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Abstract. In this paper, we study the differential invariants and the invariant

heat flow in centro-affine geometry, proving that the latter is equivalent to the
inviscid Burgers’ equation. Furthermore, we apply the centro-affine invariants

to develop an invariant algorithm to match features of objects appearing in

images. We show that the resulting algorithm compares favorably with the
widely applied Scale-Invariant Feature Transform (SIFT), Speeded Up Robust

Features (SURF), and Affine-SIFT (ASIFT) methods.
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1. Introduction

The main objective in this paper is to study differential invariants and invariant curve
flows — in particular the heat flow — in centro-affine geometry. In addition, we will present
some basic applications to feature matching in camera images of three-dimensional objects,
comparing our method with other popular algorithms.

Affine differential geometry is based on the Lie group A(n,R) = GL(n,R) n Rn con-
sisting of affine transformations x 7−→ Ax + b, A ∈ GL(n,R), b ∈ Rn acting on x ∈ Rn.
Basic references include Nomizu and Sasaki [29] and Simon [43]. Keep in mind that, in
most of the literature, the term “affine geometry” usually refers to “equi-affine geometry”,
in which one restricts to the subgroup SA(n,R) = SL(n,R) n Rn of volume-preserving
affine transformations. A key issue is to study the resulting invariants associated with
submanifolds M ⊂ Rn. In particular, the classical theory for equi-affine hypersurfaces was
developed by Blaschke and his collaborators, [4].

Centro-affine differential geometry refers to the geometry induced by the general linear
group x 7−→ Ax, A ∈ GL(n,R), x ∈ Rn, which is the subgroup of the affine transformation
group that keeps the origin fixed. Similarly, centro-equi-affine differential geometry refers
to the subgroup SL(n,R) of volume-preserving linear transformations. These cases are
usually discussed in passing in books that are devoted to (equi-)affine geometry [29].

Several methods have been developed to construct differential invariants and other in-
variant quantities in such Klein geometries, [14, 34, 35, 39, 45]. In particular, invariants
can be straightforwardly and algorithmically obtained by the method of equivariant mov-
ing frames introduced in [12]. They play a prominent role in the study of the geometric
properties, including equivalence and symmetry, of curves, surfaces, and more general sub-
manifolds, as well as invariant geometric flows, [32], with many applications to computer
vision and image processing.

The term “invariant submanifold flow” refers to the motion of a curve or surface by a
prescribed partial differential equation that admits an underlying transformation group as
a symmetry group, e.g. the Euclidean group of rigid motions (translations and rotations).
Invariant curve and surface flows arise in an impressive range of applications, including
geometric optics, elastodynamics, computer vision, visual tracking and control, interface
dynamics, thermal grooving, and elsewhere. A celebrated example is the curve shortening
flow (CSF), in which a plane curve moves in its normal direction in proportion to its
curvature. The CSF was first introduced by Mullins [28] as a model for the motion of
grain boundaries. It was shown by Gage and Hamilton [13] and Grayson [15, 16] that a
simple closed Jordan curve will remain simple when evolving under the CSF, first becoming
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convex and then shrinking to a point in finite time while becoming asymptotically circular,
often referred to as a “circular point”. These results were an important preliminary step
on the road to Hamilton’s celebrated analysis of the higher dimension counterparts such as
mean curvature flow and Ricci flow; the latter was extended by Perelman to in his famous
solution to the Poincaré conjecture, [9]. The corresponding affine curve shortening flow
(ACSF) was introduced and studied by Angenent, Sapiro, and Tannenbaum [1, 42], and it
was proved that a closed convex curve when evolves according to the ACSF will shrink to
an “elliptical point”. See also [2, 6] and the references therein for further developments.
In computer vision, [35, 37, 38], Euclidean curve shortening and its equi-affine counterpart
have been successfully applied to image denoising and segmentation and are actively used in
practical computer implementations, both academic and commercial. Euclidean-invariant
three-dimensional curve flows include the integrable vortex filament flow appearing in
three-dimensional fluid dynamics, [19, 22], while mean curvature and Willmore flows of
surfaces have been the subject of extensive analysis and applications, [10, 21]. More
recently, similar results were obtained for the heat flow in centro-equi-affine geometry [46].
Heat flows in more general Klein geometries were proposed [32, 37].

In this paper, we are interested in the heat flow in centro-affine geometry. Interestingly,
we find that the heat flow for the centro-affine curvature κ(t, s) is equivalent to the well-
known inviscid Burgers’ equation κt = κκs. This result is in contrast to the behavior of
heat flows in Euclidean, equi-affine, and centro-equi-affine geometries, which yield second
order nonlinear parabolic equations for the associated curvature invariant.

