplits

into horizontal (manifold) and contact (group) compo-
nents, leading to the variational bicomplex structure on
the algebra of differential forms on D(°).



For the diffeomorphism jet bundle
D) ¢ J*°(M, M)

Local coordinates:

source target jet

Horizontal forms:

Basis contact forms:

0% =dgZh=dz% - > 7% ,dz"

a=1



One-dimensional case: M =R

Local coordinates on D(>)(R)

(#,X, X, X, X

xx) rxxx’) °°

LX)

Horizontal form:

dx

Contact forms:
O=dX — X _ dx

O,=dX,— X, dx



Maurer—Cartan Forms

Definition. The Maurer—Cartan forms for the diffeomorphism
pseudo-group are the right-invariant one-forms on the
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coordinates, the target coordinate functions Z¢
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Maurer—Cartan Forms

Definition. The Maurer—Cartan forms for the diffeomorphism
pseudo-group are the right-invariant one-forms on the
diffeomorphism jet groupoid D(*).

Key observation: Since the right action only affects source
coordinates, the target coordinate functions Z¢
are right-invariant.

Thus, when we decompose
dZ(I — O_a _|_ /,La
horizontal contact

both components %, u* are right-invariant one forms.



Invariant horizontal forms:

C=dy 2= Zjd
b_

Dual invariant total differentiation operators:

m

a—1
Dza: Z (Zb) Dzb
b=

Thus, the invariant contact forms u% are obtained by invariant
differentiation of the order zero contact forms:

p=d,2"=0"=dz" - Z 70 dz"

a=1

Mﬁl:]])?b:]DZal”']DZan,U’b b=1,...,m, #AZO



One-dimensional case: M =R

Contact forms:
O=dX — X, dx
O,=D060=dX, —X_  dz
O, =030 =dX,, - X, dz
Right-invariant horizontal form:
oc=dy,X=X_dz
Invariant differentiation:

x

x



Invariant contact forms:
p=0=dX — X _dx
S, dX, - X, dx

M x XM b% b%

Xa: @mm B Xmm @a:
Hxx = D?XU = X3

x

XL

) dx

X3

fy, = Dx



The Structure Equations for
the Diffeomorphism Pseudo—group

b,B,C
duly = 22 C300 wh A



The Structure Equations for
the Diffeomorphism Pseudo—group

b b,B,C d
duty =) Caod e A pe
Formal Maurer—Cartan series:

1
plH] =3 o py HY
Al

H=(H',...,H™) — formal parameters




One-dimensional case: M =R

Structure equations:

do=px Ao du[H] = [HIA(W[H] - dz)

where
oc=X,dr=dX —p

plH] =p+px H+ Gpuxx H + -+

d_H[[HH:UX+UXXH+%UXXXH2+



In components:

do=p, No

n—1
n
d:un:_lun—l—l/\o- + Z (Z) lu'i—l—l/\:un—i
1=0

£ -
n—27+1(n+1
= oA — E ,
Hotl j=1 n+1 ( J

) g N b1 — -

— (Cartan



The Maurer—Cartan Forms
for a Lie Pseudo-group
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The Maurer—Cartan Forms
for a Lie Pseudo-group

The Maurer—Cartan forms for a pseudo-group G C D
are obtained by restricting the diffeomorphism
Maurer—Cartan forms o, % to G(°) c D),

*x % The resulting one-forms are no longer linearly
independent, but the dependencies can be
determined directly from the infinitesimal

generators of G.



Infinitesimal Generators

g — Lie algebra of infinitesimal generators of
the pseudo-group G

z = (x,u) — local coordinates on M

Vector field:

Vector field jet:
v (M=)




The infinitesimal generators of G are the solutions to the
infinitesimal determining equations

L(z,¢™)=0 ()

obtained by linearizing the nonlinear determining equations at
the identity.




The infinitesimal generators of G are the solutions to the
infinitesimal determining equations

L(z,¢™)=0 ()

obtained by linearizing the nonlinear determining equations at
the identity.

e If G is the symmetry group of a system of differential equa-
tions, then (x) is the (involutive completion of) the usual
Lie determining equations for the symmetry group.



