Symmetry Methods for Differential Equations and Conservation Laws

Peter J. Olver
University of Minnesota
http://www.math.umn.edu/ ~olver

Santiago, November, 2010

Symmetry Groups of
 Differential Equations

System of differential equations

$$
\Delta\left(x, u^{(n)}\right)=0
$$

G - Lie group acting on the space of independent and dependent variables:

$$
(\widetilde{x}, \widetilde{u})=g \cdot(x, u)=(\Xi(x, u), \Phi(x, u))
$$

G acts on functions $u=f(x)$ by transforming their graphs:

Definition. G is a symmetry group of the system $\Delta=0$ if $\tilde{f}=g \cdot f$ is a solution whenever f is.

Infinitesimal Generators

Vector field:

$$
\left.\mathbf{v}\right|_{(x, u)}=\left.\frac{d}{d \varepsilon} g_{\varepsilon} \cdot(x, u)\right|_{\varepsilon=0}
$$

In local coordinates:

$$
\mathbf{v}=\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi^{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}}
$$

generates the one-parameter group

$$
\frac{d x^{i}}{d \varepsilon}=\xi^{i}(x, u) \quad \frac{d u^{\alpha}}{d \varepsilon}=\varphi^{\alpha}(x, u)
$$

Example. The vector field

$$
\mathbf{v}=-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}
$$

generates the rotation group

$$
\tilde{x}=x \cos \varepsilon-u \sin \varepsilon \quad \tilde{u}=x \sin \varepsilon+u \cos \varepsilon
$$

since

$$
\frac{d \widetilde{x}}{d \varepsilon}=-\widetilde{u} \quad \frac{d \widetilde{u}}{d \varepsilon}=\widetilde{x}
$$

Jet Spaces

$$
\begin{aligned}
& x=\left(x^{1}, \ldots, x^{p}\right) \quad-\text { independent variables } \\
& u=\left(u^{1}, \ldots, u^{q}\right) \quad \text { dependent variables } \\
& u_{J}^{\alpha}=\frac{\partial^{k} u^{\alpha}}{\partial x^{j_{1}} \ldots \partial x^{k}} \quad-\text { partial derivatives } \\
& \left(x, u^{(n)}\right)=\left(\ldots x^{i} \ldots u^{\alpha} \ldots u_{J}^{\alpha} \ldots\right) \in \mathrm{J}^{n} \\
& \quad \operatorname{jet} \text { coordinates } \\
& \operatorname{dim} \mathrm{J}^{n}=p+q^{(n)}=p+q\binom{p+n}{n}
\end{aligned}
$$

Prolongation to Jet Space

Since G acts on functions, it acts on their derivatives, leading to the prolonged group action on the jet space:

$$
\left(\widetilde{x}, \widetilde{u}^{(n)}\right)=\operatorname{pr}^{(n)} g \cdot\left(x, u^{(n)}\right)
$$

\Longrightarrow formulas provided by implicit differentiation
Prolonged vector field or infinitesimal generator:

$$
\operatorname{pr} \mathbf{v}=\mathbf{v}+\sum_{\alpha, J} \varphi_{J}^{\alpha}\left(x, u^{(n)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

The coefficients of the prolonged vector field are given by the explicit prolongation formula:

$$
\varphi_{J}^{\alpha}=D_{J} Q^{\alpha}+\sum_{i=1}^{p} \xi^{i} u_{J, i}^{\alpha}
$$

$$
Q=\left(Q^{1}, \ldots, Q^{q}\right) \quad-\quad \text { characteristic of } \mathbf{v}
$$

$$
Q^{\alpha}\left(x, u^{(1)}\right)=\varphi^{\alpha}-\sum_{i=1}^{p} \xi^{i} \frac{\partial u^{\alpha}}{\partial x^{i}}
$$

* Invariant functions are solutions to

$$
Q\left(x, u^{(1)}\right)=0 .
$$

Symmetry Criterion

Theorem. (Lie) A connected group of transformations G is a symmetry group of a nondegenerate system of differential equations $\Delta=0$ if and only if

$$
\begin{equation*}
\operatorname{pr} \mathbf{v}(\Delta)=0 \tag{*}
\end{equation*}
$$

whenever u is a solution to $\Delta=0$ for every infinitesimal generator \mathbf{v} of G.
(*) are the determining equations of the symmetry group to $\Delta=0$. For nondegenerate systems, this is equivalent to

$$
\operatorname{pr} \mathbf{v}(\Delta)=A \cdot \Delta=\sum_{\nu} A_{\nu} \Delta_{\nu}
$$

Nondegeneracy Conditions

Maximal Rank:

$$
\operatorname{rank}\left(\cdots \frac{\partial \Delta_{\nu}}{\partial x^{i}} \cdots \frac{\partial \Delta_{\nu}}{\partial u_{J}^{\alpha}} \cdots\right)=\max
$$

Local Solvability: Any each point $\left(x_{0}, u_{0}^{(n)}\right)$ such that

$$
\Delta\left(x_{0}, u_{0}^{(n)}\right)=0
$$

there exists a solution $u=f(x)$ with

$$
u_{0}^{(n)}=\operatorname{pr}^{(n)} f\left(x_{0}\right)
$$

Nondegenerate $=$ maximal rank + locally solvable

Normal: There exists at least one non-characteristic direction at $\left(x_{0}, u_{0}^{(n)}\right)$ or, equivalently, there is a change of variable making the system into Kovalevskaya form

$$
\frac{\partial^{n} u^{\alpha}}{\partial t^{n}}=\Gamma^{\alpha}\left(x, \widetilde{u}^{(n)}\right)
$$

Theorem. (Finzi) A system of q partial differential equations $\Delta=0$ in q unknowns is not normal if and only if there is a nontrivial integrability condition:
$\mathcal{D} \Delta=\sum_{\nu} \mathcal{D}_{\nu} \Delta_{\nu}=Q \quad$ order $Q<$ order $\mathcal{D}+$ order Δ

Under-determined: The integrability condition follows from lower order derivatives of the equation:

$$
\widetilde{\mathcal{D}} \Delta \equiv 0
$$

Example:

$$
\begin{gathered}
\Delta_{1}=u_{x x}+v_{x y}, \quad \Delta_{2}=u_{x y}+v_{y y} \\
D_{x} \Delta_{2}-D_{y} \Delta_{1} \equiv 0
\end{gathered}
$$

Over-determined: The integrability condition is genuine. Example:

$$
\begin{gathered}
\Delta_{1}=u_{x x}+v_{x y}-v_{y}, \quad \Delta_{2}=u_{x y}+v_{y y}+u_{y} \\
D_{x} \Delta_{2}-D_{y} \Delta_{1}=u_{x y}+v_{y y}
\end{gathered}
$$

