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Moving Frames

Classical contributions:
M. Bartels (~1800), J. Serret, J. Frénet, G. Darboux,

E. Cotton, Flie Cartan

Modern developments: (1970’s)

S.S. Chern, M. Green, P. Griffiths, G. Jensen, T. Ivey,
J. Landsberg, ...

The equivariant approach: (1997 — )

PJO, M. Fels, G. Mari—Beffa, I. Kogan, J. Cheh,
J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield,
E. Hubert, O. Morozov, R. McLenaghan, R. Smirnov, J. Yue,
A. Nikitin, J. Patera, ...




Moving Frame — Space Curves
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Moving Frame — Space Curves
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“I did not quite understand how he [Cartan]| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598-601



Applications of Moving Frames

Differential geometry

Equivalence

Symmetry

Differential invariants

Rigidity

Joint Invariants and Semi-Differential Invariants
Invariant differential forms and tensors
Identities and syzygies

Classical invariant theory



Computer vision
o object recognition
o symmetry detection
Invariant numerical methods
Poisson geometry & solitons
Killing tensors in relativity
Invariants of Lie algebras in quantum mechanics

Lie pseudogroups



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group



Equivalence:

Determine when two n-dimensional submanifolds
N and N Cc M

are congruent:

Symmetry:

Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Classical Geometry — F. Klein

Euclidean group:

. { SE(n) = SO(n) x R"™
N E(n) =0(n) x R"

2— Az + € SO(n) or O(n), beR" zeR"
= isometries: rotations, translations , (reflections)
Equi-affine group: G =SA(n) = SL(n) x R™
€ SL(n) — volume-preserving
Affine group: G =A(n) = GL(n) x R"
€ GL(n)
Projective group: G =PSL(n+1)

acting on R"™ C RP"

—> Applications in computer vision



Tennis, Anyone?




Binary form:

Qz) = ) (Z) ay,z"

k=0

Equivalence of polynomials (binary forms):

Oz) = <w+5>“@(o‘“5) o= (j §) c QL)

e multiplier representation of GL(2)
e modular forms




Transformation group:

g: (z,u) (

ax + 0 u )
YT +6 " (yx + )"

Equivalence of functions <= equivalence of graphs

I'y={(z,w) = (2,Q(z)) } cC



Moving Frames

Definition.
A moving frame is a G-equivariant map
p: M — G
Equivariance:
g-p(z) left moving frame
plg-z) = . . .
p(z)-g right moving frame

pleft(z) — pright(z)_l




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M if and
only if GG acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: G,={glg-z=2} for ze M

e free — the only group element g € G which fixes one point
z € M is the identity: — G, ={e} forall z € M.

° — the orbits all have the same dimension as G
—> (, is a discrete subgroup of G.

e regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once
% irrational flow on the torus

e cffective — the only group element which fixes every point in
M is the identity: g-z=zforall z € M iff g =e:

GM: ﬂ Gz:{e}

zeM



Proof of the Main Theorem

Necessity: Let p : M — G be a left moving frame.

Freeness: If g € G, so g -z = #z, then by left equivariance:
p(z) = plg-2) =g p(2).
Therefore g = e, and hence G, = {e} for all z € M.

Regularity:  Suppose 2z, =g,-2 — 2z as n — oo.

By continuity, p(z,) = p(g, - 2) = g, - p(z) — p(2).
Hence g, — e in G.

Sufficiency: By direct construction — “normalization”.

Q.E.D.



Geometric Construction

Normalization = choice of cross-section to the group orbits




Geometric Construction

K

Normalization = choice of cross-section to the group orbits
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Normalization = choice of cross-section to the group orbits




Geometric Construction

Normalization = choice of cross-section to the group orbits




K — cross-section to the group orbits

O, — orbit through z € M

k € K N O, — unique point in the intersection
e £k is the canonical form of z

e the (nonconstant) coordinates of k are the fundamental
invariants

g € G — unique group element mapping k to z
— freeness

p(z) =g left moving frame p(h-z)=h-p(z)

k=p"1(2) 2= prigne(2) - 2



Algebraic Construction
=dimG < m=dimM

Coordinate cross-section

K= =@y o0 2, —C, )
left right
w(g,z) =g 1 -2 w(g,2) =gz
=(g,,...,0,) — group parameters

z=(24,...,%,) — coordinates on M



Choose " = dim GG components to normalize:

wy(g,2)= ¢, w,.(g,2)=c,

Solve for the group parameters ¢ = (¢,,...,7,)
— Implicit Function Theorem

The solution
= p(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(z)

into the unnormalized components of w(¢, z) produces the
fundamental invariants

— These are the coordinates of the canonical form k € K.