Theorem. The Maurer—Cartan forms on G(*) satisfy the
invariantized infinitesimal determining equations

(... 2% ...ph ...)=0 (% %)
obtained from the infinitesimal determining equations

LO... 2% ... ¢ ...)=0 (%)
by replacing
e source variables z® by target variables Z¢

e derivatives of vector field coefficients ¢4 by
right-invariant Maurer—Cartan forms 1%



The Structure Equations
for a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group
G are obtained by restricting the universal diffeomorphism

structure equations
du[ H] = Vu[H] A (p[H] —dZ)
to the solution space of the linear algebraic system

(... 2% ...u%, ...)=0.
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Comparison of Structure Equations

If the action is transitive, then our structure equations are isomorphic
to Cartan’s. However, this is not true for intransitive pseudo-groups.
Whose structure equations are “correct”?

e To find the Cartan structure equations, one first needs to work in an
adapted coordinate chart, which requires identification of the invariants
on M. Ours can be found in any system of local coordinates.

e Cartan’s procedure for identifying the invariant forms is recursive, and not
easy to implement. Ours follow immediately from the structure equations
for the diffeomorphism pseudo-group using merely linear algebra.

e For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-
group structure equations do not coincide with the standard Maurer—
Cartan equations. Ours do (upon restriction to a source fiber).

e (Cartan’s structure equations for isomorphic pseudo-groups can be non-
isomorphic. Ours are always isomorphic.



Lie—Kumpera Example

U
X = f(x U =
) F)
Infinitesimal generators:
0 0 , 0
v=_§ - +%08 f(l’)%— (af)ua
Linearized determining system
U U



Maurer—Cartan forms:

az%dx:fxdx, T:Umdx—l—%du: _”fwx?f2+fx du

u:dX—gdx:df—fxdac, V:dU—de:ﬁ—gdu:—
u u

_du dU-U,dz df, — [, dx

Hx

U U Iz 7 o =0
vy = %(de _ U, d) — % (U — U, dx)

~ du AU —U,dx _de—fmdw )

Vy = U+T: fx




First order linearized determining system:

p »
First order Maurer—Cartan determining system:
v v

Substituting into the full diffeomorphism structure equations
yields the (first order) structure equations:

1A VAT
dv = —vxy No — i




Symmetry Groups — Review

System of differential equations:

Ay(a:,u(”)):O, v=12,....k

By a symmetry, we mean a transformation that maps solutions
to solutions.

Lie: To find the symmetry group of the differential equations,
work infinitesimally.

The vector field

2 xuax algoaxuaua

is an infinitesimal symmetry if its flow exp(¢v) is a one-
parameter symmetry group of the differential equation.



We prolong v to the jet space whose coordinates are the
derivatives appearing in the differential equation'

Zfaxﬁz > ol o

a=1 #J=0 ‘9“J

where . ,
won=D; (soo‘ - uy €i> + > uj; ¢
i=1 i=1
D ; — total derivatives

Infinitesimal invariance criterion:
viW(A ) =0 whenever A=0.
Infinitesimal determining equations:
L(z,u; €, ™M) =0

* x We can determine the structure of the symmetry group
without solving the determining equations!



The Korteweg—deVries equation

U+ Uy, +uu, =0

Symmetry generator:

0 0 0

V= T(t,ZU,U) % + f(t,x,u) % + QO(t,QU,U) %
Prolongation:

0 0 0

ou

TXxxT

V(3):V+¢t_+¢x_+ _|_(pscscsc
ou, ou,,

where

t 2
0" =@yt upp, — Ty — urT, — u & — upu S,

xr 2
¥ =P + UpPry — UyTy — WU, Ty, — uscgsc T uscgu

x

()0 xx:(pxxx+3ux(pu+ T



Infinitesimal invariance:

Trx

V(g)(ut+uxxx+uux):¢t+¢ —|—ugpx—|—uxg020

on solutions

Infinitesimal determining equations:
Tx:TUZSUZQOtZQOxZO
90:52_%“7} SOu:_%Tt:_QSx

Ttt:Ttm:Txa:: :Souuzo

General solution:

T=1c +3cyt, E§=cy+cst+cr, ©=c3—2cu.



Basis for symmetry algebra g ;v

v, = 0,,
v, =0,
vy =1t0,+0,,

v,=3t0,+x20, —2u0,.

The symmetry group G,y is four-dimensional

(z,t,u) — (Nt4+a, z+ct+b A u+c)



Vl — 8.[:, V2 — 8$,

vy =10, + 0,, v,=3t0,+x20, —2ud,.