A Simple O.D.E.

$$
u_{x x}=0
$$

Infinitesimal symmetry generator:

$$
\mathbf{v}=\xi(x, u) \frac{\partial}{\partial x}+\varphi(x, u) \frac{\partial}{\partial u}
$$

Second prolongation:

$$
\begin{aligned}
\mathbf{v}^{(2)}= & \xi(x, u) \frac{\partial}{\partial x}+\varphi(x, u) \frac{\partial}{\partial u}+ \\
& +\varphi_{1}\left(x, u^{(1)}\right) \frac{\partial}{\partial u_{x}}+\varphi_{2}\left(x, u^{(2)}\right) \frac{\partial}{\partial u_{x x}}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{1}=\varphi_{x}+\left(\varphi_{u}-\xi_{x}\right) u_{x}-\xi_{u} u_{x}^{2} \\
& \varphi_{2}=\varphi_{x x}+\left(2 \varphi_{x u}-\xi_{x x}\right) u_{x}+\left(\varphi_{u u}-2 \xi_{x u}\right) u_{x}^{2}- \\
& \quad-\xi_{u u} u_{x}^{3}+\left(\varphi_{u}-2 \xi_{x}\right) u_{x x}-3 \xi_{u} u_{x} u_{x x}
\end{aligned}
$$

Symmetry criterion:

$$
\varphi_{2}=0 \quad \text { whenever } \quad u_{x x}=0
$$

Symmetry criterion:

$$
\varphi_{x x}+\left(2 \varphi_{x u}-\xi_{x x}\right) u_{x}+\left(\varphi_{u u}-2 \xi_{x u}\right) u_{x}^{2}-\xi_{u u} u_{x}^{3}=0
$$

Determining equations:

$$
\begin{aligned}
\varphi_{x x}=0 \quad 2 \varphi_{x u}=\xi_{x x} \quad \varphi_{u u}=2 \xi_{x u} & \xi_{u u}=0 \\
& \Longrightarrow \quad \text { Linear }!
\end{aligned}
$$

General solution:

$$
\begin{aligned}
\xi(x, u) & =c_{1} x^{2}+c_{2} x u+c_{3} x+c_{4} u+c_{5} \\
\varphi(x, u) & =c_{1} x u+c_{2} u^{2}+c_{6} x+c_{7} u+c_{8}
\end{aligned}
$$

Symmetry algebra:

$$
\begin{array}{ll}
\mathbf{v}_{1}=\partial_{x} & \mathbf{v}_{5}=u \partial_{x} \\
\mathbf{v}_{2}=\partial_{u} & \mathbf{v}_{6}=u \partial_{u} \\
\mathbf{v}_{3}=x \partial_{x} & \mathbf{v}_{7}=x^{2} \partial_{x}+x u \partial_{u} \\
\mathbf{v}_{4}=x \partial_{u} & \mathbf{v}_{8}=x u \partial_{x}+u^{2} \partial_{u}
\end{array}
$$

Symmetry Group:

$$
\begin{aligned}
(x, u) \longmapsto\left(\frac{a x+b u+c}{h x+j u+k}\right. & \left.\frac{d x+e u+f}{h x+j u+k}\right) \\
& \Longrightarrow \quad \text { projective group }
\end{aligned}
$$

Prolongation

Infinitesimal symmetry

$$
\mathbf{v}=\xi(x, t, u) \frac{\partial}{\partial x}+\tau(x, t, u) \frac{\partial}{\partial t}+\varphi(x, t, u) \frac{\partial}{\partial u}
$$

First prolongation

$$
\operatorname{pr}^{(1)} \mathbf{v}=\xi \frac{\partial}{\partial x}+\tau \frac{\partial}{\partial t}+\varphi \frac{\partial}{\partial u}+\varphi^{x} \frac{\partial}{\partial u_{x}}+\varphi^{t} \frac{\partial}{\partial u_{t}}
$$

Second prolongation

$$
\operatorname{pr}^{(2)} \mathbf{v}=\operatorname{pr}^{(1)} \mathbf{v}+\varphi^{x x} \frac{\partial}{\partial u_{x x}}+\varphi^{x t} \frac{\partial}{\partial u_{x t}}+\varphi^{t t} \frac{\partial}{\partial u_{t t}}
$$

where

$$
\begin{aligned}
\varphi^{x} & =D_{x} Q+\xi u_{x x}+\tau u_{x t} \\
\varphi^{t} & =D_{t} Q+\xi u_{x t}+\tau u_{t t} \\
\varphi^{x x} & =D_{x}^{2} Q+\xi u_{x x t}+\tau u_{x t t}
\end{aligned}
$$

Characteristic

$$
Q=\varphi-\xi u_{x}-\tau u_{t}
$$

$$
\begin{aligned}
\varphi^{x}= & D_{x} Q+\xi u_{x x}+\tau u_{x t} \\
= & \varphi_{x}+\left(\varphi_{u}-\xi_{x}\right) u_{x}-\tau_{x} u_{t}-\xi_{u} u_{x}^{2}-\tau_{u} u_{x} u_{t} \\
\varphi^{t}= & D_{t} Q+\xi u_{x t}+\tau u_{t t} \\
= & \varphi_{t}-\xi_{t} u_{x}+\left(\varphi_{u}-\tau_{t}\right) u_{t}-\xi_{u} u_{x} u_{t}-\tau_{u} u_{t}^{2} \\
\varphi^{x x}= & D_{x}^{2} Q+\xi u_{x x t}+\tau u_{x t t} \\
= & \varphi_{x x}+\left(2 \phi_{x u}-\xi_{x x}\right) u_{x}-\tau_{x x} u_{t} \\
& +\left(\phi_{u u}-2 \xi_{x u}\right) u_{x}^{2}-2 \tau_{x u} u_{x} u_{t}-\xi_{u u} u_{x}^{3}- \\
& -\tau_{u u} u_{x}^{2} u_{t}+\left(\varphi_{u}-2 \xi_{x}\right) u_{x x}-2 \tau_{x} u_{x t} \\
& -3 \xi_{u} u_{x} u_{x x}-\tau_{u} u_{t} u_{x x}-2 \tau_{u} u_{x} u_{x t}
\end{aligned}
$$

