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The Basic Equivalence Problem

M — smooth m-dimensional manifold.

(G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group



Equivalence:

Determine when two p-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Classical Geometry

Euclidean group:

o { SE(m) = SO(m) x R™
- E(m) = O(m) x R™

2 Az + € SO(m) or O(m), e R™, zeR™
= isometries: rotations, translations , (reflections)
Equi-affine group: G = SA(m) = SL(m) x R™
€ SL(m) — volume-preserving
Affine group: G = A(m) = GL(m) x R™
€ GL(m)
Projective group: G =PSL(m+1)

acting on R™ C RP™
—> F. Klein



Tennis, Anyone?




Euclidean Plane Curves: G = SE(2) = SO(2) x R?

Curvature differential invariants:

(L+u2)3/2" ds (14 u2)?  ds?

K =

Arc length (invariant one-form):

d 1 d
s =/1+uz ax, p T2 2 .

Theorem. All Euclidean differential invariants are
functions of the derivatives of curvature with
respect to arc length: x, K, K.,



Equi-affine Plane Curves: G = SA(2) = SL(2) x R?

Equi-affine curvature:

2
i) UprUprwe — 3 Upra dk o

guif i

K =

Equi-affine arc length:

d 1 d
ds = d — = —
’ Hoa O ds  Ju,, dx

Theorem. All equi-affine differential invariants
are functions of the derivatives of equi-affine
curvature with respect to equi-affine arc length:

K, K K

S) 587



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = I.




Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. K=2 <= K=2



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = I.

Constant invariants provide immediate information:
e.g. KR=2 <= K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. k=1 Versus Kk =sinhx



However, a functional dependency or
the invariants ¢s intrinsic:

e.g. K.=Kr —1 <=

S



However, a functional dependency or among
the invariants ¢s intrinsic:

e.g. /<;S:/<;3—1 — Rgzﬁg—l

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.




However, a functional dependency or among
the invariants ¢s intrinsic:

e.g. /<;S:/<;3—1 — Rgzﬁg—l

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are (locally) equivalent
if and only if they have identical syzygies among
all their differential invariants.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

(" But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!



Example — Plane Curves

If non-constant, both x and ., depend on a single
parameter, and so, locally, are subject to a syzygy:

k, = H(r) (+)

But then

oy = S H(x) = H'(K) 5, = H'(x) H(s)

and similarly for s etc.

s$s8s?

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (x).

Thus, for Euclidean (or equi-affine or projective or ...)
plane curves we need only know a single syzygy between x and

K, in order to establish equivalence!



Signature Curves

Definition. The signature curve & C R? of a plane curve
C C R? is parametrized by the two lowest order differential

invariants
Y 0 — :{(md—“)} c R2
ds

= Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are equivalent:

C=g-C

if and only if their signature curves are identical:

—> regular: (K, k,,) # 0.



Symmetry and Signature

Continuous Symmetries

Theorem. The following are equivalent:

e The curve C has a 1-dimensional symmetry group H C G
e (' is the orbit of a 1-dimensional subgroup H C G

e The signature & degenerates to a point: dim & = 0

e All the differential invariants are constant:
k=c, k,=0,

— Euclidean plane geometry: circles, lines
— Equi-affine plane geometry: conic sections.

—> Projective plane geometry: W curves (Lie & Klein)



Symmetry and Signature

Discrete Symmetries

Definition. The index of a curve C equals the
number of points in C' which map to a single
generic point of its signature:

LC:min{#E_l{w}‘ w € }

Theorem. The number of discrete symmetries of C
equals its index ¢.



The Index



The Curve x = cost + %COSQ t, y=sint+ 1—10811’1275

The Original Curve

5 0.5 .75 1 1.25 . 1.75 2

Fuclidean Signature
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Affine Signature



The Curve CU:COSt—I—%COSQt, y:%x+sint+1—1()sin2t

The Original Curve

Fuclidean Signature

-6

Affine Signature



Canine Left Ventricle Signature

Original Canine Heart

MRI Image Boundary of Left Ventricle



Smoothed Ventricle Signature




Object Recognition

S

= Steve Haker



Nut 1 Nut 2

600
750

550 f//\
700
500
Closeness: 0.137673
450
400 500 400 50

650

0
Signature Curve Nut 1 Signature Curve Nut 2
0.01 0.01
0.005 0.005
0 0

/11 ~0.005 11 _0.005

-0.01 -0.01




Hook 1 Nut 1
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Signature Metrics

Hausdorft

Monge—Kantorovich transport
Electrostatic/gravitational attraction
Latent semantic analysis

Histograms

Gromov—Hausdorff & Gromov—Wasserstein



Signatures

S
; Classical Signature
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Classical Occlusions
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3D Differential Invariant Signatures

Euclidean space curves: C C R3

S={(k,k,,7)} C R?

e s — curvature, 7 — torsion

Euclidean surfaces: S C R? (generic)

S={(H,K, H,,Hy,, K, K,)} c R

oo S={(H,H, ,H, Hy )} C R*

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R? (generic)

s={(P,P,, P, P, )} Cc R

e P — Pick invariant



Advantages of the Signature Curve

e Purely local — no ambiguities
e Symmetries and approximate symmetries

e Extends to surfaces and higher dimensional sub-
manifolds

e (cclusions and reconstruction

e Partial matching and puzzles

Main disadvantage: Noise sensitivity due to
dependence on high order derivatives.