Commutator table:

Vi Vo Vs Vi
\'2 0 0 0 \'2
Vs 0 0 v, 3v,
& 0 —Vy 0 —2v,
\'2 -V, —3 v, 2V, 0

Entries:  [v;,v,] = Ek: C’fjvk. Cy; — structure constants of g



Diffeomorphism Maurer—Cartan forms:

t x U t t t x u t T
woy fy oy fpy xes Mgy Bpy o ooooy By By Bpxes oo

Infinitesimal determining equations:
Tx:TuZSu:SOt:SOm:O
90:§t_%UTt 9%:_%7}:_2595

Ttt:Ttm:Ta}x: :spuuzo

Maurer—Cartan determining equations:
Wy = py = pg = pp = pix =0,
pt=pr = 3U0py,  pp = — 5 pp = —2p%,

Wrr = Hpx = Hxx = = [



Basis (dim Gy 41 = 4):
pt=ut, pt=pt, pP=pt, ot =

Substituting into the full diffeomorphism structure equations
yields the structure equations for gz ;v

dp' = —p* A,

dp? = —pt Ap® =20 pt A pt — 5 At
=2 At

du* = 0.

dp' = Chyp? A "




Basis (dim Gy 4 = 4):
pt=pt, pt=pt, pP=pt pt =

Substituting into the full diffeomorphism structure equations
yields the structure equations for gz ;v

dp' = —p* A,

dp? = —pt Ap® =20 pt A pt =5 At
= Zp° Apt,

du* = 0.

dp' = C(Z) ! A




Essential Invariants

e The pseudo-group structure equations live on the bundle
7:G(>) — M, and the structure coefficients C7y con-
structed above may vary from point to point.

O In the case of a finite-dimensional Lie group action,
G(>®) ~ G x M, and this means the basis of Maurer—Cartan
forms on each fiber of G(*) is varying with the target point
Z € M. However, we can always make a Z—dependent
change of basis to make the structure coefficients constant.

* However, for infinite-dimensional pseudo-groups, it may not
be possible to find such a change of Maurer—Cartan basis,
leading to the concept of essential invariants.



Kadomtsev—Petviashvili
(KP) Equation

u,. =0

(ut+3uu +4umx)xi ”

[

Symmetry generators:
vi=f0)0,+ 3y '), + (52 f' () F3v°1"(1) 0,
+(=2uf' )+ 22 f"(t) F 5 v°f" (1)) O,
w,=9(t)0,F 3y (t)0, FT5y9g" ()0,
z, = h(t) 9, + 2 1'(t) 9,.

—> Kac-Moody loop algebra Afll)



Navier—Stokes Equations

%—?—ku-Vu:—Vp—H/Au, V-u=0.

Symmetry generators:
v, =at) 0, +a(t)- 0, —a’(t) - x0,
v, = 0,
s=x-0,+2t0,—u-9,—2p0,
r=xA0,+uAd,

w, = h(t) 0

p



Action of Pseudo-groups on Submanifolds

a.k.a. Solutions of Differential Equations

G — Lie pseudo-group acting on p-dimensional submanifolds:

N={u=f(x)}CM

For example, G may be the symmetry group of a
system of differential equations

Az, u™) =0

and the submanifolds are the graphs of solutions u = f(z).

Goal: Understand G—invariant objects (moduli spaces)



Prolongation

Jv=J"(M,p) — n*® order submanifold jet bundle

Local coordinates :
2= (™) = (.2t ud L)
Prolonged action of G(™ on submanifolds:
(z,ul™) — (X, U™)
Coordinate formulae:
o = F9(x, (™ g(n))

— Implicit differentiation.



Differential Invariants

A differential invariant is an invariant function 7: J* — R
for the prolonged pseudo-group action

I(g'"™ - (z,u™)) = I(z,u™)

—> curvature, torsion, ...
Invariant differential operators:

Dy,...,D —> arc length derivative

p

e If I is a differential invariant, so is D, 1.

Z(G) — the algebra of differential invariants




The Basis Theorem

Theorem. The differential invariant algebra Z(G) is locally
generated by a finite number of differential invariants

I, ... 1,
and p = dim S invariant differential operators
Dy, ..., D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,I, =D, D, D, I

In~ K’

—> Lie groups: Lie, Ousiannikov

—> Lie pseudo-groups: Tresse, Kumpera, Kruglikov-Lychagin,
Munoz—Muriel-Rodriguez, Pohjanpelto—O



Key Issues

e Minimal basis of generating invariants: Iy,...,1,

e Commutation formulae for

the invariant differential operators:
p .
7
[Djapk] — Z ik D,
i=1

—> Non-commutative differential algebra

e Syzygies (functional relations) among

the differentiated invariants:
(... DI, ...)=0

— (Codazzi relations



Computing Differential Invariants

#® The infinitesimal method:
v(l)=0 for every infinitesimal generator vVEg

—> Requires solving differential equations.