Completeness of Invariants

Theorem. Every invariant I(z) can
be (locally) uniquely written as a
function of the fundamental invariants:

I(z) = HI,(2), ... ,I._ ()

)Tm—r



Invariantization

Definition. The nvariantization of a function
F: M — R with respect to a right moving frame

g = p(z) is the the invariant function I = «(F)
defined by

[’(Zl) — Cl7 T L(ZT) — CT‘7 [’(Z?“—l—l) — Il(’z)? st L(ZT) — Im—r(’z)‘

cross-section variables fundamental invariants
“phantom invariants”

L F(zy,-.52,,)] = Fleyy..oye,1i(2),. .. L (2))

) r)




Invariantization amounts to restricting F' to the cross-
section

I|K=F|K

and then requiring that I = «(F) be constant
along the orbits.

In particular, if I(z) is an invariant, then «(I) = I.

Invariantization defines a canonical projection

. : functions +—— Invariants




Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r=dimG.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

e An effective action can usually be made free by:



e Prolonging to derivatives (jet space)
G™ : J"(M,p) — J*(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G" : Mx---xM — Mx---xM

—> joint Invariants

e Prolonging to “multi-space”
G . prm) ., prm)

— joint or semi-differential invariants
—> invariant numerical approximations



e Prolonging to derivatives (jet space)
G . JY(M,p) — J*(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G" - Mx---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
G . pn) o pr(n)

— joint or semi-differential invariants
—> invariant numerical approximations



Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) x R?
acts on M = R? via rigid motions: w = Rz + b

To obtain the classical (left) moving frame we invert
the group transformations:
y= cosf(x—a)+sinf(u—0>)

v=—sinf (x —a)+ cosf (u—b) } w=R"{z-b)

Assume for simplicity the curve is (locally) a graph:

C={u=f(z)};

—> extensions to parametrized curves are straightforward



Prolong the action to J™ via implicit differentiation:

y= cosf(xr—a)+sinf(u—>b)
v=—sinf(x —a)+ cost (u—b)

—sinf + u, cos 6

I— .
Yy cosf + u,sin6

v — umx

Y9 (cos@ + u,sinf )3

(cosf +u,sinf)u, —3u2 sind
v —
yuy (cos@ +u,sinf )°




Prolong the action to J™ via implicit differentiation:

y= cosl(x—a)+sint(u—>)
v=—sint(r —a)+coslt (u—>0)

—sin( + u,, COS

Y cos () 4+ u, sin

v — umx

Y9 (cost +u,sint )3

A (cosO +wu,sint )u,  — 3u?_ sin
yuy (cost +u,sint)°



Normalization: r=dimG =3

y= cosl(x—a)+sint(u—>0)=0
v=—sinl(x—a)+cost (u—>0) =0
” _ —sin —|—ux?os — 0
Y cosl +u,sin
v — umx
Y9 (cost +u,sint )3
(cosO +wu,sint )u,  — 3u?_ sin

Tuyy = (cost +u,sint)°



Solve for the group parameters:

y= cost(x—a)+sinl(u—>0) =0
v=—sinl(x—a)+cosl(u—>0) =0
—sint + u, cos
v, = , =0
Y cosll +u,sin
—> Left moving frame p:Jt — SE(2)

= = U — tan_l (7



= U = tan "~ u

Differential invariants
U U

Yoy (cost) +u,sin0)? | "o (14 u2)3/2
fl} p— o o o |—> _
yuy ds (14 u2)s
d*k 3
vyyyy f— o o o } > d82 [— 3/.{6 p— o o o

Invariant one-form — arc length

dy = (cosl +u,sinfl)de +—— ds=/1+u2 dx



Dual invariant differential operator
— arc length derivative

d 1 d a 1 d
dy  cos +u,.sinl dx | ds 1+ u? dx

Theorem. All differential invariants are functions of
the derivatives of curvature with respect to arc

length:
dr d’k

ds’ ds?’

