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Abstract 
In this note, we analyze the geometric active con- 
tour models proposed in [5, 191 from a curve evolution 
point of view and propose some modifications based 
on gradient flows relative to certain new metrics. This 
leads to a novel snake paradigm in which the feature 
of interest may be considered to lie at the bottom of a 
potential well. Thus the snake is attracted very natu- 
rally and efficiently to the desired feature. Moreover, 
we consider some 3-D active surface models based on 
these ideas. 

1 Introduction 

Recently, a number of approaches have been pro- 
posed for the problem of snakes or active contours. 
The underlying principle in these works is based upon 
the utilization of deformable contours which conform 
to various object shapes and motions. Snakes have 
been used for edge and curve detection, segmenta- 
tion, shape modelling, and visual tracking, see the 
recent book by Blake and Yuille 131. 

In this note, we consider a method based on the 
elegant approaches of Caselles et al. [5] and Malladi 
et al. [19]. In these papers, a level set curve evolution 
method is presented to solve the problem. Our idea 
is simply to note that both these approaches are ba- 
sed on Euclidean curve shortening evolution which in 
turn defines the gradient direction in which the Euc- 
lidean perimeter is shrinking as fast as possible. (See 
Section 2.) We therefore modify the active contour 
models of [5, 191 by multiplying the Euclidean arc- 
length by a function tailored to the features of interest 
to which we want to flow, and then writing down the 
resulting gradient evolution equations. This leads to 
some new snake models which efficiently attract the 
given active contour to the features of interest (which 
basically lie at the bottom of a potential well). 

2 Euclidean Curve Shortening 

The motivation for the equations underlying active 
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geometric contours comes from Euclidean curve shor- 
tening. Therefore, in this section we will review the 
relevant curve evolution theory in the pl_ane R2. 

Accordingly, for IC the curvature, and n/ the inward 
unit normal, one considers families of plane curves 
evolving according to the geometric heat equation 

= I G E j j .  
dC - 
at 

This equation has a number of properties which make 
it very useful in image processing, [l, 15, 161. 

Indeed, (1) is the Euclidean curve shortening flow, 
in the sense that the Euclidean perimeter shrinks as 
quickly as possible when the curve evolves according 
to (1) [9, 10, 131. Since, we will need a similar ar- 
gument for the snake model we discuss in the next 
section, let us work out the details. 

Let C = C(p, t )  be a smooth family of closed curves 
where t parametrizes the family and p the given curve, 
say 0 5 p 5 1. (Note we assume that C(0, t )  = C( 1, t )  
and similarly for the first derivatives.) Consider the 
length functional 

Then differentiating (taking the "first variation"), and 
using integration by parts, we see that 

(Note that we multiplied and divided by llF11 in the 
latter integral.) But noticing now that 

is (Euclidean) arc-length, and using the definition of 
curvature, the last integral is 



that is, we see 

L’(t) = - ( - , K # ) d S .  g’” : 
Thus the direction in which L( t )  is decreasing most 
rapidly is when 

BC 
at - = KEjit. 

Thus (1) is precisely a gradient flow. 

3 Active Snake Model 

In two remarkable papers, Caselles et al. [5] and 
Malladi et al. [19] propose a snake model based on 
the level set formulation of the Euclidean curve shor- 
tening equation. More precisely, their model is 

Here the function 4(z, y) depends on the given image 
and is used as a “stopping term.” For example, the 
term 4(z, y) may be chosen to be small near an edge, 
and so acts to stop the evolution when the contour 
gets close to an edge. In [5,  191, the term 

(3) 

unless stated otherwise explicitly, we will take 
v 2 0 (inward evolutions) in what follows be- 
low. 

2. Instead of using a Gaussian to smooth the image 
one may of course use the a nonlinear smoothing 
filter based on the curvature; see [2]. 

We would like to modify the model (2) in a manner 
suggested by the computation in Section 1. Namely, 
we will change the ordinary Euclidean arc-length fun- 
ction along a curve C = ( z ( p ) ,  ~ ( p ) ) ~  with parameter 
p given by 

to 

ds = (z; + y,2)1’2dp 

ds+ = (z; + Y,2)1/24dP, 
where +(z, y) is a positive differentiable function. We 
now essentially repeat the computation made in Sec- 
tion 2, i.e., we want to compute the corresponding 
gradient flow for shortening length relative to the new 
metric dso. 

Accordingly set 

Let 

is chosen, where I is the (grey-scale) image and Go 
is a Gaussian (smoothing filter) filter. The function 
9 ( z ,  y, t )  evolves in (2) according to the associated 
level set flow for planar curve evolution in the normal 
direction with speed a function of curvature which 
was introduced in the fundamental work of Osher- 
Sethian [23, 24, 26, 27, 281. 

