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The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

• finite-dimensional Lie group

• infinite-dimensional Lie pseudo-group



Equivalence:
Determine when two p-dimensional submanifolds

N and N ⊂ M

are congruent :

N = g ·N for g ∈ G

Symmetry:
Find all symmetries,

i.e., self-equivalences or self-congruences :

N = g ·N



Classical Geometry

• Euclidean group: G =






SE(m) = SO(m)! R
m

E(m) = O(m)! R
m

z $−→ A · z + b A ∈ SO(m) or O(m), b ∈ R
m, z ∈ R

m

⇒ isometries: rotations, translations , (reflections)

• Equi-affine group: G = SA(m) = SL(m)! Rm

A ∈ SL(m) — volume-preserving

• Affine group: G = A(m) = GL(m)! Rm

A ∈ GL(m)

• Projective group: G = PSL(m+ 1)
acting on Rm ⊂ RPm

=⇒ F. Klein



Tennis, Anyone?



Euclidean Plane Curves: G = SE(2) = SO(2)! R2

Curvature differential invariants:

κ =
uxx

(1 + u2
x)

3/2
,

dκ

ds
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x)uxxx − 3uxu
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Arc length (invariant one-form):

ds =
√
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x dx,
d

ds
=

1
√
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x

d

dx

Theorem. All Euclidean differential invariants are
functions of the derivatives of curvature with
respect to arc length: κ, κs, κss, · · ·



Equi-affine Plane Curves: G = SA(2) = SL(2)!R2

Equi-affine curvature:

κ =
5uxxuxxxx − 3u2

xxx

9 u8/3
xx

dκ

ds
= · · ·

Equi-affine arc length:

ds = 3

√
uxx dx

d

ds
=

1
3
√
uxx

d

dx

Theorem. All equi-affine differential invariants
are functions of the derivatives of equi-affine
curvature with respect to equi-affine arc length:

κ, κs, κss, · · ·



Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx
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However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are (locally) equivalent
if and only if they have identical syzygies among
all their differential invariants.
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Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

♥ But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!
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Example — Plane Curves
If non-constant, both κ and κs depend on a single

parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!



Signature Curves
Definition. The signature curve S ⊂ R2 of a plane curve
C ⊂ R2 is parametrized by the two lowest order differential
invariants

Σ : C −→ S =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are equivalent:

C = g · C

if and only if their signature curves are identical:

S = S
=⇒ regular: (κs,κss) .= 0.



Symmetry and Signature

Continuous Symmetries

Theorem. The following are equivalent:

• The curve C has a 1-dimensional symmetry group H ⊂ G

• C is the orbit of a 1-dimensional subgroup H ⊂ G

• The signature S degenerates to a point: dimS = 0

• All the differential invariants are constant:
κ = c, κs = 0, . . .

=⇒ Euclidean plane geometry: circles, lines

=⇒ Equi-affine plane geometry: conic sections.

=⇒ Projective plane geometry: W curves (Lie & Klein)



Symmetry and Signature

Discrete Symmetries

Definition. The index of a curve C equals the
number of points in C which map to a single
generic point of its signature:

ιC = min
{
# Σ−1{w}

∣∣∣ w ∈ S
}

Theorem. The number of discrete symmetries of C
equals its index ιC.



The Index

Σ

−→

N S



The Curve x = cos t+ 1
5
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Canine Left Ventricle Signature

Original Canine Heart
MRI Image

Boundary of Left Ventricle



Smoothed Ventricle Signature
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Object Recognition

=⇒ Steve Haker
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Signature Metrics

• Hausdorff

• Monge–Kantorovich transport

• Electrostatic/gravitational attraction

• Latent semantic analysis

• Histograms

• Gromov–Hausdorff & Gromov–Wasserstein
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Occlusions
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Differential invariant signature



Classical Occlusions

s

κ

−→



3D Differential Invariant Signatures

Euclidean space curves: C ⊂ R3

S = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

S =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Ŝ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

S =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



Advantages of the Signature Curve

• Purely local — no ambiguities

• Symmetries and approximate symmetries

• Extends to surfaces and higher dimensional sub-
manifolds

• Occlusions and reconstruction

• Partial matching and puzzles

Main disadvantage: Noise sensitivity due to
dependence on high order derivatives.



Generalized Vertices

Ordinary vertex: local extremum of curvature

Generalized vertex: κs ≡ 0

• critical point

• circular arc

• straight line segment

Mukhopadhya’s Four Vertex Theorem:

A simple closed, non-circular plane curve has n ≥ 4
generalized vertices.