K,



The Classical Picture: c,
/I

Moving frame p: (x,u,u,) — (R,a) € SE(2)

1 1 —u,\ [z
R = /—1+u% (ua: 1 >_(e17 62) a_<u>



Frenet frame

dx T, —y,

Frenet equations = Maurer—Cartan equations:
dx de, de,

— =e = Ke —2 = _—Ke
ds 1 ds 2 ds 1



Equi-affine Curves G = SA(2)

z— Az+Db A € SL(2), b € R?

Invert for left moving frame:

y=0(x—a)—pB(u—0"b)
w=A"1(z—b)
v=—7(x—a)+a(u—>)
Prolong to J? via implicit differentiation
1
dy = (6 — fu,) dz D, = D




Prolongation:
y=06(z—a)—pf(u—>b)
v=—7(x—a)+a(u—>)

v —au,
v, = — ———=
Yy —
0 —pBu,
U
v =

U R TR

T )P

U

yyyy (06— Bu,)

Vyyyyy = + -



Normalization:

y=0(x—a)—J(u—"0)=0
v=—7(r—a)+a(u—>0) =0
— uw -
Vy = = ", =0
umx _
T T 0= w3 =1
Vyyy = — (0 — Ju,)?
uwwww( T uw)2+10 ( T uw)uxxuxa:x+15 2“3::1:
Yyyyy = (0 — Ju,)

Yyyyyy



Equi-affine Moving Frame

w. ) — (A,b) € SA(2)

p:(x,u,u,,u

rx’ LTI
1, -5/3
A:< >:< 3“’:1::1: _§u:1::1:/ Uypza )
-1/3 _ 1, -5/3
Uy Y Uy ua:a:/ 3 ua:a:/ Ugpra
2= (5)-(2)
u
Nondegeneracy condition: U, 70
—> Straight lines ( u,, =0 ) are “totally singular”:

three- dlmensmnal equi-affine symmetry group




Equi-affine arc length

dy r— dS:mdaz

Equi-affine curvature

2
- 5uwwuxxxw'_'3uxxx
v — K —
Yyyy 9,.5/3
TT
dk
v — —
Yyyyyy dS
d*k 9
v = — dK

Yyyyyy ds?



The Classical Picture: ¢,
/I

3 1, -5/3
A — Upg T3 Upy” Uggy _ (e e ) b =
- 3 -1/3 _1,,-5/3 BN e B
uac ux:v ux:v 3 ux:v ummm



Frenet frame

Frenet equations = Maurer—Cartan equations:

dz _ de,

de
ds = © s

=
2 ds

ds

= Ke



The Basis Theorem

Theorem. Let G be a finite-dimensional Lie group or (suit-
able) infinite-dimensional pseudo-group acting on p-
dimensional submanifolds. Then the differential invariant
algebra Z(@G) is generated by a finite number of differential
invariants I,,..., I, and p invariant differential operators
Dy,...,D,, meaning that every differential invariant can be
locally expressed as a function of the generating invariants
and their invariant derivatives:

D,1,=D,;D, D, I

In~ K’

= Lie, Tresse, QOusiannikov, Kumpera



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = 1.

Constant invariants provide immediate information:
e.g. K=2 <<= K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. K= x> Versus k =sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants ¢s intrinsic:

e.g. /<;S=/<;3—1 — R.=r —1

z

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.



Equivalence & Syzygies

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.

Proof:

Cartan’s technique of the graph:
Construct the graph of the equivalence map as the solu-
tion to a (Frobenius) integrable differential system, which
can be integrated by solving ordinary differential equations.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

(¢ But the higher order syzygies are all consequences
of a finite number of low order syzygies!



