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Object Recognition

Goal: recognize when two visual objects are equiva-
lent

g : O �−→ Õ

Symmetry

Goal: find all self-equivalences of a visual object

g : O �−→ O
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Equivalence, Symmetry & Groups

Basic fact :

Equivalence and symmetry transformations

g : O �−→ Õ
belong to a group:

g ∈ G

.
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Computer Vision Groups

Euclidean Preserves lengths and angles
Translations
Rotations
Reflections

Similarity Preserves length ratios
Euclidean + Scaling

Equi-affine Preserves area (volume)

x �−→ Ax + b, detA = 1

Affine Preserves area (volume) ratios
Equi–affine + Scaling
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Projective Preserves cross-ratios

(x, y) �−→
(

ax + by + c

gx + hy + j
,

dx + ey + f

gx + hy + j

)

det A = det

 a b c
d e f
g h j

 = 1

Camera Rotations

Projective orthogonal transformations:

A =

 a b c
d e f
g h j

 ∈ SO(3)

Video Groups

(x, y, t) �−→ (x̃, ỹ, t̃)

e.g. Galilean boosts (motion tracking)

(x, y, t) �−→ (x + a t, y + b t, t)
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Complications

• Occlusion

• Ducks ≈ rabbits — Åström

• Outlines of 3D objects

• Bending, warping, etc.

— pseudo-groups

• Thatcher illusion
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Mathematical Setting

Ambient space:

M = R
n
, n = 2, 3, . . . (manifold)

Object:

N ⊂ M submanifold

Equivalences:

G finite-dimensional Lie group

acting on M

Basic equivalence problem:

S ≈ S ⇐⇒ S = g · S for g ∈ G

Symmetry (isotropy) subgroup:

GS = { g ∈ G | g · S = S } ⊂ G
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Equivalence & Signature

Cartan’s main idea:

The equivalence and symmetry properties
of submanifolds are entirely prescribed by their
differential invariants.
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Examples of Differential Invariants

Euclidean plane curves: C ⊂ R
2 (y = u(x))

κ =
uxx

(1 + u2
x)3/2

— Euclidean curvature

κs, κss, . . . — derivatives w.r.t. arc length
ds =

√
1 + u2

x dx

Euclidean space curves: C ⊂ R
3

κ, κs, κss, . . . — curvature

τ, τs, τss, . . . — torsion

Equi-affine plane curves: C ⊂ R
2

κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

— equi-affine curvature

κs, κss, . . . — derivatives w.r.t.
equi-affine arc length ds = 3

√
uxx dx
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Projective plane curves: C ⊂ RP
2

κ = F (u(7)) — projective curvature

κs, κss, . . . — derivatives w.r.t. the
projective arc length ds = P (u(5)) dx

Euclidean surfaces: S ⊂ R
3

K, H — Gauss and mean curvature

K,1,K,2, H,1, H,2, K,1,1, . . . — invariant
derivatives w.r.t. the Frenet coframe ω1, ω2

Equi-affine surfaces: S ⊂ R
3

T — Pick invariant

K,1, K,2, H,1, H,2, K,1,1, . . . — invariant
derivatives w.r.t. the equi-affine coframe ω1, ω2
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The Basis Theorem

Theorem. For “any” group G acting on p-dimensional sub-
manifolds N ⊂ M , there exists a finite generating set of
differential invariants I1, . . . , Ik and invariant differential
operators D1, . . . ,Dp, so that every differential invariant

I = F ( . . . ,DJIκ, . . . )

can be locally expressed as a function of the generating
invariants and their invariant derivatives:

DJIκ = Dj1
Dj2

· · · Dji
Iκ

• Tresse
• Ovsiannikov, O dim < ∞
• Kumpera, O–Pohjanpelto dim = ∞
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The Algebra of Differential Invariants

=⇒ Curves (one-dimensional submanifolds) are well under-
stood: k = dim M − 1; no syzygies. (M. Green)

For higher dimensional submanifolds (surfaces):

• The number of generating differential invariants is difficult to
predict in advance.

• The invariant differential operators D1, . . . ,Dp do not com-
mute.

• The differentiated invariants may be subject to certain func-
tional relations or syzygies

S( . . . ,DJIκ, . . . ) ≡ 0.

Ex: the Codazzi equation relating derivatives of the Gauss
and mean curvatures of a Euclidean surface.
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Moving Frames

(Advertisement)

� � The method of moving frames (Cartan),
especially as extended and generalized
by O–Fels–Kogan–Pohjanpelto– . . .

provides a completely constructive calculus
for finding the differential invariants,
invariant differential forms and differential
operators, commutators, recurrence formulae,
syzygies, signatures, invariant variational
problems, etc. � �

σ 12



Equivalance and Invariants

• Equivalent submanifolds N ≈ Ñ have the same
invariants: I = Ĩ.