“Counterexamples”

These degenerate curves all have the same signature:
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$ Replace vertices with circular arcs: Musso–Nicoldi



Bivertex Arcs

Bivertex arc: κs .= 0 everywhere
except κs = 0 at the two endpoints

The signature S of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



Bivertex Decomposition.

v-regular curve — finitely many generalized vertices

C =
m⋃

j=1

Bj ∪
n⋃

k=1

Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

Main Idea: Compare individual bivertex arcs, and
then determine whether the rigid equivalences are
(approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision, to appear.



Gravitational/Electrostatic Attraction

$ Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

κ

κs



Gravitational/Electrostatic Attraction

$ Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

$ In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Strength of correspondence:

h(σ, σ̃) =






1

d(σ, σ̃)γ + ε
, d(σ, σ̃) < ∞,

0, d(σ, σ̃) = ∞.

Separation:

d(σ, σ̃) =






‖σ − σ̃ ‖
D − ‖σ − σ̃ ‖

, ‖σ − σ̃ ‖ < D,

∞, ‖σ − σ̃ ‖ ≥ D,

Scale of comparison:

D(C, C̃) = (Dκ(C, C̃),Dκs

(C, C̃) ),

Dκ(C, C̃) = max

{

max
z∈C

(κ|z)−min
z∈C

(κ|z), max
z̃∈C̃

(κ|z̃)−min
z̃∈C̃

(κ|z̃)
}

,

Dκs

(C, C̃) = max

{

max
z∈C

(κs|z)−min
z∈C

(κs|z), max
z̃∈C̃

(κs|z̃)−min
z̃∈C̃

(κs|z̃)
}

.



Piece Locking

$ $ Minimize force and torque based on gravitational
attraction of the two matching edges.



The Baffler Jigsaw Puzzle



The Baffler Solved



The Rain Forest Giant Floor Puzzle



The Rain Forest Puzzle Solved

=⇒ D. Hoff & PJO, Automatic solution of jigsaw puzzles,
preprint, 2012.



The Rain Forest Puzzle Solved

=⇒ D. Hoff & PJO, Automatic solution of jigsaw puzzles,
preprint, 2012.



The Distance Histogram

Definition. The distance histogram of a finite set of
points P = {z1, . . . , zn} ⊂ V is the function

ηP (r) = #
{
(i, j)

∣∣∣ 1 ≤ i < j ≤ n, d(zi, zj) = r
}
.



The Distance Set

The support of the histogram function,

supp ηP = ∆P ⊂ R
+

is the distance set of P .

Erdös’ distinct distances conjecture (1946):

If P ⊂ Rm, then #∆P ≥ cm,ε (#P )2/m−ε
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Characterization of Point Sets

Note: If P̃ = g · P is obtained from P ⊂ Rm by a
rigid motion g ∈ E(n), then they have the same
distance histogram: ηP = ηP̃ .

Question: Can one uniquely characterize, up to rigid
motion, a set of points P{z1, . . . , zn} ⊂ Rm

by its distance histogram?

=⇒ Tinkertoy problem.
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Yes:

η = 1, 1, 1, 1,
√
2,

√
2.



No:

Kite Trapezoid

η =
√
2,

√
2, 2,

√
10,

√
10, 4.



No:

P = {0, 1, 4, 10, 12, 17}

Q = {0, 1, 8, 11, 13, 17}
⊂ R

η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17

=⇒ G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378–379



Characterizing Point Sets
by their Distance Histograms

Theorem. Suppose n ≤ 3 or n ≥ m+ 2.
Then there is a Zariski dense open subset in the space of n
point configurations in Rm that are uniquely characterized,
up to rigid motion, by their distance histograms.

=⇒ M. Boutin & G. Kemper, Adv. Appl. Math. 32 (2004) 709–735



Limiting Curve Histogram
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Sample Point Histograms
Cumulative distance histogram: n = #P :

ΛP (r) =
1

n
+

2

n2

∑

s≤r

ηP (s) =
1

n2
#
{
(i, j)

∣∣∣ d(zi, zj) ≤ r
}
,

Note:
ηP (r) =

1
2
n2[ΛP (r)− ΛP (r − δ) ] δ 5 1.

Local cumulative distance histogram:

λP (r, z) =
1

n
#
{
j
∣∣∣ d(z, zj) ≤ r

}
=

1

n
#(P ∩ Br(z))

ΛP (r) =
1

n

∑

z ∈P

λP (r, z) =
1

n2

∑

z ∈P

#(P ∩ Br(z)).

Ball of radius r centered at z:

Br(z) = { v ∈ V | d(v, z) ≤ r }



Limiting Curve Histogram Functions

Length of a curve

l(C) =
∫

C
ds < ∞

Local curve distance histogram function

hC(r, z) =
l(C ∩ Br(z))

l(C)

=⇒ The fraction of the curve contained in the ball of radius r
centered at z.