Example — Plane Curves

If non-constant, both x and ., depend on a single
parameter, and so, locally, are subject to a syzygy:

K, = H(x) (+)

But then

Kop = o H(x) = H(x) 5, = H'() H(s)

and similarly for s etc.

8887
Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy ().

Thus, for Euclidean (or equi-affine or projective or ...)
plane curves we need only know a single syzygy between x and

K, in order to establish equivalence!



The Signature Map

The generating syzygies are encoded by the

signature map
>: N —

of the submanifold N, which is parametrized by
the fundamental differential invariants:

Y(x) = (I (), -, I ()

The image
= Im X

is the subset (or submanifold) of N.



Equivalence & Signature

Theorem. Two submanifolds are equivalent

N=g N

if and only if their signatures are identical



Definition. The signature curve S C R? of a curve
C C R? is parametrized by the two lowest order
differential invariants

{(-5)) < =




Euclidean space curves: C C R3

={(k,k,,7)} C R?

e Kk — curvature, 7 — torsion

Euclidean surfaces: S C R3 (generic)

:{(H’K7H,17H,27K,17K’1)} c R?

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R? (generic)

={(P,P1,P,)} c R
e P — Pick invariant




Equivalence and Signature Curves

Theorem. Two curves C and C are equivalent:
C=g-C
if and only if their signature curves are identical:

—> object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group
Gy={9|lg9g-NCN}

of a nonsingular submanifold N C M equals the
codimension of its signature:

dimG, = dim NV — dim

Corollary. For a nonsingular submanifold N C M,

0 < dimGy < dimN

—> Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

e The submanifold N has a p-dimensional symmetry group
e The signature & degenerates to a point: dim & =0

e The submanifold has all constant differential invariants

e N =H-{z,} isthe orbit of a p-dimensional subgroup H C G

— FEuclidean geometry: circles, lines, helices, spheres, cylinders, planes, ..

—> Equi-affine plane geometry: conic sections.

—> Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in /N which map to a generic
point of its signature:

LN:min{#E_l{w}‘ w € }

= Self-intersections

Theorem. The cardinality of the symmetry group of
a submanifold NV equals its index ¢ .

—> Approximate symmetries



The Index



The polar curve r =3 + % cos 36

The Original Curve  Euclidean Signature  Numerical Signature



The Curve x = cost + %COS2 t, y=-sint+ 1—1()sin2t

The Original Curve  Euclidean Signature Affine Signature



The Curve m:costJr%coszt, y:%m+sint+1—10sin2t

The Original Curve  Euclidean Signature Affine Signature



Canine Left Ventricle Signature

Original Canine Heart

MRI Image Boundary of Left Ventricle



Smoothed Ventricle Signature




“Industrial Mathematics”




Nut 1 Nut 2

600
750
550
700
500
650
Closeness: 0.137673
450
400 500 400 500
Signature Curve Nut 1 Signature Curve Nut 2

0.01

0.005

/1 ~0.005

-0.01




Nut 1

\—JJ Closeness: 0.031217

Hook 1

o o o

0 o 7o)

N~ N~ ©
o o o o
o o o o
o ] [o°) N~
—

500

400

200

Signature Curve Nut 1

Signature Curve Hook 1

0.01

0.01

0.01

0.005

-0.005

-0.01

-0.015

0.05 0.1

0

0.05 0.1

0

0 0.05 0.1

-0.05



Signature Metrics

Hausdorft

Monge-Kantorovich transport
Electrostatic repulsion

Latent semantic analysis (Shakiban)
Histograms (Kemper—Boutin)
Diffusion metric

Gromov—Hausdorft



Signatures

S
Classical Signature

kg

Original curve m
K

S

Differential invariant signature



K
Signatures W\f

Classical Signature

S

kg

Original curve /ms
K

S

Differential invariant signature



Occlusions /\

\/\

Classical Signature

S

kg

Original curve /
(O

Differential invariant signature



Classical Occlusions

®) —




Advantages of the Signature Curve

Purely local — no ambiguities
Symmetries and approximate symmetries

Extends to surfaces and higher dimensional sub-
manifolds

Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to depen-

dence on high order derivatives.



Strategy #1:

Use lower order invariants to construct a signature:

e joint invariants
e joint differential invariants
e integral invariants

e topological invariants



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M X --- X M:

I(g-24y...,9 - 2) = I(2q,...,2,)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z,..., 2, € N on the submanifold:

I(g-z%n),...,g-z,in)) — ](zgn),...,z,(gn))




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;, Zj) = || z; — <j |

z.

(/



Joint Equi—Affine Invariants

Theorem. Every planar joint equi—affine invariant is
a function of the triangular areas

(i 7 k] :%(zi_zﬂ/\(zi_zk)



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

AB

[Zivzjﬂzk;vzl?zm] = AN

V



e Three—point projective joint differential invariant
— tangent triangle ratio:

[020][011][122]
(010][121][022]

<9 <9



Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional
submanifold, then you need at least

{>kp

distinct invariants I,...,I, in order to construct a syzygy.

Typically, the number of joint invariants is
¢ =km —r = (#points) (dim M) — dim G
Therefore, a purely joint invariant signature requires at least

k >

+1

m-—p

points on our p-dimensional submanifold N C M.



Joint Euclidean Signature




Joint signature map:
¥:C** — SCR°
a=|z—z| b=z — 2| ¢c=|lzg— 2|
d= |z — 2] e =z — 2] f =12z — 2|
—> six functions of four variables
Syzygies:
®,(a,b,c,d,e, f) =0 ®,(a,b,c,d,e, f) =0

Universal Cayley-Menger syzygy <= C C R?
2 a? a®+b*—d?* a?4c?—é?
det | a? + b% — d? 2 b? b+ —f2 =0
a’+c?—e* b2+ — f? 2 c?



Joint Equi—Afline Signature

Requires 7 triangular areas:

[(012],[013],[014],[015],[023], [024], [025]




Joint Invariant Signatures

The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

Identification of landmarks can significantly reduce the
redundancies (Boutin)

It includes the differential invariant signature and semi-
differential invariant signatures as its “coalescent bound-
aries”.

Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.



Statistical Sampling

Idea: Replace high dimensional joint invariant signatures by
increasingly dense point clouds obtained by multiply
sampling the original submanifold.

e The equivalence problem requires direct comparison of
signature point clouds.

e Continuous symmetry detection relies on determining the
underlying dimension of the signature point clouds.

e Discrete symmetry detection relies on determining densities of
the signature point clouds.



Additional Applications

of Moving Frames



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

—> Structure-preserving algorithms



Numerical approximation to curvature

Heron’s formula

k(A,B,C) = 4% _y \/S(S— G)Sbc_ b)(s — c)

_a+b+c
2

’ —  semi-perimeter



Invariantization of Numerical Schemes

—> Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge—Kutta Method for ordi-
nary differential equations, or the Crank—Nicolson method for
parabolic partial differential equations.

If G is a symmetry group of the differential equation, then
one can use an appropriately chosen moving frame to
the numerical scheme, leading to an invariant numeri-
cal scheme that preserves the symmetry group. In challenging
regimes, the resulting invariantized numerical scheme can, with
an inspired choice of moving frame, perform significantly better
than its progenitor.



Invariant Runge-Kutta schemes

Uy, +2xu, — (x4 1)u =sinwz,

u(0)




0 ‘

- = - RK Lo

k| —— B N i
RK on Reduced Eqgn L

Comparison of symmetry reduction and invariantization for

u,. +ru, —(r+Du=sinz, u(0)=mu,0)=1.



Invariantization of Crank—Nicolson
for Burgers’ Equation

Uy = EU,, T UU,

1 1 1 1 1 1
05 05 05 05 05 05
0 0 0 0 0 0
-05 -05 -05 -05 -05 -05
-1 -1 -1 -1 -1 -1
% 05 17% 05 17% 0.5 1 % 05 17% 05 175 0.5



Evolution of Invariants and Signatures

Basic question: If the submanifold evolves according to an
invariant evolution equation, how do its differential invariants
& signatures evolve?