@ Moving frames.
e Completely algebraic.
e Can be adapted to arbitrary group and pseudo-group actions.

e Describes the complete structure of the differential invariant
algebra Z(G) — using only linear algebra & differentiation!

e Prescribes differential invariant signatures for equivalence and
symmetry detection.



Moving Frames

In the finite-dimensional Lie group case, a moving frame is

defined as an equivariant map

pm . Jr s @



However, we do not have an appropriate abstract object to

represent our pseudo-group G.

Consequently, the moving frame will be an equivariant section
p g — H )
of the pulled-back pseudo-group jet groupoid:

G 24()

M ——- J"



Moving Frames for Pseudo—Groups

Definition. A (right) moving frame of order n is a right-
equivariant section p(™ : V* — H(™ defined on an open
subset V™ C J".

—> Groupoid action.



Moving Frames for Pseudo—Groups

Definition. A (right) moving frame of order n is a right-
equivariant section p(™ : V* — H(™ defined on an open
subset V'™ C J".

—> Groupoid action.

Proposition. A moving frame of order n exists if and only if

G acts freely and regularly.



Freeness

For Lie group actions, freeness means trivial isotropy:
G,={9eG|g-z=2}={e}.

For infinite-dimensional pseudo-groups, this definition cannot work, and one
must restrict to the transformation jets of order n, using the n'* order
isotropy subgroup:

G — {4 € G | 405 — )

Definition. At a jet (™) € J”, the pseudo-group G acts
o freely if g((n) = {1M}

e locally freely if
) gi}f}) is a discrete subgroup of G{™)
e the orbits have dimension r,, = dim G{")

—> Kumpera’s growth bounds on Spencer cohomology.



Persistence of Freeness

Theorem. Ifn > 1 and G™ acts (locally) freely
at z(™ € J" then it acts (locally) freely at any
2(K) ¢ Jk with 7% (2(F)) = 2() for all k& > n.



The Normalization Algorithm

To construct a moving frame :

I. Compute the prolonged pseudo-group action
uy  — UL = F(z,u™, g™)

by implicit differentiation.

II. Choose a cross-section to the pseudo-group orbits:

u?: = Ck» k=1,...,r, = fiber dim g(”>



III. Solve the normalization equations
Uge = Fye(z,ul™,g"™) = c,
for the n*" order pseudo-group parameters
g™ = p(”)(x,u(”))
IV. Substitute the moving frame formulas into the un-
normalized jet coordinates u$ = F&(z,u(™, g(™).

The resulting functions form a complete system of n*" order

differential invariants

]f‘((x,u(”)) _ Fg(x,u("),p(")(x,u(“)))



Invariantization

A moving frame induces an invariantization process, denoted ¢,
that projects functions to invariants, differential operators
to invariant differential operators; differential forms to

invariant differential forms, etc.

Geometrically, the invariantization of an object is the unique

invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group
parameters in the transformed object by their moving frame

formulas.



Invariantization

In particular, invariantization of the jet coordinates leads to a
complete system of functionally independent differential
invariants: (2 =H'  (uG) =19

e Phantom differential invariants: I5" = ¢,

e The non-constant invariants form a complete system of

functionally independent differential invariants

e Replacement Theorem



The Invariant Variational Bicomplex
{> Differential functions — differential invariants
W(z') = H L(ug) =19
{> Differential forms — invariant differential forms
W(dx') = @ L(0%) = 0%
¢ Differential operators — invariant differential operators

t(D,:) =D,

1



Recurrence Formulae

* % Invariantization and differentiation * %

do not commute

The recurrence formulae connect the differentiated invariants

with their invariantized counterparts:

DI =I5, + MS,

— M$, — correction terms



O Once established, the recurrence formulae completely
prescribe the structure of the differential invariant
algebra Z(G) — thanks to the functional independence

of the non-phantom normalized differential invariants.