Generalized Vertices

Ordinary vertex: local extremum of curvature

Generalized vertex: & . =0
e critical point
e circular arc

e straight line segment

Mukhopadhya’s Four Vertex Theorem:

A simple closed, non-circular plane curve has n > 4
generalized vertices.



“Counterexamples”

These degenerate curves all have the same signature:

E:P

I

LS
\vd
/zg\)

* Replace vertices with circular arcs:

Musso—Nic

N
2

oldi



Bivertex Arcs

Bivertex arc: Kk, # 0 everywhere
except Kk, = 0 at the two endpoints

The signature & of a bivertex arc is a single arc that
starts and ends on the k—axis.

Ry




Bivertex Decomposition.

v-regular curve — finitely many generalized vertices

=1 k=

7= =1
By,...,B,, — Dbivertex arcs
Vi,...,V, — generalized vertices: n >4

Main Idea: Compare individual bivertex arcs, and
then determine whether the rigid equivalences are
(approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision, to appear.



Gravitational /Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.




Gravitational /Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

* In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

kg kg




Strength of correspondence:

07 d(a,&)—oo
Separation:
|o—7a] _
— < D,
d(a,ff):{Da&’ lo =2l
00, |loc—a|| > D,

Scale of comparison:

D(Ca 6() = (DK(C, é)aDms(Ca é) )7

D,(€,€) = max{ max(el.) - min(ul.), max(ul.) - minel,) |

D C) = — mi _) — mi )b
(0.€) = max { max(, ) = min( ). max(s, )~ mingi, ) |



Piece Locking

* % Minimize force and torque based on gravitational
attraction of the two matching edges.



The Bafller Jigsaw Puzzle
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The Rain Forest Giant Floor Puzzle
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The Rain Forest Puzzle Solved




The Rain Forest Puzzle Solved

—> D. Hoff & PJO, Automatic solution of jigsaw puzzles,
preprint, 2012.



The Distance Histogram

Definition. The distance histogram of a finite set of
points P = {z,...,2,} C V is the function

el = #{6.9)| 121 <5 €n dsuz) =1}



The Distance Set

The support of the histogram function,
supp 7p = Ap C RT
is the distance set of P.




The Distance Set

The support of the histogram function,
supp 7p = Ap C RT
is the distance set of P.

Erdos’ distinct distances conjecture (1946):

If PCR™, then #Ap > ¢, _(#P)*/™ ¢



Characterization of Point Sets

Note: If P = ¢ - P is obtained from P ¢ R™ by a
rigid motion g € E(n), then they have the same
distance histogram: np = 13.




Characterization of Point Sets

Note: If P = ¢ - P is obtained from P C R™ by a
rigid motion g € E(n), then they have the same
distance histogram: np = 13.

Question: Can one uniquely characterize, up to rigid
motion, a set of points P{z{,...,2,} CR™
by its distance histogram?

—> Tinkertoy problem.



Yes:




No:

Kite

V2,

2,

Trapezoid

=

V10, V10, 4.




No:

P=1{0,1,4,10,12,17}
Q=1{0,1,8,11,13,17}

C R

n=12,3,4,56,7,89,10,11,12,13,16, 17

—> G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378-379



Characterizing Point Sets
by their Distance Histograms

Theorem. Supposen <3orn>m+ 2.
Then there is a Zariski dense open subset in the space of n
point configurations in R™ that are uniquely characterized,
up to rigid motion, by their distance histograms.

—> M. Boutin & G. Kemper, Adv. Appl. Math. 32 (2004) 709-735



Limiting Curve Histogram



Limiting Curve Histogram



Limiting Curve Histogram

QA= e
R




Sample Point Histograms

Cumulative distance histogram: n = #P:

Ap(r) __+—§<:77P = 2#{(i,j)‘d(z ?{7)<7“}7
Note: -

np(r) = in?[Ap(r) — Ap(r—0)] d< 1.

Local cumulative distance histogram:

Ap(r,z):l#{j] d(z,zj)gr}:l#(PﬂBr(z))
=1 Y A2 = X #P N BL(2)).