Heat Equation

$$
u_{t}=u_{x x}
$$

Infinitesimal symmetry criterion

$$
\varphi^{t}=\varphi^{x x} \quad \text { whenever } \quad u_{t}=u_{x x}
$$

Determining equations

$$
\begin{array}{cl}
\frac{\text { Coefficient }}{0}=-2 \tau_{u} & \text { Monomial } \\
0=-2 \tau_{x} & u_{x} u_{x t} \\
0=-\tau_{u u} & u_{x t} \\
-\xi_{u}=-2 \tau_{x u}-3 \xi_{u} & u_{x}^{2} u_{x x} \\
\varphi_{u}-\tau_{t}=-\tau_{x x}+\varphi_{u}-2 \xi_{x} & u_{x} u_{x x} \\
0=-\xi_{u u} & u_{x}^{3} \\
0=\varphi_{u u}-2 \xi_{x u} & u_{x}^{2} \\
-\xi_{t}=2 \varphi_{x u}-\xi_{x x} & u_{x} \\
\varphi_{t}=\varphi_{x x} & 1
\end{array}
$$

General solution

$$
\begin{aligned}
\xi & =c_{1}+c_{4} x+2 c_{5} t+4 c_{6} x t \\
\tau & =c_{2}+2 c_{4} t+4 c_{6} t^{2} \\
\varphi & =\left(c_{3}-c_{5} x-2 c_{6} t-c_{6} x^{2}\right) u+\alpha(x, t) \\
& \alpha_{t}=\alpha_{x x}
\end{aligned}
$$

Symmetry algebra

$$
\begin{array}{ll}
\mathbf{v}_{1}=\partial_{x} & \text { space transl. } \\
\mathbf{v}_{2}=\partial_{t} & \text { time transl. } \\
\mathbf{v}_{3}=u \partial_{u} & \text { scaling } \\
\mathbf{v}_{4}=x \partial_{x}+2 t \partial_{t} & \text { scaling } \\
\mathbf{v}_{5}=2 t \partial_{x}-x u \partial_{u} & \text { Galilean } \\
\mathbf{v}_{6}=4 x t \partial_{x}+4 t^{2} \partial_{t}-\left(x^{2}+2 t\right) u \partial_{u} & \text { inversions } \\
\mathbf{v}_{\alpha}=\alpha(x, t) \partial_{u} & \text { linearity }
\end{array}
$$

Potential Burgers' equation

$$
u_{t}=u_{x x}+u_{x}^{2}
$$

Infinitesimal symmetry criterion

$$
\varphi^{t}=\varphi^{x x}+2 u_{x} \varphi^{x}
$$

Determining equations

$$
\begin{array}{rlr}
\frac{\text { Coefficient }}{0}=-2 \tau_{u} & \frac{\text { Monomial }}{u_{x} u_{x t}} \\
0=-2 \tau_{x} & u_{x t} \\
-\tau_{u}=-\tau_{u} & u_{x x}^{2} \\
-2 \tau_{u}=-\tau_{u u}-3 \tau_{u} & u_{x}^{2} u_{x x} \\
-\xi_{u}=-2 \tau_{x u}-3 \xi_{u}-2 \tau_{x} & u_{x} u_{x x} \\
\varphi_{u}-\tau_{t}=-\tau_{x x}+\varphi_{u}-2 \xi_{x} & u_{x x} \\
-\tau_{u}=-\tau_{u u}-2 \tau_{u} & u_{x}^{4} \\
-\xi_{u}=-2 \tau_{x u}-\xi_{u u}-2 \tau_{x}-2 \xi_{u} & u_{x}^{3} \\
\varphi_{u}-\tau_{t}=-\tau_{x x}+\varphi_{u u}-2 \xi_{x u}+2 \varphi_{u}-2 \xi_{x} & u_{x}^{2} \\
-\xi_{t}=2 \varphi_{x u}-\xi_{x x}+2 \varphi_{x} & u_{x} \\
\varphi_{t}=\varphi_{x x} & 1
\end{array}
$$

General solution

$$
\begin{aligned}
& \xi=c_{1}+c_{4} x+2 c_{5} t+4 c_{6} x t \\
& \tau=c_{2}+2 c_{4} t+4 c_{6} t^{2} \\
& \varphi=c_{3}-c_{5} x-2 c_{6} t-c_{6} x^{2}+\alpha(x, t) e^{-u} \\
& \alpha_{t}=\alpha_{x x}
\end{aligned}
$$

Symmetry algebra

$$
\begin{aligned}
\mathbf{v}_{1} & =\partial_{x} \\
\mathbf{v}_{2} & =\partial_{t} \\
\mathbf{v}_{3} & =\partial_{u} \\
\mathbf{v}_{4} & =x \partial_{x}+2 t \partial_{t} \\
\mathbf{v}_{5} & =2 t \partial_{x}-x \partial_{u} \\
\mathbf{v}_{6} & =4 x t \partial_{x}+4 t^{2} \partial_{t}-\left(x^{2}+2 t\right) \partial_{u} \\
\mathbf{v}_{\alpha} & =\alpha(x, t) e^{-u} \partial_{u}
\end{aligned}
$$

Hopf-Cole $w=e^{u}$ maps to heat equation.

Symmetry-Based Solution Methods Ordinary Differential Equations

- Lie's method
- Solvable groups
- Variational and Hamiltonian systems
- Potential symmetries
- Exponential symmetries
- Generalized symmetries

Partial Differential Equations

- Group-invariant solutions
- Non-classical method
- Weak symmetry groups
- Clarkson-Kruskal method
- Partially invariant solutions
- Differential constraints
- Nonlocal Symmetries
- Separation of Variables

Integration of O.D.E.'s

First order ordinary differential equation

$$
\frac{d u}{d x}=F(x, u)
$$

Symmetry Generator:

$$
\mathbf{v}=\xi(x, u) \frac{\partial}{\partial x}+\varphi(x, u) \frac{\partial}{\partial u}
$$

Determining equation

$$
\varphi_{x}+\left(\varphi_{u}-\xi_{x}\right) F-\xi_{u} F^{2}=\xi \frac{\partial F}{\partial x}+\varphi \frac{\partial F}{\partial u}
$$

© Trivial symmetries

$$
\frac{\varphi}{\xi}=F
$$

Method 1: Rectify the vector field.

$$
\left.\mathbf{v}\right|_{\left(x_{0}, u_{0}\right)} \neq 0
$$

Introduce new coordinates

$$
y=\eta(x, u) \quad w=\zeta(x, u)
$$

near $\left(x_{0}, u_{0}\right)$ so that

$$
\mathbf{v}=\frac{\partial}{\partial w}
$$

These satisfy first order p.d.e.'s

$$
\xi \eta_{x}+\varphi \eta_{u}=0 \quad \xi \zeta_{x}+\varphi \zeta_{u}=1
$$

Solution by method of characteristics:

$$
\frac{d x}{\xi(x, u)}=\frac{d u}{\varphi(x, u)}=\frac{d t}{1}
$$

The equation in the new coordinates will be invariant if and only if it has the form

$$
\frac{d w}{d y}=h(y)
$$

and so can clearly be integrated by quadrature.

Method 2: Integrating Factor

If $\mathbf{v}=\xi \partial_{x}+\varphi \partial_{u}$ is a symmetry for

$$
P(x, u) d x+Q(x, u) d u=0
$$

then

$$
R(x, u)=\frac{1}{\xi P+\varphi Q}
$$

is an integrating factor.

- ${ }^{\text {If }}$

$$
\frac{\varphi}{\xi}=-\frac{P}{Q}
$$

then the integratimg factor is trivial. Also, rectification of the vector field is equivalent to solving the original o.d.e.

Higher Order Ordinary Differential Equations

$$
\Delta\left(x, u^{(n)}\right)=0
$$

If we know a one-parameter symmetry group

$$
\mathbf{v}=\xi(x, u) \frac{\partial}{\partial x}+\varphi(x, u) \frac{\partial}{\partial u}
$$

then we can reduce the order of the equation by 1 .

Method 1: Rectify $\mathbf{v}=\partial_{w}$. Then the equation is invariant if and only if it does not depend on w :

$$
\Delta\left(y, w^{\prime}, \ldots, w_{n}\right)=0
$$

Set $v=w^{\prime}$ to reduce the order.

Method 2: Differential invariants.

$$
h\left[\operatorname{pr}^{(n)} g \cdot\left(x, u^{(n)}\right)\right]=h\left(x, u^{(n)}\right), \quad g \in G
$$

Infinitesimal criterion: $\operatorname{pr} \mathbf{v}(h)=0$.
Proposition. If η, ζ are $n^{\text {th }}$ order differential invariants, then

$$
\frac{d \eta}{d \zeta}=\frac{D_{x} \eta}{D_{x} \zeta}
$$

is an $(n+1)^{\text {st }}$ order differential invariant.

Corollary. Let

$$
y=\eta(x, u), \quad w=\zeta\left(x, u, u^{\prime}\right)
$$

be the independent first order differential invariants
for G. Any $n^{\text {th }}$ order o.d.e. admitting G as a symmetry group can be written in terms of the differential invariants $y, w, d w / d y, \ldots, d^{n-1} w / d y^{n-1}$.

In terms of the differential invariants, the $n^{\text {th }}$ order o.d.e. reduces to

$$
\widetilde{\Delta}\left(y, w^{(n-1)}\right)=0
$$

For each solution $w=g(y)$ of the reduced equation, we must solve the auxiliary equation

$$
\zeta\left(x, u, u^{\prime}\right)=g[\eta(x, u)]
$$

to find $u=f(x)$. This first order equation admits G as a symmetry group and so can be integrated as before.

Multiparameter groups

- G - r-dimensional Lie group.

Assume pr ${ }^{(r)} G$ acts regularly with r dimensional orbits.

Independent $r^{\text {th }}$ order differential invariants:

$$
y=\eta\left(x, u^{(r)}\right) \quad w=\zeta\left(x, u^{(r)}\right)
$$

Independent $n^{\text {th }}$ order differential invariants:

$$
y, w, \frac{d w}{d y}, \ldots, \frac{d^{n-r} w}{d y^{n-r}}
$$

In terms of the differential invariants, the equation reduces in order by r :

$$
\widetilde{\Delta}\left(y, w^{(n-r)}\right)=0
$$

For each solution $w=g(y)$ of the reduced equation, we must solve the auxiliary equation

$$
\zeta\left(x, u^{(r)}\right)=g\left[\eta\left(x, u^{(r)}\right)\right]
$$

to find $u=f(x)$. In this case there is no guarantee that we can integrate this equation by quadrature.

Example. Projective group $G=\mathrm{SL}(2)$

$$
(x, u) \longmapsto\left(x, \frac{a u+b}{c u+d}\right), \quad a d-b c=1 .
$$

Infinitesimal generators:

$$
\partial_{u}, \quad u \partial_{u}, \quad u^{2} \partial_{u}
$$

Differential invariants:

$$
\begin{aligned}
x, \quad w= & \frac{2 u^{\prime} u^{\prime \prime \prime}-3 u^{\prime \prime 2}}{u^{\prime 2}} \\
& \Longrightarrow \quad \text { Schwarzian derivative }
\end{aligned}
$$

Reduced equation

$$
\widetilde{\Delta}\left(y, w^{(n-3)}\right)=0
$$

Let $w=h(x)$ be a solution to reduced equation. To recover $u=f(x)$ we must solve the auxiliary equation:

$$
2 u^{\prime} u^{\prime \prime \prime}-3 u^{\prime \prime 2}=u^{2} h(x)
$$

which still admits the full group $\mathrm{SL}(2)$. Integrate using ∂_{u} :

$$
u^{\prime}=z \quad 2 z z^{\prime \prime}-z^{\prime 2}=z^{2} h(x)
$$

Integrate using $u \partial_{u}=z \partial_{z}$:

$$
v=(\log z)^{\prime} \quad 2 v^{\prime}+v^{2}=h(x)
$$

No further symmetries, so we are stuck with a Riccati equation to effect the solution.

Solvable Groups

- Basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ of the symmetry algebra \mathfrak{g} such that

$$
\left[\mathbf{v}_{i}, \mathbf{v}_{j}\right]=\sum_{k<j} c_{i j}^{k} \mathbf{v}_{k}, \quad i<j
$$

If we reduce in the correct order, then we are guaranteed a symmetry at each stage. Reduced equation for subalgebra $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$:

$$
\widetilde{\Delta}^{(k)}\left(y, w^{(n-k)}\right)=0
$$

admits a symmetry $\widetilde{\mathbf{v}}_{k+1}$ corresponding to \mathbf{v}_{k+1}.

Theorem. (Bianchi) If an $n^{\text {th }}$ order o.d.e. has a (regular) r-parameter solvable symmetry group, then its solutions can be found by quadrature from those of the $(n-r)^{\text {th }}$ order reduced equation.

Example.

$$
x^{2} u^{\prime \prime}=f\left(x u^{\prime}-u\right)
$$

Symmetry group:

$$
\begin{gathered}
\mathbf{v}=x \partial_{u}, \quad \mathbf{w}=x \partial_{x} \\
{[\mathbf{v}, \mathbf{w}]=-\mathbf{v}}
\end{gathered}
$$

Reduction with respect to \mathbf{v} :

$$
z=x u^{\prime}-u
$$

Reduced equation:

$$
x z^{\prime}=h(z)
$$

still invariant under $\mathbf{w}=x \partial_{x}$, and hence can be solved by quadrature.

Wrong way reduction with respect to \mathbf{w} :

$$
y=u, \quad z=z(y)=x u^{\prime}
$$

Reduced equation:

$$
z\left(z^{\prime}-1\right)=h(z-y)
$$

- No remaining symmetry; not clear how to integrate directly.

Group Invariant Solutions

System of partial differential equations

$$
\Delta\left(x, u^{(n)}\right)=0
$$

$G \quad$ - symmetry group
Assume G acts regularly on M with r-dimensional orbits

Definition. $u=f(x)$ is a G-invariant solution if

$$
g \cdot f=f \quad \text { for all } \quad g \in G
$$

i.e. the graph $\Gamma_{f}=\{(x, f(x))\}$ is a (locally) G invariant subset of M.

- Similarity solutions, travelling waves, ...

Proposition. Let G have infinitesimal generators $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ with associated characteristics Q_{1}, \ldots, Q_{r}. A function $u=f(x)$ is G-invariant if and only if it is a solution to the system of first order partial differential equations

$$
Q_{\nu}\left(x, u^{(1)}\right)=0, \quad \nu=1, \ldots, r .
$$

Theorem. (Lie). If G has r-dimensional orbits, and acts transversally to the vertical fibers $\{x=$ const. $\}$, then all the G-invariant solutions to $\Delta=0$ can be found by solving a reduced system of differential equations $\Delta / G=0$ in r fewer independent variables.

Method 1: Invariant Coordinates.

The new variables are given by a complete set of functionally independent invariants of G :

$$
\eta_{\alpha}(g \cdot(x, u))=\eta_{\alpha}(x, u) \quad \text { for all } \quad g \in G
$$

Infinitesimal criterion:

$$
\mathbf{v}_{k}\left[\eta_{\alpha}\right]=0, \quad k=1, \ldots, r
$$

New independent and dependent variables:

$$
\begin{gathered}
y_{1}=\eta_{1}(x, u), \ldots, y_{p-r}=\eta_{p-r}(x, u) \\
w_{1}=\zeta_{1}(x, u), \ldots, w^{q}=\zeta^{q}(x, u)
\end{gathered}
$$

Invariant functions:

$$
w=\eta(y), \quad \text { i.e. } \quad \zeta(x, u)=h[\eta(x, u)]
$$

Reduced equation:

$$
\Delta / G\left(y, w^{(n)}\right)=0
$$

Every solution determines a G-invariant solution to the original p.d.e.

Example. The heat equation $u_{t}=u_{x x}$ Scaling symmetry: $\quad x \partial_{x}+2 t \partial_{t}+a u \partial_{u}$
Invariants: $\quad y=\frac{x}{\sqrt{t}}, \quad w=t^{-a} u$

$$
u=t^{a} w(y), \quad u_{t}=t^{a-1}\left(-\frac{1}{2} y w^{\prime}+a w\right), \quad u_{x x}=t^{a} w^{\prime \prime}
$$

Reduced equation

$$
w^{\prime \prime}+12 y w^{\prime}-a w=0
$$

Solution: $\quad w=e^{-y^{2} / 8} U\left(2 a+\frac{1}{2}, y / \sqrt{2}\right)$
\Longrightarrow parabolic cylinder function
Similarity solution:

$$
u(x, t)=t^{a} e^{-x^{2} / 8 t} U\left(2 a+\frac{1}{2}, x / \sqrt{2 t}\right)
$$

Example. The heat equation $u_{t}=u_{x x}$
Galilean symmetry: $\quad 2 t \partial_{x}-x u \partial_{u}$
Invariants: $\quad y=t \quad w=e^{x^{2} / 4 t} u$

$$
\begin{gathered}
u=e^{-x^{2} / 4 t} w(y), \quad u_{t}=e^{-x^{2} / 4 t}\left(w^{\prime}+\frac{x^{2}}{4 t^{2}} w\right) \\
u_{x x}=e^{-x^{2} / 4 t}\left(\frac{x^{2}}{4 t^{2}}-\frac{1}{2 t}\right) w
\end{gathered}
$$

Reduced equation:
$2 y w^{\prime}+w=0$
Source solution:

$$
w=k y^{-1 / 2}, \quad u=\frac{k}{\sqrt{t}} e^{x^{2} / 4 t}
$$

Method 2: Direct substitution:

Solve the combined system

$$
\Delta\left(x, u^{(n)}\right)=0 \quad Q_{k}\left(x, u^{(1)}\right)=0, \quad k=1, \ldots, r
$$

as an overdetermined system of p.d.e.
For a one-parameter group, we solve

$$
Q\left(x, u^{(1)}\right)=0
$$

for

$$
\frac{\partial u^{\alpha}}{\partial x^{p}}=\frac{\varphi^{\alpha}}{\xi^{n}}-\sum_{i=1}^{p-1} \frac{\xi^{i}}{\xi^{p}} \frac{\partial u^{\alpha}}{\partial x^{i}}
$$

Rewrite in terms of derivatives with respect to x_{1}, \ldots, x_{p-1}. The reduced equation has x^{p} as a parameter. Dependence on x^{p} can be found by by substituting back into the characteristic condition.

Classification of invariant solutions

Let G be the full symmetry group of the system $\Delta=0$. Let $H \subset G$ be a subgroup. If $u=f(x)$ is an H-invariant solution, and $g \in G$ is another group element, then $\tilde{f}=g \cdot f$ is an invariant solution for the conjugate subgroup $\widetilde{H}=g \cdot H \cdot g^{-1}$.

- Classification of subgroups of G under conjugation.
- Classification of subalgebras of \mathfrak{g} under the adjoint action.
- Exploit symmetry of the reduced equation

Non-Classical Method

$$
\Longrightarrow \text { Bluman and Cole }
$$

Here we require not invariance of the original partial differential equation, but rather invariance of the combined system

$$
\Delta\left(x, u^{(n)}\right)=0 \quad Q_{k}\left(x, u^{(1)}\right)=0, \quad k=1, \ldots, r
$$

- Nonlinear determining equations.
- Most solutions derived using this approach come from ordinary group invariance anyway.

Weak (Partial) Symmetry Groups

Here we require invariance of

$$
\Delta\left(x, u^{(n)}\right)=0 \quad Q_{k}\left(x, u^{(1)}\right)=0, \quad k=1, \ldots, r
$$ and all the associated integrability conditions

- Every group is a weak symmetry group.
- Every solution can be derived in this way.
- Compatibility of the combined system?
- Overdetermined systems of partial differential equations.

The Boussinesq Equation

$$
u_{t t}+\frac{1}{2}\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

Classical symmetry group:

$$
\mathbf{v}_{1}=\partial_{x} \quad \mathbf{v}_{2}=\partial_{t} \quad \mathbf{v}_{3}=x \partial_{x}+2 t \partial_{t}-2 u \partial_{u}
$$

For the scaling group

$$
-Q=x u_{x}+2 t u_{t}+2 u=0
$$

Invariants:

$$
y=\frac{x}{\sqrt{t}} \quad w=t u \quad u=\frac{1}{t} w\left(\frac{x}{\sqrt{t}}\right)
$$

Reduced equation:

$$
w^{\prime \prime \prime \prime}+\frac{1}{2}\left(w^{2}\right)^{\prime \prime}+\frac{1}{4} y^{2} w^{\prime \prime}+\frac{7}{4} y w^{\prime}+2 w=0
$$

$$
u_{t t}+\frac{1}{2}\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

Group classification:

$$
\mathbf{v}_{1}=\partial_{x} \quad \mathbf{v}_{2}=\partial_{t} \quad \mathbf{v}_{3}=x \partial_{x}+2 t \partial_{t}-2 u \partial_{u}
$$

Note:

$$
\begin{gathered}
\operatorname{Ad}\left(\varepsilon \mathbf{v}_{3}\right) \mathbf{v}_{1}=e^{\varepsilon} \mathbf{v}_{1} \quad \operatorname{Ad}\left(\varepsilon \mathbf{v}_{3}\right) \mathbf{v}_{2}=e^{2 \varepsilon} \mathbf{v}_{2} \\
\operatorname{Ad}\left(\delta \mathbf{v}_{1}+\varepsilon \mathbf{v}_{2}\right) \mathbf{v}_{3}=\mathbf{v}_{3}-\delta \mathbf{v}_{1}-\varepsilon \mathbf{v}_{2}
\end{gathered}
$$

so the one-dimensional subalgebras are classified by:

$$
\left\{\mathbf{v}_{3}\right\} \quad\left\{\mathbf{v}_{1}\right\} \quad\left\{\mathbf{v}_{2}\right\} \quad\left\{\mathbf{v}_{1}+\mathbf{v}_{2}\right\} \quad\left\{\mathbf{v}_{1}-\mathbf{v}_{2}\right\}
$$ and we only need to determine solutions invariant under these particular subgroups to find the most general groupinvariant solution.

$$
u_{t t}+\frac{1}{2}\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

Non-classical: Galilean group

$$
\mathbf{v}=t \partial_{x}+\partial_{t}-2 t \partial_{u}
$$

Not a symmetry, but the combined system

$$
u_{t t}+\frac{1}{2}\left(u^{2}\right)_{x x}+u_{x x x x}=0 \quad-Q=t u_{x}+u_{t}+2 t=0
$$

does admit \mathbf{v} as a symmetry. Invariants:

$$
y=x-\frac{1}{2} t^{2}, \quad w=u+t^{2}, \quad u(x, t)=w(y)-t^{2}
$$

Reduced equation:

$$
w^{\prime \prime \prime \prime}+w w^{\prime \prime}+\left(w^{\prime}\right)^{2}-w^{\prime}+2=0
$$

$$
u_{t t}+\frac{1}{2}\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

Weak Symmetry: Scaling group: $\quad x \partial_{x}+t \partial_{t}$
Not a symmetry of the combined system

$$
u_{t t}+\frac{1}{2}\left(u^{2}\right)_{x x}+u_{x x x x}=0 \quad Q=x u_{x}+t u_{t}=0
$$

Invariants: $\quad y=\frac{x}{t} u \quad$ Invariant solution: $\quad u(x, t)=w(y)$
The Boussinesq equation reduces to

$$
t^{-4} w^{\prime \prime \prime \prime}+t^{-2}\left[(w+1-y) w^{\prime \prime}+\left(w^{\prime}\right)^{2}-y w^{\prime}\right]=0
$$

so we obtain an overdetermined system

$$
w^{\prime \prime \prime \prime}=0 \quad(w+1-y) w^{\prime \prime}+\left(w^{\prime}\right)^{2}-y w^{\prime}=0
$$

Solutions: $\quad w(y)=\frac{2}{3} y^{2}-1, \quad$ or $\quad w=$ constant
Similarity solution: $\quad u(x, t)=\frac{2 x^{2}}{3 t^{2}}-1$

Symmetries and Conservation Laws

Variational problems

$$
L[u]=\int_{\Omega} L\left(x, u^{(n)}\right) d x
$$

Euler-Lagrange equations

$$
\Delta=E(L)=0
$$

Euler operator (variational derivative)

$$
E^{\alpha}(L)=\frac{\delta L}{\delta u^{\alpha}}=\sum_{J}(-D)^{J} \frac{\partial L}{\partial u_{J}^{\alpha}}
$$

Theorem. (Null Lagrangians)

$$
E(L) \equiv 0 \quad \text { if and only if } \quad L=\operatorname{Div} P
$$

Theorem. The system $\Delta=0$ is the Euler-Lagrange equations for some variational problem if and only if the Fréchet derivative D_{Δ} is self-adjoint:

$$
\begin{aligned}
D_{\Delta}^{*}= & D_{\Delta} \\
& \Longrightarrow \text { Helmholtz conditions }
\end{aligned}
$$

Fréchet derivative

Given $P\left(x, u^{(n)}\right)$, its Fréchet derivative or formal linearization is the differential operator D_{P} defined by

$$
D_{P}[w]=\left.\frac{d}{d \varepsilon} P[u+\varepsilon w]\right|_{\varepsilon=0}
$$

Example.

$$
\begin{aligned}
P & =u_{x x x}+u u_{x} \\
D_{P} & =D_{x}^{3}+u D_{x}+u_{x}
\end{aligned}
$$

Adjoint (formal)

$$
\mathcal{D}=\sum_{J} A_{J} D^{J} \quad \mathcal{D}^{*}=\sum_{J}(-D)^{J} \cdot A_{J}
$$

Integration by parts formula:

$$
P \mathcal{D} Q=Q \mathcal{D}^{*} P+\operatorname{Div} A
$$

where A depends on P, Q.

Conservation Laws

Definition. A conservation law of a system of partial differential equations is a divergence expression

$$
\operatorname{Div} P=0
$$

which vanishes on all solutions to the system.

$$
P=\left(P_{1}\left(x, u^{(k)}\right), \ldots, P_{p}\left(x, u^{(k)}\right)\right)
$$

\Longrightarrow The integral

$$
\int P \cdot d S
$$

is path (surface) independent.

If one of the coordinates is time, a conservation law takes the form

$$
D_{t} T+\operatorname{Div} X=0
$$

$T \quad-\quad$ conserved density $\quad X \quad$ flux
By the divergence theorem,

$$
\left.\int_{\Omega} T\left(x, t, u^{(k)}\right) d x\right)\left.\right|_{t=a} ^{b}=\int_{a}^{b} \int_{\Omega} X \cdot d S d t
$$

depends only on the boundary behavior of the solution.

- If the flux X vanishes on $\partial \Omega$, then $\int_{\Omega} T d x$ is conserved (constant).

Trivial Conservation Laws

Type I If $P=0$ for all solutions to $\Delta=0$, then Div $P=0$ on solutions too

Type II (Null divergences) If $\operatorname{Div} P=0$ for all functions $u=f(x)$, then it trivially vanishes on solutions.
Examples:

$$
\begin{gathered}
D_{x}\left(u_{y}\right)+D_{y}\left(-u_{x}\right) \equiv 0 \\
D_{x} \frac{\partial(u, v)}{\partial(y, z)}+D_{y} \frac{\partial(u, v)}{\partial(z, x)}+D_{z} \frac{\partial(u, v)}{\partial(x, y)} \equiv 0
\end{gathered}
$$

Theorem.

$$
\operatorname{Div} P\left(x, u^{(k)}\right) \equiv 0
$$

for all u if and only if

$$
P=\operatorname{Curl} Q\left(x, u^{(k)}\right)
$$

i.e.

$$
P_{i}=\sum_{j=1}^{p} D_{j} Q_{i j} \quad Q_{i j}=-Q_{j i}
$$

Two conservation laws P and \widetilde{P} are equivalent if they differ by a sum of trivial conservation laws:

$$
P=\widetilde{P}+P_{I}+P_{I I}
$$

where

$$
P_{I}=0 \text { on solutions } \quad \operatorname{Div} P_{I I} \equiv 0
$$

Proposition. Every conservation law of a system of partial differential equations is equivalent to a conservation law in characteristic form

$$
\operatorname{Div} P=Q \cdot \Delta=\sum_{\nu} Q_{\nu} \Delta_{\nu}
$$

Proof:

$$
\operatorname{Div} P=\sum_{\nu, J} Q_{\nu}^{J} D^{J} \Delta_{\nu}
$$

Integrate by parts:

$$
\operatorname{Div} \tilde{P}=\sum_{\nu, J}(-D)^{J} Q_{\nu}^{J} \cdot \Delta_{\nu} \quad Q_{\nu}=\sum_{J}(-D)^{J} Q_{\nu}^{J}
$$

Q is called the characteristic of the conservation law.

Theorem. Q is the characteristic of a conservation law for $\Delta=0$ if and only if

$$
D_{\Delta}^{*} Q+D_{Q}^{*} \Delta=0 .
$$

Proof:

$$
0=E(\operatorname{Div} P)=E(Q \cdot \Delta)=D_{\Delta}^{*} Q+D_{Q}^{*} \Delta
$$

Normal Systems

A characteristic is trivial if it vanishes on solutions. Two characteristics are equivalent if they differ by a trivial one.

Theorem. Let $\Delta=0$ be a normal system of partial differential equations. Then there is a one-toone correspondence between (equivalence classes of) nontrivial conservation laws and (equivalence classes of) nontrivial characteristics.

Variational Symmetries

Definition. A (restricted) variational symmetry is a transformation $(\widetilde{x}, \widetilde{u})=g \cdot(x, u)$ which leaves the variational problem invariant:

$$
\int_{\widetilde{\Omega}} L\left(\widetilde{x}, \widetilde{u}^{(n)}\right) d \widetilde{x}=\int_{\Omega} L\left(x, u^{(n)}\right) d x
$$

Infinitesimal criterion:

$$
\operatorname{pr} \mathbf{v}(L)+L \operatorname{Div} \xi=0
$$

Theorem. If \mathbf{v} is a variational symmetry, then it is a symmetry of the Euler-Lagrange equations.

* \star But not conversely!

Noether's Theorem (Weak version). If \mathbf{v} generates a one-parameter group of variational symmetries of a variational problem, then the characteristic Q of \mathbf{v} is the characteristic of a conservation law of the EulerLagrange equations:
$\operatorname{Div} P=Q E(L)$

Elastostatics

$\int W(x, \nabla u) d x \quad-\quad$ stored energy

$$
x, u \in \mathbb{R}^{p}, \quad p=2,3
$$

Frame indifference

$$
u \longmapsto R u+a, \quad R \in \mathrm{SO}(p)
$$

Conservation laws $=$ path independent integrals:
$\operatorname{Div} P=0$.

1. Translation invariance

$$
P_{i}=\frac{\partial W}{\partial u_{i}^{\alpha}}
$$

\Longrightarrow Euler-Lagrange equations
2. Rotational invariance

$$
P_{i}=u_{i}^{\alpha} \frac{\partial W}{\partial u_{j}^{\beta}}-u_{i}^{\beta} \frac{\partial W}{\partial u_{j}^{\alpha}}
$$

3. Homogeneity : $W=W(\nabla u) \quad x \longmapsto x+a$

$$
P_{i}=\sum_{\alpha=1}^{p} u_{j}^{\alpha} \frac{\partial W}{\partial u_{i}^{\alpha}}-\delta_{j}^{i} W
$$

\Longrightarrow Energy-momentum tensor
4. Isotropy : $W(\nabla u \cdot Q)=W(\nabla u) \quad Q \in \operatorname{SO}(p)$

$$
P_{i}=\sum_{\alpha=1}^{p}\left(x^{j} u_{k}^{\alpha}-x^{k} u_{j}^{\alpha}\right) \frac{\partial W}{\partial u_{i}^{\alpha}}+\left(\delta_{j}^{i} x^{k}-\delta_{k}^{i} x^{j}\right) W
$$

5. Dilation invariance: $W(\lambda \nabla u)=\lambda^{n} W(\nabla u)$

$$
P_{i}=\frac{n-p}{n} \sum_{\alpha, j=1}^{p}\left(u^{\alpha} \delta_{j}^{i}-x^{j} u_{j}^{\alpha}\right) \frac{\partial W}{\partial u_{i}^{\alpha}}+x^{i} W
$$

5A. Divergence identity

$$
\begin{gathered}
\operatorname{Div} \tilde{P}=p W \\
\widetilde{P}_{i}=\sum_{j=1}^{p}\left(u^{\alpha} \delta_{j}^{i}-x^{j} u_{j}^{\alpha}\right) \frac{\partial W}{\partial u_{i}^{\alpha}}+x^{i} W \\
\Longrightarrow \text { Knops/Stuart, Pohozaev, Pucci/Serrin }
\end{gathered}
$$

Generalized Vector Fields

Allow the coefficients of the infinitesimal generator to depend on derivatives of u :

$$
\mathbf{v}=\sum_{i=1}^{p} \xi^{i}\left(x, u^{(k)}\right) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \varphi^{\alpha}\left(x, u^{(k)}\right) \frac{\partial}{\partial u^{\alpha}}
$$