* % The recurrence formulae can be explicitly determined
using only the infinitesimal generators and linear

differential algebral



Lie—Tresse-Kumpera Example

Horizontal coframe

Implicit differentiations

1

xT

@’



Prolonged pseudo-group transformations on surfaces S C R3:

Uu
T
Uu Uu Uu
UX — Tz TT UY _ Y
VS o
Uszuwm_Suwfww_u TXIT 3u xzx
f5173 fx4 fgj4 fg;5
_ Ug;y Uy T - uyy
Uxy = 12 a [E UYY_f—
T T T
f’ fa?’ fa?a:’ fCUCE.CE’ e T pseudo—group parameters

— action is free at every order.



Coordinate cross-section

X=f=0 U=-—=1
o
Moving frame
f — 07 f:p — u)
Differential invariants
U, =
—_ —= —
Y fg;
Uxxy — J3 = [’(ummy)

fa:a::ua:7 fa:a:a: = Ugy
u
J pr— pr— —y
) = 2
uu —u,u
Ty = i) = e
J2 - [’(umy) = 7



Invariant horizontal forms
dy X = f.dr — udz, dy Y = dy — dy,

Invariant differentiations
1

D, = " D, D, =D,

Higher order differential invariants: D7* D% J
Jy =D = Tty g

1 1 3 1)

2
u

uu
Jy=DyJ = —%

u2

Recurrence formulae:

D, J=J, D,J = J, — J?,
D, J, = Ja, D,J, =J,—3JJ,



Korteweg—deVries Equation
Prolonged Symmetry Group Action:
T =eM(t+ )
X =eMgt 4+ 2+ A+ \y)
U=e?M(u+\,)
Up = e (u, — Agu,)
Uy = e *Mu,
Upp = € (g — 20314, + A3%u,,)
Urx = Dx DU = e™ % (u,, — A3tigy)

—4My
Ugy

UXXZG



Cross Section:

T

eM(t+))=0
X=eMNgt+z+ A A+ ),) =0
U=e?Mu+ ) =0

Uy =e M(u, — Mu,) =1

Moving Frame:

AM=—t, A=-z,  Ay=-u, A =:log(u, +uu,)



Normalized differential invariants:

Uy

Uy + uu, )3

]01 - [’(u:c) — (

wu,, + 2uu,.. + uu
Ly = t(uyy) = 2 (u, + ;S; )8/5 =
X

utm + uumm
6/5
ut + uux) /

I = u(uy,) = (

_ uZCSC

ZUZU) B (ut + uuw)4/5

Iy = t(u

Invariant differential operators:
Dy =uDy) = (u; + uux)_3/5Dt + u(u, + uum)_3/5Daz7
D, = u(D,) = (u, +uu,) /"D,



Commutation formula:
| Dy, Dy =1y, Dy
Recurrence formulae:
Dyl = Iy — %131 - 21011207 Dylyy = 1oy — %Igl - %1011117
Dylyg = Iyg + 21y, — § 111y — § Iy, Dylog = Ipy + 2o, 1y — 5151150 — § Iy oo,
Dilyy = Iy + oy = S 1oy Ly — 8111 dag,  Dolyy = Lip + Iy Ioy — 15,10, — S 17,

D1]02 - 112 - %101102 - %102[207 Dzloz - 103 - %131102 - 3102]117



Generating differential invariants:

2
U Uy 20y, + utug,

101 = L(Ua:) = (Ut n qu)3/57 ]2() = L(Utt) — (ut n uux)8/5

Fundamental syzygy:
D%Im + %]017)1[20 — Dylyy + (% Iy + % ]01) DIy,

3
—Dyly; — % Iy 15, — % 151150 + % I5, = 0.



The Master Recurrence Formula

p . ~
dg 1y = Y (D,I)w ZI WY
1=1
where
VI =0(pG) =% (... H ... I¢ ... 5 ... 9% ...)

are the invariantized prolonged vector field coefficients, which
are particular linear combinations of

7% = u(¢}) — invariantized Maurer—Cartan forms
prescribed by the invariantized prolongation map.

e The invariantized Maurer—-Cartan forms are subject to the
invariantized determining equations:

CH . ...,HP, I',...)I% ... 4% ...)=0



p . A~
dgl§ = > If,w' +95(... 7% -..)
1=1

Step 1: Solve the phantom recurrence formulas
p . ~
0=dylf = > If,w +v5(... 7% ...)
i=1
for the invariantized Maurer—Cartan forms:

p .
Ya=2 T (+)
i=1

Step 2: Substitute (x) into the non-phantom recurrence
formulae to obtain the explicit correction terms.