Ball of radius r centered at z:

B.(z)={veV]dwz) <r}



Limiting Curve Histogram Functions

Length of a curve
[(C) = ds < o0
( ) /C S

Local curve distance histogram function

I(C N B,(2))
®

he(r, z) =

— The fraction of the curve contained in the ball of radius r
centered at z.

Global curve distance histogram function:

He(r) = ﬁ/ghc(r,z(s))ds.



Convergence of Histograms

Theorem. Let C' be a regular plane curve. Then, for both
uniformly spaced and randomly chosen sample points
P C C, the cumulative local and global histograms converge
to their continuous counterparts:

Ap(r,z) — ha(r,z),  Ap(r) — Hg(r),

as the number of sample points goes to infinity:.

D. Brinkman & PJO, Invariant histograms,
Amer. Math. Monthly 118 (2011) 2-24.



Square Curve Histogram with Bounds




Kite and Trapezoid Curve Histograms

1 —
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Histogram—Based Shape Recognition
500 sample points

1 x 3 rectangle 31.8 36.7 83.7 595.7 4.0 46.5

Shape (a) (b) (¢) (d) (e) (f)
(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8
(b) square 28.2 5 81.2 73.6 34.8 72.1
(c) circle 66.9 79.6 D 137.0 89.2 138.0
(d) 2 x 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9
(
(

)
) star 81.0 74.3 139.0 9.3 60.5 9



Curve Histogram Conjecture

Two sufficiently regular plane curves C' and C have
identical global distance histogram functions, so

Ho(r) = Hx(r) for all r > 0, if and only if they are

~

rigidly equivalent: C' ~ C.



Possible Proof Strategies

e Show that any polygon obtained from (densely) discretizing a
curve does not lie in the Boutin—-Kemper exceptional set.

e Polygons with obtuse angles: taking r small, one can recover
(i) the set of angles and (iz) the shortest side length from
H,(r). Further increasing r leads to further geometric
information about the polygon ...

e Expand H,(r) in a Taylor series at r = 0 and show that the
corresponding integral invariants characterize the curve.



Taylor Expansions

Local distance histogram function:

Lhg(r, Z)_27“+ "527“34‘(40"5“384‘45 s+320 4>T5+

Global distance histogram function:

_ 2 r 3 4 1.2
Ho(r) = T +12L2 72/@ d8+4OL2 7{0 <§/€ —§ms)ds+



Space Curves

Saddle curve:

2(t) = (cost,sint,cos2t), 0<t<27.

Convergence of global curve distance histogram function:

1.0 I
0.8
0.6
0.4

0.2




Surfaces

Local and global surface distance histogram functions:

is(r2) = ST )= g [y

Convergence for sphere:

1.0
s

0.8 A
0.6 j/ 3

I e
0.4 —F

Ry 4
—

[ - Za
02} A

L 7—//
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Area Histograms

Rewrite global curve distance histogram function:

H(r) = %%C ho(r,z(s))ds = sz % X,-(d ,2(8")) ds ds’

1, t<nr,
where X, (1) = 6 e

Global curve area histogram function:
1
Ag(r) = = ]fc fc fc x..(area (2(3), 2(3), 2(3")) d3 d ' d3",

ds — equi-affine arc length element L = /C ds

Discrete cumulative area histogram

— 1 / !/
AP(T) - n(n L 1)(n L 2) Z;,gz/;//epxr(area (Za ZyZ ))7

Boutin € Kemper: The area histogram uniquely determines
generic point sets P C R? up to equi-affine motion.



Area Histogram for Circle

0.8 7~
0.6 - =
0.4

0.2,

0.5 1.0 1.5

* & Joint invariant histograms — convergence???

2.0



Triangle Distance Histograms

Z:(...Zi...)CM -
sample points on a subset M C R"™ (curve, surface, etc.)

T;;, — triangle with vertices z;, z;, 2.

Side lengths:
O-(Ti,j,k) - (d(sz Zj)a d(zza Zk:)7 d(zja Zk;) )
Discrete triangle histogram:

S=0(T)CK

Triangle inequality cone:

K={(z,9,2)| 2,9,2>0, z+y>2 z+2>y, y+z >z} CR’



Triangle Histogram Distributions

Circle Triangle Square

Convergence to measures . ..

—> Madeleine Kotzagiannidis



Practical Object Recognition

Scale-invariant feature transform (SIFT) (Lowe)
Shape contexts (Belongie-Malik—Puzicha)
Integral invariants (Krim, Kogan, Yezzi, Pottman, ...)

Shape distributions (Osada—Funkhouser—Chazelle-Dobkin)
Surfaces: distances, angles, areas, volumes, etc.

Gromov—Hausdorff and Gromov-Wasserstein distances (Mémoli)
—> lower bounds & stability