However, unless an invariant is constant

e.g. κ = 2 ⇐⇒ κ̃ = 2

=⇒ Constant curvature submanifolds

it carries little information in isolation, since equiv-
alence maps can drastically alter its dependence on
the submanifold coordinates.

e.g. κ = x3 versus κ̃ = sinh x

However, a syzygy

Ik(x) = Φ(I1(x), . . . , Ik−1(x))

among multiple invariants is intrinsic

e.g. τ = κ3 − 1 ⇐⇒ τ̃ = κ̃3 − 1
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Equivalence & Syzygies

Theorem. (Cartan)
Two submanifolds are (locally) equivalent if and
only if they have the same syzygies among all their
differential invariants.

• Universal syzygies — Codazzi

• Distinguishing syzygies.

Proof :

Cartan’s technique of the graph:
Construct the graph of the equivalence map as
the solution to a (Frobenius) integrable differen-
tial system, which can be integrated by solving
ordinary differential equations.
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Finiteness of Syzygies

� � Higher order syzygies are consequences of a
finite number of the lowest order syzygies.

Example. If
κs = H(κ)

then
κss =

d

ds
H(κ)

= H ′(κ) κs

= H ′(κ) H(κ)

Thus, for Euclidean (or equi-affine or projective
or . . . ) plane curves we need only know a single
syzygy between κ and κs in order to establish
equivalence!
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The Signature Map

The generating syzygies are encoded by the
signature map

Σ : N −→ S
parametrized by the fundamental differential
invariants:

Σ(x) = (I1(x), . . . , Im(x)) for x ∈ N.

We call
S = Im Σ

the signature subset (or submanifold) of N .
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The Signature Theorem

Theorem. Two submanifolds are equivalent

N = g · N

if and only if their signatures are identical

S = S
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Differential Invariant Signatures

Plane Curves:

The signature curve S ⊂ R
2 of a plane curve C ⊂ R

2

is parametrized by the first two differential
invariants κ and κs:

S =
{ (

κ ,
dκ

ds

) }
⊂ R

2

Theorem. Two curves C and C are equivalent

C = g · C
if and only if their signature curves are identical

S = S
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More Differential Invariant
Signatures

Space Curves:

The signature curve of a space curve C ⊂ R
3 is

parametrized by

S =
{ (

κ ,
dκ

ds
, τ

) }
⊂ R

3

=⇒ DNA recognition (Shakiban)

Euclidean Surfaces:

The signature surface of a (generic) surface N ⊂ R
3

under the Euclidean group is parametrized by

S =
{ (

K, H, K,1, K,2

) }
⊂ R

4

=⇒ umbilic points
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Advantages of the Signature

• Completely local

• Applies to curves, surfaces and

higher dimensional submanifolds

• Symmetries and approximate symmetries

• Occulsions and reconstruction
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Symmetry Groups

Symmetry subgroup of a submanifold:

GN = { g ∈ G | g · N = N } ⊂ G

Theorem. The dimension of the symmetry group
of a (regular) submanifold equals the codimen-
sion of its signature:

dimGN = dim N − dimS

Corollary.

0 ≤ dimGN ≤ p = dimN

=⇒ Only totally singular submanifolds can have larger symmetry groups!
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Maximally Symmetric Submanifolds

Theorem. The following are equivalent:
• The submanifold N has a p-dimensional

symmetry group
• The signature S degenerates to a point:

dimS = 0

• The submanifold has all constant differential
invariants

• N = H · {z0} is the orbit of a p-dimensional
subgroup H ⊂ G

=⇒ In Euclidean geometry, these are the circles,
straight lines, spheres & planes.

=⇒ In equi-affine plane geometry, these are the
conic sections.
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Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in C which map to a
generic point of its signature S:

ιN = min
{

# Σ−1{w}
∣∣∣ w ∈ S

}
=⇒ Self–intersections

Theorem. The number of symmetries of N equals
its index:

# GN = ιN

=⇒ Approximate symmetries
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Signature Metrics

• Hausdorff

• Monge–Kantorovich transport metric

• Electrostatic repulsion

• Latent semantic analysis (Shakiban)

• Histograms (Kemper–Boutin)

• Geodesic distance

• Diffusion metric

• Gromov–Hausdorff

σ 24



Noise Reduction

The key objection to the differential invariant signature is
its dependence on (high order) derivatives, and hence
sensitivity to noise.

Noise Reduction Strategy #1: Smoothing

Apply (group-invariant) smoothing to the object.

Curvature flows:

Ct = −κn ut = − uxx

1 + u2
x

=⇒ Hamilton–Gage–Grayson
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Noise Reduction Strategy #2: Use lower order invariants
to construct a signature.

Joint Invariants

A joint invariant is an invariant of the k-fold Cartesian
product action of G on M × · · · × M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)

A joint differential invariant or semi-differential invariant
is an invariant depending on the derivatives at several points
z1, . . . , zk ∈ N on the submanifold:

I(g · z(n)
1 , . . . , g · z(n)

k ) = I(z(n)
1 , . . . , z

(n)
k )
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Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a function of
the interpoint distances

d(zi, zj) = ‖ zi − zj ‖

Joint Equi–Affine Invariants

Theorem. Every joint planar equi–affine invariant is a
function of the triangular areas

[ i j k ] = 1
2 (zi − zj) ∧ (zi − zk)
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Joint Projective Invariants

Theorem. Every joint projective invariant is a function of
the planar cross-ratios

C(zi, zj, zk, zl, zm) =
A B

C D

z 0

z 1

z 2
z 3

z 4
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Euclidean Joint Differential Invariants

— Planar Curves

• One–point

⇒ curvature
κ =

�
z ∧ � �

z

‖ �
z ‖3

• Two–point

⇒ distances ‖ z1 − z0 ‖
⇒ tangent angles φk = <) (z1 − z0,

�
zk)
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Equi–Affine Joint Differential Invariants
— Planar Curves

• One–point

⇒ affine curvature

κ =
(zt ∧ ztttt) + 4(ztt ∧ zttt)

3(zt ∧ ztt)5/3
− 5(zt ∧ zttt)

2

9(zt ∧ ztt)8/3

= zs ∧ zss

• Two–point

⇒ tangent triangle area ratio

�
z0 ∧

� �
z0

[ (z1 − z0) ∧
�
z0 ]3

=
[

�

0
� �

0 ]

[ 0 1
�

0 ]3

• Three–point

⇒ triangle area

1
2 (z1 − z0) ∧ (z2 − z0) = 1

2
[ 0 1 2 ]
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Projective Joint Differential Invariants
— Planar Curves

• One–point

⇒ projective curvature

κ = . . .

• Two–point

⇒ tangent triangle area ratio

[ 0 1
�

0 ]3 [
�

1
� �

1 ]

[ 0 1
�

1 ]3 [
�

0
� �

0 ]

• Three–point

⇒ tangent triangle ratio

[ 0 2
�

0 ] [ 0 1
�

1 ] [ 1 2
�

2 ]

[ 0 1
�

0 ] [ 1 2
�

1 ] [ 0 2
�

2 ]
.

• Four–point

⇒ area cross–ratio

[ 0 1 2 ] [ 0 3 4 ]

[ 0 1 3 ] [ 0 2 4 ]
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Joint Euclidean Signature

For the Euclidean group G = SE(2) acting on curves C ⊂ R
2 (or R

3) we
need at least four points

z0, z1, z2, z3 ∈ C
Joint invariants:

a = ‖ z1 − z0 ‖ b = ‖ z2 − z0 ‖ c = ‖ z3 − z0 ‖
d = ‖ z2 − z1 ‖ e = ‖ z3 − z1 ‖ f = ‖ z3 − z2 ‖

=⇒ six functions of four variables

Joint Signature: Σ : C×4 −→ S ⊂ R
6

dimS = 4 =⇒ two syzygies

Φ1(a, b, c, d, e, f) = 0 Φ2(a, b, c, d, e, f) = 0

Universal Cayley–Menger syzygy:

det

∣∣∣∣∣∣∣
2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣∣ = 0

⇐⇒ C ⊂ R
2

The Euclidean joint invariant signature encodes the distance matrix!
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z 0

z 1 z 2

z 3

a
b

c

d

e

f

Four-Point Euclidean Joint Signature
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Joint Equi–AffineSignature

Requires 7 triangular areas:

[ 0 1 2 ] , [ 0 1 3 ] , [ 0 1 4 ] , [ 0 1 5 ] , [ 0 2 3 ] , [ 0 2 4 ] , [ 0 2 5 ]

z0

z1

z2

z3

z4

z5
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Joint Invariant Signatures

• The joint invariant signature subsumes other sig-
natures, but resides in a higher dimensional
space and contains a lot of redundant informa-
tion.

• Identification of landmarks can significantly
reduce the redundancies (Boutin)

• It includes the differential invariant signature
and semi-differential invariant signatures as its
“coalescent boundaries”.