Global curve distance histogram function:

HC(r) =
1

l(C)

∫

C
hC(r, z(s)) ds.



Convergence of Histograms

Theorem. Let C be a regular plane curve. Then, for both
uniformly spaced and randomly chosen sample points
P ⊂ C, the cumulative local and global histograms converge
to their continuous counterparts:

λP (r, z) −→ hC(r, z), ΛP (r) −→ HC(r),

as the number of sample points goes to infinity.

D. Brinkman & PJO, Invariant histograms,
Amer. Math. Monthly 118 (2011) 2–24.



Square Curve Histogramwith Bounds



Kite and Trapezoid Curve Histograms



Histogram–Based Shape Recognition
500 sample points

Shape (a) (b) (c) (d) (e) (f)

(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8

(b) square 28.2 .5 81.2 73.6 34.8 72.1

(c) circle 66.9 79.6 .5 137.0 89.2 138.0

(d) 2× 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9

(e) 1× 3 rectangle 31.8 36.7 83.7 55.7 4.0 46.5

(f) star 81.0 74.3 139.0 9.3 60.5 .9



Curve HistogramConjecture

Two sufficiently regular plane curves C and C̃ have

identical global distance histogram functions, so

HC(r) = HC̃(r) for all r ≥ 0, if and only if they are

rigidly equivalent: C 8 C̃.



Possible Proof Strategies

• Show that any polygon obtained from (densely) discretizing a
curve does not lie in the Boutin–Kemper exceptional set.

• Polygons with obtuse angles: taking r small, one can recover
(i) the set of angles and (ii) the shortest side length from
HC(r). Further increasing r leads to further geometric
information about the polygon . . .

• Expand HC(r) in a Taylor series at r = 0 and show that the
corresponding integral invariants characterize the curve.



Taylor Expansions

Local distance histogram function:

LhC(r, z) = 2r + 1
12
κ2 r3 +

(
1
40
κκss +

1
45
κ2
s +

3
320

κ4
)
r5 + · · · .

Global distance histogram function:

HC(r) =
2r

L
+

r3

12L2

∮

C
κ2 ds+

r5

40L2

∮

C

(
3
8
κ4 − 1

9
κ2
s

)
ds+ · · · .



Space Curves
Saddle curve:

z(t) = (cos t, sin t, cos 2 t), 0 ≤ t ≤ 2π.

Convergence of global curve distance histogram function:



Surfaces
Local and global surface distance histogram functions:

hS(r, z) =
area (S ∩ Br(z))

area (S)
, HS(r) =

1

area (S)

∫ ∫

S
hS(r, z) dS.

Convergence for sphere:



Area Histograms
Rewrite global curve distance histogram function:

HC(r) =
1

L

∮

C
hC(r, z(s)) ds =

1

L2

∮

C

∮

C
χr(d(z(s), z(s

′)) ds ds′

where χr(t) =

{
1, t ≤ r,

0, t > r,

Global curve area histogram function:

AC(r) =
1

L3

∮

C

∮

C

∮

C
χr(area (z(ŝ), z(ŝ

′), z(ŝ′′)) dŝ d ŝ′ dŝ′′,

d ŝ — equi-affine arc length element L =
∫

C
dŝ

Discrete cumulative area histogram

AP (r) =
1

n(n− 1)(n− 2)

∑

z %=z′ %=z′′∈P

χr(area (z, z
′, z′′)),

Boutin & Kemper : The area histogram uniquely determines
generic point sets P ⊂ R2 up to equi-affine motion.



Area Histogram for Circle

$ $ Joint invariant histograms — convergence???



Triangle Distance Histograms

Z = (. . . zi . . .) ⊂ M —
sample points on a subset M ⊂ Rn (curve, surface, etc.)

Ti,j,k — triangle with vertices zi, zj, zk.

Side lengths:

σ(Ti,j,k) = ( d(zi, zj), d(zi, zk), d(zj, zk) )

Discrete triangle histogram:

S = σ(T ) ⊂ K

Triangle inequality cone:

K = { (x, y, z) | x, y, z ≥ 0, x+ y ≥ z, x+ z ≥ y, y + z ≥ x } ⊂ R
3.



Triangle HistogramDistributions

Circle Triangle Square

Convergence to measures . . .

=⇒ Madeleine Kotzagiannidis



Practical Object Recognition

• Scale-invariant feature transform (SIFT) (Lowe)

• Shape contexts (Belongie–Malik–Puzicha)

• Integral invariants (Krim, Kogan, Yezzi, Pottman, . . . )

• Shape distributions (Osada–Funkhouser–Chazelle–Dobkin)
Surfaces: distances, angles, areas, volumes, etc.

• Gromov–Hausdorff and Gromov-Wasserstein distances (Mémoli)
=⇒ lower bounds & stability