Theorem. Under the curve shortening flow C, = —kn,
the signature curve k, = H(t, k) evolves according to the
parabolic equation

OH
= H*H_ —x*H_+4x*H

—> Signature Noise Reduction Strategy #2

—> Solitons and bi-Hamiltonian systems



Invariant Variational Problems

Problem: Given an invariant variational problem written
in terms of the differential invariants, directly construct the
invariant form of its Euler—Lagrange equations.

—> Willmore, /K2 , etc.

Example. FEuclidean plane curves:

Invariant variational problem:
/P(/@, KyyRggy -+ )dsS

Invariant Euler-Lagrange formula

E(L) = (D? + k%) E(P) + k H(P).

E(P) — invariantized Euler—Lagrange expression
H(P) — invariantized Hamiltonian



Minimal Generating Invariants

A set of differential invariants is a generating system if all
other differential invariants can be written in terms of them and
their invariant derivatives.

e FEuclidean curves C' C R3:
curvature x and torsion 7.

e Equi-affine curves C C R3:
affine curvature x and torsion 7.

e FEuclidean surfaces S C R3:
Gauss curvature K and mean curvature H.

e Equi-affine surfaces S C R3:
the Pick invariant P.



M=R*\{u=0}

G:Gu@:{<: ?)‘A:aé—ﬁv#O}

| ar + u
(z,u) <7$+5 : (7x+6)n> n#0,1



Prolongation:

ar+ 3
= == 5
V=T o=yzr+
v=o0 "u A=ad—LFy
oUu, —NYU
v =
Y A on—1
0% uy, —2(n—1)you, +n(n—1)y*u
Uyy_ A2 gn—2

Uyyy:...



Normalization:

T+
T+
vV = _nuzl — —
U, —NYU
Uy: n—1 =0
_ 0%uy, —2(n—1)you, +n(n— 1)y u 1
Vyy = 2 -n—2 _n(n—l)
v =

yyy



Moving frame:
_ u(l—n)/n\/ﬁ _ _xu(l—n)/n\/ﬁ

_ %u(l—n)/n _ ul/n . % xu(l—n)/n

Hessian:
H=nn-Duu,, — (n—1)%u2 #0
Note: H=0 if and only if Q(x) = (ax + b)"
—> Totally singular forms

Differential invariants:
J K+3n—-2) ds

Yvvy T 20— 1) ~ R Yyyyy ' n3n—1)  ds

Absolute rational covariants:

T2
_ oY

2
U= 72



H=4Q,Q% =nn-1)QQ" - (n-1%Q” ~Q,,Q,, — @2,
T=(Q H" =(@2n-4)QH —nQH’ ~Q.H,—-Q,H,

U= (@ DY =(Bn-6QT-nQT" ~Q,T, - Q,T,

deg@@ =n degH =2n—4 degT =3n—6 deglU =4n —38



Signatures of Binary Forms

of a nonsingular binary form Q(z):

Nonsingular: H(z) #0 and (J'(x), K'(x)) # 0.

: Ty — Sg N(z) = (J(x)?, K(x))

Theorem. Two nonsingular binary forms are equivalent if and
only if their signature curves are identical.



Maximally Symmetric Binary Forms

Theorem. If u = Q(z) is a polynomial, then the following are
equivalent:

e (Q(z) admits a one-parameter symmetry group

e 77 is a constant multiple of H?3

e Q(x)~ z¥ is complex-equivalent to a monomial

e the signature curve degenerates to a single point

e all the (absolute) differential invariants of () are constant

e the graph of () coincides with the orbit of a
one-parameter subgroup



Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form

Q(x) Z£ 0 of degree n is:

e A two-parameter group if and only if H = 0 if and only if
() is equivalent to a constant. — totally singular

e A one-parameter group if and only if H # 0 and T? = ¢ H3
if and only if Q is complex-equivalent to a monomial z*,
with k #£ 0, n. —> maximally symmetric

e In all other cases, a finite group whose cardinality equals
the index of the signature curve, and is bounded by

6n — 12 U = cH?
Lo <
4dn — 8 otherwise



