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Summary. An affine invariant metric allowing one to compute affine invariant
gradient descent flows is first presented in this work. This means that given an
affine invariant energy, we compute based on this metric the flow that minimizes
this energy as fast as possible and in an affine invariant way. Two examples are then
presented. The first one shows that the affine flow minimizing the area enclosed by a
planar curve is given by the affine geometric heat flow. We then extend this energy
to derive affine invariant active contours for invariant image segmentation.

1. Introduction

A number of problems in image processing and computer vision are ap-
proached via energy minimization techniques. The minimizer can be obtained
for example via gradient descent flows, which are flows minimizing this en-
ergy as fast as possible according to certain metric. In a number of cases, as
for example in object recognition, the energy being minimized is invariant to
certain transformation group, and the solution is expected to be invariant as
well (see for example [2]). In order to obtain a gradient flow which is also
invariant, an invariant metric needs to be defined.

In this work, we present an affine invariant metric which will help us to
define affine invariant gradient descent flows for affine invariant energies. Two
applications of this gradient flow are then provided. The first one shows that
the affine invariant gradient flow corresponding to the area enclosed by a
planar curve is given by the affine geometric heat flow introduced in [19, 20]
(see also [1]). We then extend this area and present affine invariant active
contours, extending the results in [5, 11]. In this case, active contours (intro-
duced by Terzopoulos et al. [10, 22]) are given by an affine invariant weighted
distance [16]. The affine gradient flow minimizing this distance converges to
the objects boundaries, obtaining affine invariant detection.

2. Planar curve evolution

The theory of planar curve evolution has been considered in a large variety
of fields. See [18] and references in there for pointers to some of the relevant
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literature. Formally, let C(p,t) : S' x [0,7) — IR® be a family of smooth
embedded closed curves in the plane (boundaries of planar shapes). Assume
that this family of curves evolves according to (C(p,0) = Co(p))

aC(p,t)  0°C(p,t)
ot  Ov?

Here v(p) = fé’ | Cp || dp is the Euclidean arc-length (|| Cy ||= 1), k = [Cy X
Cyv] the Euclidean curvature, and N the inward unit normal. The flow given
by (2.1) is called the Euclidean shortening flow, since the curve perimeter
shrinks as fast as possible when the curve evolves according to it [9]. Gage and
Hamilton [8] and Grayson [9] proved that any embedded curve in the plane
converges to a round point via the flow given in (2.1). The non-linear flow
(2.1) is also called the Fuclidean geometric heat flow. It has been utilized for
the definition of a geometric, Euclidean invariant, multiscale representation
of planar shapes [1, 12].

Recently, we introduced a new curve evolution equation, the affine geo-
metric heat flow [19, 20]:

= &(p,t)N(p,1). (2.1)

aC(p,t) _ 0°C(p,t)
ot 982

where s(p) = [[Cp % Cpp]'/3dp, is the affine arc-length ([Cs x Cys] = 1) [3],
and C,, is the affine normal. This evolution is the affine analogue of equation
(2.1), and its solution space is affine invariant. Since the affine normal Cg,
exists just for non-inflection points, we formulated the natural extension of
the flow (2.3) for non-convex initial curves in [20, 21]:

(2.2)

(2.3)

aC(p,t) [ 0, p an inflection point,
ot | Css(p,t), otherwise.

The flow (2.3) defines a geometric, affine invariant, multiscale representation
of planar shapes [20]. The curve first becomes convex, as in the Euclidean
case, and after that it converges into an ellipse [19].

We should also add that in [21], we give a general method for writing
down invariant flows with respect to any Lie group action on IR?. This was
formalized and extended to IR", together with uniqueness results, in [14, 15].
Results for the projective group were recently also reported in [7].

3. Affine invariant curve metric

Let C = C(p,t) be a smooth family of closed curves where ¢ parametrizes the

family and p the given curve, say 0 < p < 1. Consider the length functional
L(t) := fol || Cp || dp, and its first variation L'(t) = — fOL(t)(%,nN) dv. The
goal now is to compute from this derivation, the flow minimizing L(t) as
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fast as possible, in an Euclidean invariant way. For this, we need to define
an Euclidean invariant metric. In the standard way, we can define a norm
|| - |lewe on the (Fréchet) space of twice-differentiable closed curves in the
plane. Indeed, the (curve) norm is given by the length
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of the curve C. Thus the direction in which L(t) is decreasing most rapidly is
when C satisfies the gradient flow C; = kA, as previously pointed out [8, 9].

We extend now the results above, that is the definition of a curve norm,
for the affine group. We use in analogy to the case above the minimization
of affine length and area. Since affine geometry is defined only for convex
curves [3], we will initially have to restrict ourselves to the (Fréchet) space of
differentiable convex closed curves in the plane. Being L,g := § ds the affine
length [3], we define

uww:Auammw=A 1CGs) lla ds,

where || C(p) ||a := [C(p) x Cp(p)]. Observe that || Cs || = [Cs,Css] = 1,]|
Css |la = [Css,Csss] = p, where p is the affine curvature. This makes the
affine norm || - ||, consistent with the properties of the Euclidean norm on
curves relative to the Euclidean arc-length dv (|| C, ||= 1, || Cou ||= &).

Note that the area enclosed by C is just

1t 1 rt 1
A=5 [ Iew e =3 [le.Cld=F1Clay - @)
0 0

A straightforward computation reveals that the first variation of the area

is A'(t) = — fOLaﬁ @ [Ci,Cs] ds. Therefore the affine invariant gradient flow
which will decrease the area as quickly as possible relative to || - |4 is
exactly C; = Cgs, which, modulo tangential terms, is equivalent to C; =
k'/3 N [19], precisely the affine invariant heat equation studied in [1, 19, 20].
Note that based on the Euclidean norm, the flow minimizing the area is
C; = N. Both NV and C,, are normal vectors, each one in its corresponding
group. Computations similar to the above show that the affine invariant flow
minimizing the affine length is given by C; = uCss [19].

4. Affine invariant active contours
The goal now is to extend the works in [5, 11] to affine invariant detection.

The developments in [5, 11] are strongly based on the original energy-based
snakes introduced by Terzopoulos at al. [10, 22] as well as the curve evolution



4 Peter J. Olver, Guillermo Sapiro, and Allen Tannenbaum

ones in [4, 13]. We refer the interested readers to the mentioned papers for
details and relations between the models.

It is important to note that after affine edges are computed locally based
on the scale-space or affine gradient derived in [16], ! affine invariant fitting
can be performed (see [23] and references therein). In this work, the affine
invariant integration is done by means of active contours.

4.1 Deformable models based on curve shortening

Assume in the 2D case that the deforming curve C is given as a level-set of a
function u : IR> — IR. Then, we can represent the deformation of C via the
deformation of u. The 2D segmentation is obtained via the evolution equation
[4, 13] (u(0,2) = uo())

Oou Vu
— =¢ || Vu| div| —— v t 0 R (4.1
=0l Vuldn () I Vull (o) €[0,0lx I (1)

where the stopping term typically has the form ¢ = (1+ || Ve ||™)t,m=1
or 2, and & is a regularized version of the original image &. Using the fact

that div (Ilg—zll) = K, where & is the Euclidean curvature of the level-sets C

of u, equation (4.1) can be written in the form u; = ¢- (v + &) || Vu || . The
flow uy = (v+ k&) || Vu ||, means that the the (smooth) level-set C of u we are
considering is evolving according to C; = (v + k)N, where N is the inward
normal to the curve. This equation was first proposed in [17], were extensive
numerical research on it was performed. It was introduced in computer vision
in [12], where deep research on its importance for shape analysis is presented.

The motion C; = kN, is the Euclidean heat flow presented before, very
well know for its excellent geometric smoothing properties [8, 9]. The con-
stant velocity vV, acts as the balloon force in [6] and is related to classical
mathematical morphology. If » > 0, this velocity pushes the curve inwards
and it is crucial in the model in order to allow convex initial curves to become
non-convex. The external force is given by ¢, which is supposed to prevent
the propagating curve from penetrating into the objects in the image.

This curve evolution model given by (4.1) automatically handles different
topologies, allowing the detection any number of objects in the image, without
knowing their exact number. This is achieved with the help of the numerical
algorithm developed by Osher and Sethian [17].

4.2 Euclidean geodesic active contours

We present now the geodesic active contours derived in [5, 11]. These mod-
els are based on the models in [4, 10, 13, 22], as well as the concepts of
shortening and gradient flows described in Section 3. In [5], the model is

! A local computation of edges is one of the ingredients of active contours schemes.
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derived from the principle of least action in physics, showing the mathe-
matical relation between energy and curve evolution based snakes. In [11],
the model is derived immediately from curve shortening, and is compared to
similar flows in continuum mechanics. One of the basic ideas is to change
the ordinary Euclidean arc-length function dv =|| C, || dp along a curve
C(p) by multiplying by a conformal factor ¢(z,y) > 0, which is assumed
to be a positive, differentiable function. The resulting conformal Euclidean
metric on IR? is given by ¢dxdy, and its associated arc length element is
dvy = ¢dv = ¢ || Cp || dp. As in ordinary curve shortening, we want to
compute the corresponding gradient flow for the modified length functional
Ly(t) := fOL¢dv = fol || Cp || ¢#dp. Taking the derivative and integrating

by parts, we find that —L/(t) = OL‘”(t)(Ct,qucN — (Vo - N)N)dv [5, 11],
which based on the Euclidean metric in Section 3, means that the (gradient)
direction in which the Ly perimeter is shrinking as fast as possible is given
by & = ¢kN — (V¢ - N)N. As long as the flow remains regular, we will
get convergence to a closed geodesic in the plane relative to the conformal
Euclidean metric ¢ dzdy. Regularity may be deduced from the classical curve
shortening case.

As in [4, 13], we may add an inflationary constant of the form v@dN, and
embedd the flow as a level-set. In the context of image processing, we take ¢
to be a stopping term depending on the image. The new gradient term V¢
directs the curve towards the boundary of the objects, increasing attraction
to them. Existence, uniqueness and stability results for the gradient active
contour model above were studied in [5, 11]. See [5, 11] for details, examples,
and relations with other active contours schemes.

4.3 Affine invariant geodesic active contours

We can now formulate the functionals that will be used to define the affine
invariant snakes. Assume that ¢.p = ¢(w.p ) is an affine invariant stopping
term, based on the affine invariant edge detectors in [16], in analogy with
the Euclidean case developed in previous Section. Therefore, ¢o5 behaves as
the weight ¢ in Ly, being now affine invariant. As in the Euclidean case, we
regard ¢, as an affine invariant conformal factor, and replace the affine arc
length element ds by a conformal counterpart dsq g ¢ ds to obtain the
first possible functional for the affine active contours

Laﬁ (t)
Ly, = /0 o ds. (4.2)

The obvious next step is to compute the gradient flow corresponding to Ly, p
in order to produce the affine invariant model. 2 Unfortunately, as we will

2 Using the connection ds = x'/3dw [19], L%ﬁ = fOL(t) oy K3 dv.
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see, this will lead to an impractically complicated geometric contour model
which involves four spatial derivatives.

The snake model which we will use comes from another (special) affine
invariant, namely area, cf. (3.1). Following the results in Section 3, we define
the conformal area functional to be

1 Lo (1)
Agy = /0 [C,Colbag dp = /0 [C,Colbag ds.

Using the definition Y+ := (—ys,41)” where (y1,72)7 € IR?, we obtain

Lemma 4.1.
ALy, (1)

Laﬁ” (t) N L. (t)
dt = —/ [Ct, (Voag) ]ds+/ Gag p[Ct,Cslds.  (4.3)
0 0

dA t Lo (8)
L;g“:_ | e i+ gle Vet edias.

The affine invariance of the resulting variational derivatives follows from
a general result governing invariant variational problems having volume pre-
serving symmetry groups proved in [15].

We now consider the corresponding gradient flows computed with respect
to || - [lag - First, the flow corresponding to the functional Ly PRt

Ci = {(v¢aﬁ )J_ + ¢afj‘ Ncs}s = ((v¢aﬁ )L)s + (‘ﬁGﬁ N)scs + ¢aﬁ” 1 Css.

As before, we ignore the tangential components, which do not affect the
geometry of the evolving curve, and so obtain the following possible model
for geometric affine invariant active contours:

Ct = Gag uE PN + {(Véagr )")s, NIN. (4.5)

The geometric interpretation of the affine gradient flow (4.5) minimizing
Léom is analogue to the one of the corresponding Euclidean geodesic active
contours [16]. This flow involves p which makes it difficult to implement.

The gradient flow coming from the first variation of the modified area
functional on the other hand is much simpler:

C = (o Co + 31C,(T6u)1Co)s (4.6

Ignoring tangential terms, this flow is equivalent to
1
Co = oy 6PN + 5(C, Va )N (4.7)

Notice that both models (4.5) and (4.7) were derived for convex curves,
even though the flow (4.7) makes sense in the non-convex case. Formal results
regarding existence of (4.7) can be derived following [1, 4, 5, 11].

The figure below illustrates simulations of these active contour models
(the implementation is as in [5, 11, 13], based on the level-sets formulation

[17]).
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