> Only uses linear differential algebra based on the specifica-
tion of cross-section.

¢ Does not require explicit formulas for the moving frame, the
differential invariants, the invariant differential operators, or
even the Maurer—Cartan forms!



Lie—Tresse—Kumpera Example (continued)

u
X = f(x), Y =y, U= ()
Phantom recurrence formulae:
0=dH == +7, 0=dly=J, @ +9; — 7,
0=dlyy=Jw* +9 -, 0=dly = Jy@* + I3 — s,
Solve for pulled-back Maurer—Cartan forms:
’y:—wl, 72:J1w2+191,



Recurrence formulae: dy = w?
dJ = J, o' + (Jy — J) @ + 9, — J ¥,
dJ, = Jyw' + (J, —3JJ)ww* +0, - JI, — J, 90,
dJ, = Jywot + (J5 — J Jp) @w® + 395 — J, ¥,



The Korteweg—deVries Equation (continued)

Recurrence formula:
dl;, = [j—H,kwl + Ij,k+1w2 + ()
Invariantized Maurer—Cartan forms:
)= W) =u, Up)=v=v, )= Yt = Aps
Invariantized determining equations:

)\x: u:luu:Vt:Vx:O

Invariantizations of prolonged vector field coefficients:
L(T) = )\7 L(S) = K, L(SO) =, L(Spt) = _101V o %)\b

L(Spm) = —Ip Ay, L(‘Ptt) = —2I,v — %Izo)‘tv



Phantom recurrence formulae:
0=dy H =w' + A\

0= dHH2:w2+,u,
0= dy Iy = Lyw" + [w* + 1 = w' + [ w? + v,
0=dyl,=Lyw' + 1w’ + 9" = Lyw' + I;,w* — I — 3\

— Solve for A= -w', p=-w? v=-w'-1I,w?

A =2 (Iyg + I )wh + 2 (I} + 13))w?.
Non-phantom recurrence formulae:
dy Iy, = Ijyw' + Igw® — Iy Ay,

dy Iy = Iygw' + Ipjw® — 2110 — 510\,
dy Iy = Iyw' + Iw® — I — 214 ),

dy Lo = 112‘*"1 + 103“’2 - %102)‘157



D1101 - 111 - %Igl - %101120;
DiIyy = I3 + 21 — %Imlzo - §I220:
DIy = Iy + Ipy — g[01[11 - g[n[zov

D1]02 - [12 - §[o1102 - %102[207

D2101 - 102 - %Igl - 21011117
Dzlzo - 121 + 2101111 - %Igllzo - %Inlzoa
Dyl =I5 + [01[02 - 2131111 - 211217

Dzloz - 103 - %I(%Ioz - %102[117



Grobner Basis Approach

Suppose G acts freely at order n*.

The differential invariants of order > n* are
naturally identified with polynomials belonging to a
certain algebraic module 7, called the invariantized
prolonged symbol module which is defined as the
invariantized pull-back of the symbol module for the
infinitesimal determining equations under a certain
explicit linear map.



Constructive Basis Theorem

Theorem. A system of generating differential in-
variants in one-to-one correspondence with the
Grobner basis elements of the invariantized pro-
longed symbol module 7>" plus, possibly, a
finite number of differential invariants of order
< n”.



Syzygy Theorem

Theorem. Every differential syzygy among the gen-
erating differential invariants is either a syzygy
among those of order < n*, or arises from an alge-
braic syzygy among the Grobner basis polynomi-
als in J>"", or comes from a commutator syzygy
among the invariant differential operators.



The Symbol Module

Linearized determining equations

£(Z7C(n)):0
b= (t;,....t ),  T=(T,...T,)
T = {P(t,T) 0 Ta} ~ R[t]sR™ C R[t, T

Symbol module:




The Prolonged Symbol Module
$=(81,---,5,), S=(8,--,5,),;

q

S = {T(S,S) = > T.(s)S, } ~ R[s] o R? C R[s, 5]

Define the linear map

Szzﬁz(t):tz+ Z u?tp—l—on izla"'7p7
a=1
p
Sa:Ba(T):Tp+a—Z u T, a=1,...,q
=1

= “symbol”” of the vector field prolongation operation

Prolonged symbol module:




