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Object Recognition

Goal: recognize when two visual objects are equiva-

lent

g: 0 — O

Symmetry

Goal: find all self-equivalences of a visual object

g: 0 — O
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Equivalence, Symmetry & Groups

Basic fact:

Equivalence and symmetry transformations

belong to a group:

g:(’)i—>5

ge G
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Computer Vision Groups

Euclidean Preserves lengths and angles
Translations
Rotations
Reflections

Similarity Preserves length ratios

Fuclidean + Scaling

Equi-affine Preserves area (volume)

x — Ax+0D, det A=1

Affine Preserves area (volume) ratios

Equi—affine 4+ Scaling
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Projective

(2.y) (ax—l—by—l—c da:—l—ey—l—f)
i gr+hy+j’ gr+hy+j

a b c
detA=det|d e f|=1
g h J

Preserves cross-ratios

Camera Rotations
Projective orthogonal transformations:

a b c
(d e f)ESO(S)

g h j

A

Video Groups
(z,y,8) +— (2,5,1)
e.g. Galilean boosts (motion tracking)

(,y,t) — (z+at,y+bt,t)
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Complications

Occlusion
Ducks ~ rabbits — Astrém

Outlines of 3D objects

Bending, warping, etc.

— pseudo-groups

Thatcher illusion
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Mathematical Setting

Ambient space:

M=R", n=2,3,... (manifold)

Object:
NCM submanifold

Equivalences:
(G finite-dimensional Lie group

acting on M

Basic equivalence problem:

S~S <+ S=¢g-S for g @G

Symmetry (isotropy) subgroup:

Gg ={geG|g-5=5} C G
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Equivalence & Signature

Cartan’s main 1dea:

The equivalence and symmetry properties
of submanifolds are entirely prescribed by their
differential invariants.
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Examples of Differential Invariants

Euclidean plane curves: C C R? (y = u(z))
_ ua:a: :
K = 1+ u2)?72 Euclidean curvature
KgyKggy--- — derivatives w.r.t. arc length

ds = /1 +u2 dx

Euclidean space curves: C C R3

KyKgyKggy+.. — curvature
TyTgyTggr---  —— torsion

Equi-affine plane curves: C C R?

Su.. U — 3u? ,
K = L TILH LIL  — equi-affine curvature
9 U8/3
T
K. K..,... — derivatives w.r.t.

§)°78S?

equi-affine arc length ds = Ju,, dz
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Projective plane curves: C C RP?
k= F(u'”) — projective curvature

KgyKggs--. — derivatives w.r.t. the
projective arc length ds = P(u(®) dx

Euclidean surfaces: S C R?3

K, H — Gauss and mean curvature

K, Ko H,Hy,K;yq,... — invariant

derivatives w.r.t. the Frenet coframe w,, w,

Equi-affine surfaces: S C R3

T — Pick invariant

K, KyH ,Hy,K;y4,... — invariant

derivatives w.r.t. the equi-affine coframe wy, w,
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The Basis Theorem

Theorem. For “any” group G acting on p-dimensional sub-
manifolds N C M, there exists a finite generating set of
differential invariants I;,...,I, and invariant differential

operators Dy,...,D,, so that every differential invariant

I=F(...,D,I, ...)

can be locally expressed as a function of the generating

invariants and their invariant derivatives:

DJI% - Dj1Dj2 T Djilfi

e Tresse
e Ovsiannikov, O dim < oo

e Kumpera, O—Pohjanpelto dim = oo
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The Algebra of Differential Invariants

—> Curves (one-dimensional submanifolds) are well under-

stood: k =dim M — 1; no syzygies. (M. Green)

For higher dimensional submanifolds (surfaces):
e The number of generating differential invariants is difficult to
predict in advance.

e The invariant differential operators Dy, ... , D,, do not com-

mute.

e The differentiated invariants may be subject to certain func-

tional relations or syzygies

S(....,D;I_,...)=0.

Ex: the Codazzi equation relating derivatives of the Gauss

and mean curvatures of a FEuclidean surface.
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Moving Frames

(Advertisement)

* * The method of moving frames (Cartan),
especially as extended and generalized
by O—Fels—Kogan—Pohjanpelto— ...
provides a completely constructive calculus
for finding the differential invariants,
invariant differential forms and differential
operators, commutators, recurrence formulae,
syzygies, signatures, invariant variational

problems, etc. * %

o 12




Equivalance and Invariants

e Equivalent submanifolds N = N have the same

invariants: I = 1.

However, unless an invariant is constant
e.g. k=2 <+ K=2

— Constant curvature submanifolds
it carries little information in isolation, since equiv-
alence maps can drastically alter its dependence on

the submanifold coordinates.

e.g. k=1 versus Kk = sinhx

However, a syzygy

Ii(x) = (I (), ..., I _y(x))
among multiple invariants s intrinsic

e.g. T=Kk’—1 — FT=r-1
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Equivalence & Syzygies

Theorem. (Cartan)
Two submanifolds are (locally) equivalent if and
only if they have the same syzygies among all their

differential invariants.
e Universal syzygies — Codazzi

e Distinguishing syzygies.

Proof -

Cartan’s technique of the graph:
Construct the graph of the equivalence map as
the solution to a (Frobenius) integrable differen-
tial system, which can be integrated by solving

ordinary differential equations.
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Finiteness of Syzygies

*x %x Higher order syzygies are consequences of a
finite number of the lowest order syzygies.

Example. If
kg = H(k)
then
" H(x)
Ko, = —
SS dS
= H'(k)
= H'(k) H(k)

Thus, for Euclidean (or equi-affine or projective
or ...) plane curves we need only know a single
syzygy between x and x, in order to establish
equivalence!
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The Signature Map

The generating syzygies are encoded by the

signature map
>: N — S

parametrized by the fundamental differential

invariants:

Y(x) = (L(x),..., I (x)) for r € N.

We call
S=ImY

the signature subset (or submanifold) of N.
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The Signature Theorem

Theorem. Two submanifolds are equivalent

N=g-N
if and only if their signatures are identical

S=S8
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Differential Invariant Signatures

Plane Curves:

The signature curve S C R? of a plane curve C C R?
is parametrized by the first two differential
invariants x and kK :

o-f( %)) < =

Theorem. Two curves C and C are equivalent

C=g¢g-C
if and only if their signature curves are identical

S=S§
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More Differential Invariant
Signatures

Space Curves:

The signature curve of a space curve C C R3 is
parametrized by

8:{<m,d—li,7>} c R’
ds

—> DNA recognition (Shakiban)

Euclidean Surfaces:

The signature surface of a (generic) surface N C R?
under the Euclidean group is parametrized by

S={(K H K, K,)} c R

—> umbilic points
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Advantages of the Signature

Completely local

Applies to curves, surfaces and

higher dimensional submanifolds
Symmetries and approximate symmetries

Occulsions and reconstruction
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Symmetry Groups

Symmetry subgroup of a submanifold:

Gy={g9geG|g- N=N} C G

Theorem. The dimension of the symmetry group
of a (regular) submanifold equals the codimen-
sion of its signature:

dimGy = dimN —dim S

Corollary.
0 < dimGy < p=dimN

= Only totally singular submanifolds can have larger symmetry groups!
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Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

e The submanifold N has a p-dimensional
symmetry group

e The signature S degenerates to a point:

dimS =0

e The submanifold has all constant differential
invariants

e N = H - {z,} is the orbit of a p-dimensional

subgroup H C G

—> In Euclidean geometry, these are the circles,

straight lines, spheres & planes.

—> In equi-afline plane geometry, these are the
conic sections.
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Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in C which map to a
generic point of its signature S:

LN:min{#E_l{w}‘ wES}

— Self-intersections

Theorem. The number of symmetries of N equals
its index:

# Gy = Ly

—> Approximate symmetries
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Signature Metrics

Hausdorft

Monge-Kantorovich transport metric
Electrostatic repulsion

Latent semantic analysis (Shakiban)
Histograms (Kemper—Boutin)
Geodesic distance

Diffusion metric

Gromov—Hausdorft
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Noise Reduction

The key objection to the differential invariant signature is
its dependence on (high order) derivatives, and hence
sensitivity to noise.

Noise Reduction Strategy #1: Smoothing

Apply (group-invariant) smoothing to the object.

Curvature flows:

u:E:E

Ct:—lﬁ)n Ut:—m
X

—> Hamilton—Gage—Grayson
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Noise Reduction Strategy #2: Use lower order invariants
to construct a signature.

Joint Invariants

A joint invariant is an invariant of the k-fold Cartesian
product action of G on M x --- x M:

I(g-2zy,...y92,) = I(zy,...,2)

A joint differential invariant or semi-differential invariant
is an invariant depending on the derivatives at several points
Z1y-..,%, € N on the submanifold:

I(g-zgn),...,g-z,gn)) = I(z%n),...,z,in))
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Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a function of
the interpoint distances

d(z;, Zj) = |z — 2 |

Joint Equi—Affine Invariants

Theorem. Every joint planar equi—affine invariant is a
function of the triangular areas

(i ] k] :%(zi_zj)/\(zi_zk)
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Joint Projective Invariants

Theorem. Every joint projective invariant is a function of
the planar cross-ratios

AB
C(zivzjazkvzlazm) = CD
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Euclidean Joint Differential Invariants

— Planar Curves

e One—point

= curvature

2
T EP
e Two—point
= distances | 21 — 2o ||
= tangent angles oF = K(2, — 29, %)
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Equi—Affine Joint Differential Invariants
— Planar Curves

e One—point

= affine curvature

(Zt /\ Ztttt) + 4(Ztt /\ Zttt)

5(Zt /\ Zttt)2

A —

= zs/\zss

B(Zt A\ Ztt)5/3

Q(Zt A Ztt)8/3

e Two—point

= tangent triangle area ratio

N ~[00]
[(21_2’0)/\20]3 [010]3
e Three—point
= triangle area,
%(21_750)/\(22_20):%[0 12]
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Projective Joint Differential Invariants
— Planar Curves

e One—point
= projective curvature
K=...
e T'wo—point

= tangent triangle area ratio

(010]°[11]
(011]°[00]

e Three—point

= tangent triangle ratio

[020][011][122]
(010][121][022]

e Four—point

= area cross-ratio
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Joint Euclidean Signature

For the Euclidean group G = SE(2) acting on curves C C R? (or R3) we
need at least four points
205 215 %9, 23 € C

Joint invariants:
a=|z -zl b=z — 2| c=|lzz — 2|
d=z— 2| e=|23— 2| f=125— 2]

— six functions of four variables

Joint Signature: Y:.C** — ScRS
dimS§ =4 = two syzygies

o, (a,b,c,d,e, f) =0 o, (a,b,c,d,e, f) =0

Universal Cayley—Menger syzygy:

2a? a?+ b —d? a’+c?—¢€?
det | a? + b — d? 2b2 b +c?— 2| =0
a?+c2—e® b2+ f? 2c?

<— (CCR?

The Euclidean joint invariant signature encodes the distance matrix!
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Four-Point Euclidean Joint Signature
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Joint Equi—Affine Signature

Requires 7 triangular areas:

(012],[013],[014],[015],[023],[024],[025]
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Joint Invariant Signatures

The joint invariant signature subsumes other sig-

natures, but resides in a higher dimensional

space and contains a lot of redundant informa-

tion.

Identification of landmarks can significantly
reduce the redundancies (Boutin)

It includes the differential invariant signature
and semi-differential invariant signatures as
“coalescent boundaries”.