It is important to note that as we have seen above, 
the Euclidean curve shortening part of.this evolution, 

denote the unit tangent. Then taking the first va- 
riation of the modified length function L+, and using 
integration by parts just as above, we get that 

L$(t)  = lL+@)(g,4K#+ (V4 * I‘)? - Vq5)dss 

which means that the direction in which the L+ peri- 
meter is shrinking as fast as possible is given by 

namely 
89 VQ - = IlVQlldiv(-) 
at IlV*ll (4) 

is derived as a gradient flow for shrinking the peri- 
meter as quickly as possible. As is explained in [5] ,  
the constant inflation t e r m  U is added in (2) in order 
to keep the evolution moving in the proper direction. 
Note that we are taking to  be negative in the in- 
terior and positive in the exterior of the zero level 
set. 

Remarks 1. 
1. In [19], the inflationary constant is considered 

both with a positive sign (inward evolution) and 
with a negative sign (outward or expanding evo- 
lution). In the latter case, this can be refer- 
red to as expanding “balloons.” For simplicity, 

( 5 )  

This is precisely the gradient flow corresponding to 
the miminization of the length functional L,. Since 
the tangential component of equation ( 5 )  may be drop- 
ped (see [SI), this may be simplified to 

The level set version of this is 

One expects that this evolution should attract the 
contour very quickly to the feature which lies at the 
bottom of the potential well described by the gradient 
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flow (7). As in [5, 191, we may also add a constant 
inflation term, and so derive a modified model of (2) 
given by 

V 8  - q5llV8ll(div(-) + v )  - V 4 .  V 8 .  (8) 
88 _ -  
at IlV8Il 

Notice that for q5 as in (3), Vq5 will look like a doublet 
near an edge. Of course, one may choose other can- 
didates for q5 in order to pick out other features. 

We have implemented this snake model based on 
the algorithms of Osher-Sethian [23, 24, 26, 27, 281 
and Malladi et al. [19]. 

Remarks 2. 

1. 

2. 

4 

In 

Note that the metric d s ,  has the property that 
it becomes small where q5 is small and vice versa. 
Thus at such points lengths decrease and so one 
needs less “energy” in order to move. Conse- 
quently, it seems that such a metric is natural 
for attracting the deformable contour to an edge 
when + has the form (3). 

Kumar et al. [18] using a similar modification of 
the affine metric have developed an affine inva- 
riant snake model as well. In this case, the role 
of the function + is played by an affine invariant 
edge detector developed in [18]. 

3-D Active Contour Models 

this section, we will discuss some possible geo- 
metric 3-D contour models based on surface evolution 
ideas, by modifying the Euclidean area in this case 
by a function which depends on the salient features 
which we wish to capture. In order to do this, we will 
need to set up some notation. (For all the relevant 
concepts on the differential geometry of surfaces, we 
refer the reader to [7].) 

Let S : [0,1] x [0,1] + R3 denote a compact em- 
bedded surface with (local) coordinates ( U ,  v ) .  Let H 
denote the mean curvature and 9 the inward unit 
normal. We set 

dS S” := - as s, := - au a v .  
Then the infinitesimal area on S is given by 

d S  = (llSu11211Sv112 - (Su, S,)2)1’2dudv. 

Let : i-2 + R be a positive differentiable function 
defined on some open subset of R3. The function 
q5(x, y, z )  will play the role of the “stopping” function 
q5 given above in our snakes’ model (7, 8). 

It is a beautiful classical fact that the gradient flow 
associated to the area functional for surfaces (i.e., the 
direction in which area is shrinking most rapidly) is 
given bv 

(9) 

(See [4, 11, 20, 22, 311 and the references therein.) 
What we propose to do is to replace the Euclidean 
area by a modified area depending on 6 namely, 

d S 4  := q5dS. 

For a family of surfaces (with parameter t ) ,  consi- 
der the +-area functional 

Ab(t) := J J S d S 4 .  

Once again, an integration by parts argument gives 
that 

which after dropping the tangential part becomes 

as - = q5HJ - V+. 
at 

The level set version of (10) is given in terms of q(z, y, z ,  t )  
hv 
-.I 

V 8  
Qt = q5llV8lldiv(-) - V d .  V 8 .  (11) 

IlV8ll 
As before one may add a constant inflation term to 
the mean curvature to derive the model 

VQ 
8 t  = q5llV8ll(div(-) + v) - Vq5. V 8 .  (12) 

In the context of image processing, the term + de- 
pends on the given 3-D image and is exactly analo- 
gous to the stopping term in (7, 8). It is important to 
note that there is a very big difference between the 2- 
D and 3-D models discussed here. Indeed, the geome- 
tric heat equation will shrink a simple closed curve to 
a round point, even if the curve is nonconvex without 
developing singularities. The geometric model (2) is 
based on this flow. For surfaces, it is well-known that 
singularities may develop in the mean curvature flow 
(9) of non-convex smooth surfaces [12]. (The classi- 
cal example is the dumbbell.) We should note howe- 
ver that the mean curvature flow does indeed shrink 
smooth compact convex surfaces to round “spherical” 
points; see [14]. 