Characteristic:

$$
Q_{\alpha}\left(x, u^{(k)}\right)=\varphi^{\alpha}-\sum_{i=1}^{p} \xi^{i} u_{i}^{\alpha}
$$

Evolutionary vector field:

$$
\mathbf{v}_{Q}=\sum_{\alpha=1}^{q} Q_{\alpha}\left(x, u^{(k)}\right) \frac{\partial}{\partial u^{\alpha}}
$$

Prolongation formula:

$$
\begin{gathered}
\operatorname{pr} \mathbf{v}=\operatorname{pr} \mathbf{v}_{Q}+\sum_{i=1}^{p} \xi^{i} D_{i} \\
\operatorname{pr} \mathbf{v}_{Q}=\sum_{\alpha, J} D^{J} Q_{\alpha} \frac{\partial}{\partial u_{J}^{\alpha}} \quad D_{i}=\sum_{\alpha, J} u_{J, i}^{\alpha} \frac{\partial}{\partial u_{J}^{\alpha}} \\
\\
\Longrightarrow \text { total derivative }
\end{gathered}
$$

Generalized Flows

- The one-parameter group generated by an evolutionary vector field is found by solving the Cauchy problem for an associated system of evolution equations

$$
\frac{\partial u^{\alpha}}{\partial \varepsilon}=\left.Q_{\alpha}\left(x, u^{(n)}\right) \quad u\right|_{\varepsilon=0}=f(x)
$$

Example. $\mathbf{v}=\frac{\partial}{\partial x}$ generates the one-parameter group of translations:

$$
(x, y, u) \quad \longmapsto \quad(x+\varepsilon, y, u)
$$

Evolutionary form:

$$
\mathbf{v}_{Q}=-u_{x} \frac{\partial}{\partial x}
$$

Corresponding group:

$$
\frac{\partial u}{\partial \varepsilon}=-u_{x}
$$

Solution

$$
u=f(x, y) \quad \longmapsto \quad u=f(x-\varepsilon, y)
$$

Generalized Symmetries of Differential Equations

Determining equations :

$$
\operatorname{pr} \mathbf{v}(\Delta)=0 \quad \text { whenever } \quad \Delta=0
$$

For totally nondegenerate systems, this is equivalent to

$$
\operatorname{pr} \mathbf{v}(\Delta)=\mathcal{D} \Delta=\sum_{\nu} \mathcal{D}_{\nu} \Delta_{\nu}
$$

$\star \mathbf{v}$ is a generalized symmetry if and only if its evolutionary form \mathbf{v}_{Q} is.

- A generalized symmetry is trivial if its characteristic vanishes on solutions to Δ. Two symmetries are equivalent if their evolutionary forms differ by a trivial symmetry.

General Variational Symmetries

Definition. A generalized vector field is a variational symmetry if it leaves the variational problem invariant up to a divergence:

$$
\operatorname{pr} \mathbf{v}(L)+L \operatorname{Div} \xi=\operatorname{Div} B
$$

* \mathbf{v} is a variational symmetry if and only if its evolutionary form \mathbf{v}_{Q} is.

$$
\operatorname{pr} \mathbf{v}_{Q}(L)=\operatorname{Div} \widetilde{B}
$$

Theorem. If \mathbf{v} is a variational symmetry, then it is a symmetry of the Euler-Lagrange equations.

Proof:
First, \mathbf{v}_{Q} is a variational symmetry if

$$
\operatorname{pr} \mathbf{v}_{Q}(L)=\operatorname{Div} P .
$$

Secondly, integration by parts shows

$$
\operatorname{pr} \mathbf{v}_{Q}(L)=D_{L}(Q)=Q D_{L}^{*}(1)+\operatorname{Div} A=Q E(L)+\operatorname{Div} A
$$ for some A depending on Q, L. Therefore

$$
\begin{aligned}
0 & =E\left(\operatorname{pr} \mathbf{v}_{Q}(L)\right)=E(Q E(L))=E(Q \Delta)=D_{\Delta}^{*} Q+D_{Q}^{*} \Delta \\
& =D_{\Delta} Q+D_{Q}^{*} \Delta=\operatorname{pr} \mathbf{v}_{Q}(\Delta)+D_{Q}^{*} \Delta
\end{aligned}
$$

Noether's Theorem. Let $\Delta=0$ be a normal system of Euler-Lagrange equations. Then there is a one-toone correspondence between (equivalence classes of) nontrivial conservation laws and (equivalence classes of) nontrivial variational symmetries. The characteristic of the conservation law is the characteristic of the associated symmetry.

Proof: Nother's Identity:

$$
Q E(L)=\operatorname{pr} \mathbf{v}_{Q}(L)-\operatorname{Div} A=\operatorname{Div}(P-A)
$$

The Kepler Problem

$$
\ddot{x}+\frac{\mu x}{r^{3}}=0 \quad L=\frac{1}{2} \dot{x}^{2}-\mu r
$$

Generalized symmetries:

$$
\mathbf{v}=(x \cdot \ddot{x}) \partial_{x}+\dot{x}\left(x \cdot \partial_{x}\right)-2 x\left(\dot{x} \cdot \partial_{x}\right)
$$

Conservation law

$$
\operatorname{pr} \mathbf{v}(L)=D_{t} R
$$

where

$$
\begin{aligned}
R=\dot{x} \wedge(x \wedge \dot{x}) & -\frac{\mu x}{r} \\
& \Longrightarrow \text { Runge-Lenz vector }
\end{aligned}
$$

Noether's Second Theorem. A system of EulerLagrange equations is under-determined if and only if it admits an infinite dimensional variational symmetry group depending on an arbitrary function. The associated conservation laws are trivial.

Proof: If $f(x)$ is any function,

$$
f(x) \mathcal{D}(\Delta)=\Delta \mathcal{D}^{*}(f)+\operatorname{Div} P[f, \Delta] .
$$

Set

$$
Q=D^{*}(f) .
$$

Example.

$$
\iint\left(u_{x}+v_{y}\right)^{2} d x d y
$$

Euler-Lagrange equations:

$$
\Delta_{1}=E^{u}(L)=u_{x x}+v_{x y}=0
$$

$$
\begin{gathered}
\Delta_{2}=E^{v}(L)=u_{x y}+v_{y y}=0 \\
D_{x} \Delta_{2}-D_{y} \Delta_{2} \equiv 0
\end{gathered}
$$

Symmetries

$$
(u, v) \longmapsto\left(u+\varphi_{y}, v-\varphi_{x}\right)
$$