• Invariant numerical approximations to differential
invariants and semi-differential invariants are
constructed (using moving frames) near these
coalescent boundaries.
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Histograms

Theorem. (Boutin–Kemper)
All point configurations

(z1, . . . , zn) ∈ M×n \ V

lying outside a certain algebraic subvariety V

are uniquely determined by their Euclidean
distance histograms.
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Invariant Numerical Approximations

G — Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a
differential invariant must expressible in terms of the joint
invariants of the transformation group.

Differential Invariant

I(g(n) · z(n)) = I(z(n))

Joint Invariant

J(g · z0, . . . , g · zk) = J(z0, . . . , zk)

Semi-differential invariant =
Joint differential invariant

� � Approximate differential invariants by joint invariants
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Euclidean Invariants

Joint Euclidean invariant:

d(z,w) = ‖ z − w ‖

Euclidean curvature:

κ =
uxx

(1 + u2
x)3/2

Euclidean arc length:

ds =
√

1 + u2
x dx

Higher order differential invariants:

κs =
dκ

ds
κss =

d2κ

ds2
. . .

Euclidean–invariant differential equation:

F (κ, κs, κss, . . .) = 0
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Numerical approximation to curvature

A

B

C

a
b

c

Heron’s formula

κ̃(A, B,C) = 4
∆
abc

= 4

√
s(s − a)(s − b)(s − c)

abc

s =
a + b + c

2
— semi-perimeter

σ 39



Higher order invariants

κs =
dκ

ds

Invariant finite difference approximation:

κ̃s(Pi−2, Pi−1, Pi, Pi+1) =
κ̃(Pi−1, Pi, Pi+1) − κ̃(Pi−2, Pi−1, Pi)

d(Pi, Pi−1)

Unbiased centered difference:

κ̃s(Pi−2, Pi−1, Pi, Pi+1, Pi+2) =
κ̃(Pi, Pi+1, Pi+2) − κ̃(Pi−2, Pi−1, Pi)

d(Pi+1, Pi−1)

Better approximation (M. Boutin):

κ̃s(Pi−2, Pi−1, Pi, Pi+1) = 3
κ̃(Pi−1, Pi, Pi+1) − κ̃(Pi−2, Pi−1, Pi)

di−2 + 2di−1 + 2di + di+1

dj = d(Pj, Pj+1)
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Affine Joint Invariants

x → Ax + b detA = 1

Area is the fundamental joint affine invariant

[ ijk ] = (Pi − Pj) ∧ (Pi − Pk)

= det

∣∣∣∣∣∣∣
xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣∣
= Area of parallelogram

= 2 × Area of triangle ∆(Pi, Pj, Pk)

Syzygies:

[ ijl ] + [jkl ] = [ ijk ] + [ ikl ]

[ ijk ] [ ilm ] − [ ijl ] [ ikm ] + [ ijm ] [ ikl ] = 0
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Affine Differential Invariants

Affine curvature

κ =
3uxxuxxxx − 5u2

xxx

9(uxx)8/3

Affine arc length
ds = 3

√
uxx dx

Higher order affine invariants:

κs =
dκ

ds
κss =

d2κ

ds2
. . .
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Conic Sections

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0

Affine curvature:
κ =

S

T 2/3

S = AC − B2 = det
∣∣∣∣∣A B
B C

∣∣∣∣∣
T = det

∣∣∣∣∣∣∣
A B D
B C E
D E F

∣∣∣∣∣∣∣
Ellipse:

κ = (π/A)2/3

A = π
T

S3/2
= Area

Affine arc length of ellipse:

∫ Q

P
ds =

T 1/3

S1/2
arcsin

√
−CT

S2

(
x +

CD − BE

S

)∣∣∣∣∣∣
Q

P

= 2ST−2/3A(P,Q)
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A(P,Q) :
P

Q

O

Triangular approximation:

∆(O,P,Q) :
P

Q

O

Total affine arc length:

L = 2 3
√

A = −2π
3
√

T√
S
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Conic through five points P0, . . . , P4:

[013][024][x12][x34] = [012][034][x13][x24]

x = (x, y)
Affine curvature and arc length:

κ =
S

T 2/3

ds = Area ∆(O,P1, P3) = 1
2[O,P1, P3] =

N

2S

4T =
∏

0≤i<j<k≤4

[ijk]

4S = [013]2[024]2([124] − [123])2 +
+ [012]2[034]2([134] + [123])2 −
− 2[012][034][013][024]([123][234] + [124][134])

4N = − [123][134] {[023]2[014]2([124] − [123]) +
+ [012]2[034]2([134] + [123]) +
+ [012][023][014][034]([134] − [123])}
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