1ts

Invariant numerical approximations to differential
invariants and semi-differential invariants are
constructed (using moving frames) near these

coalescent boundaries.

o 35




Histograms

Theorem. (Boutin—Kemper)
All point configurations

(215.-.,2,) E M "\ V

lying outside a certain algebraic subvariety V'
are uniquely determined by their Euclidean
distance histograms.
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Invariant Numerical Approximations

G — Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a
differential invariant must expressible in terms of the joint
invariants of the transformation group.

Differential Invariant

[(g(n) : z(n)) _ [(z("))
Joint Invariant
J(G-zgy-9-2) =J (2055 28)

Semi-differential invariant =
Joint differential invariant

* X% Approximate differential invartants by joint invariants
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Euclidean Invariants

Joint Euclidean invariant:

d(z,w) = ||z —w|

Fuclidean curvature:

uZCZC

(11 u2)3/2

KR =

Fuclidean arc length:

ds = /1 +u2dx

Higher order differential invariants:
_dr B d?k
kg = % Res = @

Fuclidean—invariant differential equation:

F(k,RgRggy--.) =0
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Numerical approximation to curvature
B

AN

Heron’s formula

k(A,B,C) = 4% 4 \/S(S— a)isbc_ b)(s — c)

a+b+c -
T2 —  semi-perimeter
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Higher order invariants

dx
S ds

K
Invariant finite difference approximation:

~ R(Pz—apzapz )_’%(Pi—?Pi—?Pi)
Fo(Pi_a Py, P Piy) = : dJr(iD P._)) . :

Unbiased centered difference:

%(Pi7 Pz‘—i—l? Pi+2) - ’%(Pz‘—% Pz‘—17 Pi)

d(Piy1, Pioy)

%S(Pi—%Pi—17Pi7Pi+17Pi+2) =

Better approximation (M. Boutin):

’%(Pi—b Pz" Pi—{-l) - ’E(Pi—27 Pz‘—l? Pi)
d, o+2d;, ;+2d;,+d;,

Rs(Pi—WPi—l?Pi?P'—{—l) =3

(2

d; =d(F;, Pjy)
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Affine Joint Invariants

X — Ax+b det A =1

Area is the fundamental joint affine invariant

[ijk]:(Pi_Pj)/\(Pi_Pk)

x, vy, 1
=det |z, y; 1
Ty Y, 1

= Area of parallelogram

= 2 x Area of triangle A(P;, P}, P,

Syzygies:
[ijl] + [jkl] = [ijk] + [ikl]
k] [ilm)] — [i51] [ikm)] + [ijm] [ikl] = O
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Affine Differential Invariants

Affine curvature

2
3u:1::1:u:1::1::1::1: o 5u:1::1::1:

9(u, )8/3

KR =
5)

Affine arc length

dS:\B/@daz

Higher order affine invariants:

dk d?k
_ o o=

li e —
S ds 55 ds?
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Conic Sections

Az? +2Bxy + Cy?> + 2Dz +2Ey+ F =0

Affine curvature:

)
k= T2/3
A B
_ _ p2_
S =AC — B” = det B C
A B D
T=det|B C FE
D FE F
Ellipse:
K = (7r/A)2/3
T
A = Uy Area,
Affine arc length of ellipse:
Q. T3 |-CT ¢p - BE\|"
/P s = Si/2 arcsin g T+ 5 .,

= 25T 2BA(P,Q)
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A(P,Q) :

Triangular approximation:

A(O,P,Q) :

Total affine arc length:

L=2JA =-2n

JT

VS
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Conic through five points F, ..., Py
[013][024][x12][x34] = [012]][034][x13][x24]

x = (z,y)
Affine curvature and arc length:
S
k= T2/3

N
ds = Area A(O, P, P;) = %[07P17p3] =53

Ar = ]l [ijk]

0<i<j<k<4

48 = [013]%[024]2([124] — [123])* +
+ [012]%[034])%([134] + [123])* —
— 2[012][034][013][024] ([123][234] + [124][134])
4N = — [123][134] {[023]*[014]%([124] — [123]) +
+ [012])%[034)%([134] + [123]) +
+ [012][023][014][034] ([134] — [123])}
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