We should add that because of these problems, se- 
veral researchers have proposed replacing mean cur- 
vature flow by flows which depend on the Gaussian 
curvature K .  Indeed, define 

IIV8lI 

K+ := max{K, 0). 
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Then Caselles and Sbert [6] have shown that the uf- 
fine invariant pow 

- as = sign(H)rc+ 114 N - 
l3t 

will (smoothly) shrink rotationally symmetric com- 
pact surfaces to ellipsoidal shaped points. Thus one 
could replace the mean curvature part by s ign(H)~: /~  
in (12). Another possibility would be to use as 
has been proposed in [21]. See also [30]. 

5 Experiments 

We will now give a few numerical experiments to 
illustrate our methods. The implementations we have 
used are based on the level set evolution methods 
developed by Osher-Sethian [23, 24, 26, 27, 281, and 
the techniques in 2191. 

The equations described in this paper have been co- 
ded for the case of active contours on two-dimensional 
images. We will present here some experimental re- 
sults obtained by running this code on both binary 
(i.e., high contrast images) and real images. Here the 
images have been selected purely for the purposes of 
illustration. 
5.1 Numerical Aspects of Level Set Evo- 

lution 
For 2D active contours, the evolution equation as de- 
rived in Section 3 is equation (8), 

where v is a constant inflation force and K := div( fi) 
is the curvature of the level sets of Q ( r , y , t ) .  It 
is known that a propagating front may not remain 
smooth at all times (for example, it may cross itself). 
For evolution beyond the discontinuities the solutions 
are required to satisfy an entropy condition to ensure 
that the front remains physically meaningful at all 
times. Osher-Sethian [24] have given such entropy 
satisfying schemes and these have been used succes- 
sfully in shape modelling [19]. Following [19] we can 
regard a decomposition of our speed function as, 

VQ F ( K )  = U + div(-) = v +  K ,  (14) IlVQll 
where v is regarded as the constant passive advec- 
tion term and the curvature K is the diffusive term 
of the speed function. The inflation part in equa- 
tion (8), i.e., v$llV@ll is approximated using upwind 
schemes. The diffusive part, i.e., ~+llV\Ell is approxi- 
mated using usual central differences. For the inner 

product term 0 4 .  VQ, we use a certain thresholding 
smoothing method for the “doublet” 0 4  which will 
be described in full detail in the journal version of 
this paper. 

5.2 Image Feature Extraction Results 
First we present the result of feature extraction on 
a synthetic high contrast image consisting of three 
shapes. The image is a 150 x 150 binary image with 
intensity values 0 or 255. Figure 2(a) shows the image 
with the initial contour. The time step used was 
At = 0.000001 and Figures 2(b) through 2(d) show 
the evolving contour at intermediate time steps. Fi- 
gure 2(d) corresponds to 400 iterations. The value of 
the inflation force used was v = 1600.0. 

In Figure 1 we present a convoluted shape to be ex- 
tracted using an active contour. Figures l(b) through 
l(f) show the evolving contour at 200, 400, 600, 800, 
and 1000 iterations. The shape of the feature has 
been complelely captured by 1000 iterations. The va- 
lue of the inflation force used in this example was 
U = 100.0. 

The aim of the last experiment was to demonstrate 
the ability of the active contour in capturing the fi- 
ner features in real images. The image is a 256 x 
240 gray-scale image of a Rubik’s cube placed on a 
circular table with a pattern on the table’s side. An 
initial contour is placed with the aim of capturing the 
cube, the edge of the table and also the patterns on 
the side of the table. Figure 3(a) shows the intial 
contour. Figures 3(b) through 3(d) show the evol- 
ving contour after 100, 200, and 300 iterations. The 
time step used was At = 0.001. The inflationary 
force used was U = 500.0. At 300 iterations most of 
the patterns we wished to capture on the table’s side 
have been captured. Notice that because of the initial 
configuration of the contour the edge of the table is 
captured from both inside and outside. 

6 Conclusions 
In this note, we have considered possible modifica- 

tions of the active contour models based on those of 
[5, 191. The basic concept is that we consider snakes 
in the framework of gradient flows relative to modified 
arc-length functionals. The active contour therefore 
flows to the desired feature regarded as lying at the 
bottom of the corresponding potential energy well. 
Possible 3-D surface models were also proposed using 
these energy ideas. 
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Figure 1: Feature extraction in a synthetic image. 
Left to right, top to bottom: (a) Initial contour. 
(b),(c),(d),(e),and (f) contour after 200,400, 600, 800 
and 1000 iterations. At  = 0.000001. 

Figure 2: Feature extraction in a synthetic image. 
Left to right, top to bottom: (a) Initial contour. 
(b),(c),and (d) contour after 200, 300, and 400 ite- 
rations. At = 0.000001. 

Figure 3: Feature extraction in a real image. Left to 
right, top to bottom: (a) Initial contour. (b),(c),and 
(d) contour after 100, 200, and 300 iterations. At = 
0.001. 
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