A challenging problem arising in computer vision and pattern recognition, is feature
matching under viewpoint changes between different images. Image and feature matching
has wide range of applications, including robotic vision, medical image registration, 3D
reconstruction, optical character recognition, object classification, content-based image
retrieval, and so on. Traditional methods, such as Scale Invariant Feature Transform
(SIFT) [24] and Speeded Up Robust Features (SURF) [3], have excellent performance
and high precision. However, when the images have less texture complexity and color
diversity, it is not easy to extract and describe the feature points. Another drawback to
these detectors is that they are only invariant under the planar Euclidean group consisting
of rigid motions (rotation, translation, and, possibly, reflection). In fact, the apparent
deformations of three-dimensional objects caused by changes of the camera position can
be locally approximated by affine maps, and hence, during the image matching process,
the Euclidean transformation group should be extended to the affine transformation group
by including stretching and skewing transformations. Applications of equi-affine and affine
invariance to image processing can be found, for instance, in [25, 26, 44]. An affine-invariant
extension of the SIFT algorithm (ASIFT) has been proposed in [40, 47], which detects
feature points in two images that are so related by simulating many affine transformations
of each image and performing the SIFT algorithm between all image pairs. Going beyond
affine-invariant detectors, projective invariance and moving frame-based signatures have
also been successfully applied in computer vision applications [17]. Recently, Damelin,
Ragozin and Werman investigated the best uniform approximation to a continuous function
under affine transformations, which has applications in the rapid rendering of computer
graphics [8].

In contrast to the above mentioned methods, a centro-affine invariant detection method
offers the following features: (1) It depends on the centro-affine differential invariants of
smooth closed curves, in contrast to the ordinary discrete mode matching methods. (2)
Centro-affine differential invariants involve lower order derivatives of the curve parametriza-
tion, and hence are more accurate and less error prone than their fully affine counterparts.
(3) In some situations, centro-affine invariance is equivalent to fully affine invariance if we
can find a pair of exact corresponding points (a point-correspondence) with respect to an
affine transformation. More precisely, for every closed curve, its barycenter can serve as
that point-correspondence (or local origin) for its local centro-affine invariants. (4) The
method relies solely on edge detection, and hence can be applied to untextured images.

The remainder of this paper is organized as follows. In Section 2, we provide a brief
review discussion on the moving frame method and differential invariants. In Section 3, a
classification for the planar curves with constant centro-affine curvatures is provided. In
Section 4, we study the centro-affine invariant heat flow. In Section 5, an application of
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the centro-affine invariants in the matching of images obtained by cameras is discussed.
Finally, Section 6 contains some concluding remarks on this work.

2. Preliminaries

2.1. Moving frame. Let us first review basic facts on the method of equivariant moving
frames introduced by Fels and the first author [12, 35]. Assume G is an r-dimensional Lie
group acting smoothly on an m-dimensional manifold M :

G×M →M, h · (g · z) = (hg) · z.
A right equivariant moving frame is defined as a smooth map ρ : M → G, that is equivariant
with respect to the action on M and the inverse right action of G on itself; explicitly,

ρ : M → G satisfies ρ(g · z) = ρ(z)g−1. (2.1)

The existence of a (local) moving frame requires that the group act freely and regularly
on M . The regularity is a global condition and does not play a role in any of the appli-
cations to date. In many cases, one gets by with a locally free action, in which case the
resulting moving frame is locally equivariant, meaning that (2.1) holds for group elements
g sufficiently close to the identity.

Given local coordinates z = (z1, . . . , zm) on M , let w(g, z) = g · z be the formulae
for the transformed coordinates under the group transformation. The right moving frame
g = ρ(z) associated to the coordinate cross-section K = {z1 = c1, . . . , zr = cr} is found by
solving the normalization equations

w1(g, z) = c1, . . . , wr(g, z) = cr, (2.2)

for the group parameters g = (g1, . . . , gr) in terms of the coordinates z = (z1, . . . , zm).
The equivariant moving frames can be obtained by choosing a cross-section K and solving
for the group element g = ρ(z) that takes z to a point ρ(z) · z ∈ K, known as the
“canonical form” of z. The coordinates of the canonical form provide a complete system
of non-constant invariants.

Theorem 2.1. If g = ρ(z) is the moving frame obtained by solving equation (2.2), then

I1(z) = wr+1(ρ(z) · z), . . . , Iz−r(z) = wm(ρ(z) · z),
form a complete system of functionally independent invariants.

Definition 2.2. The invariantization of a scalar function F : M → R with respect to a
right moving frame is the invariant function I = ι(F ) defined by I(z) = F (ρ(z) · z). In
particular, if I is any invariant function, then I = ι(I).

Thus, invariantization defines a canonical projection from the algebra of (smooth) func-
tions to the algebra of invariant functions that respects all algebraic operations.

Definition 2.3. Given a smooth manifold M of dimension m and an integer 1 ≤ p < m,
the k-th order jet bundle Jk = Jk(M,p) is a fiber bundle over M , such that the fiber of a
point z ∈M consists of the set of equivalence classes of p-dimensional submanifolds of M
under the equivalence relation of k-th order contact at the point z.

The regular subset of the jet bundle is where the action is (locally) free and regular,
which is non-empty when the order k is sufficiently large. A (local) moving frame of
order k can then be constructed on the regular subset. A p-dimensional submanifold
is called regular at order k if its jet belongs to the regular subset, and hence is in the
domain of the moving frame map. See [31] for an algebraic characterization of totally
singular submanifolds, meaning those whose jets are singular at all orders. In centro-affine
geometry, the straight lines are totally singular.

Assume the manifold M has local coordinates z = (x1, . . . , xp, u1, . . . , uq) in some
neighborhood where the regular submanifold S can be represented as a graph u = u(x).
The fundamental differential invariants are obtained by invariantization of the individual
jet coordinate functions,

Hi = ι(xi), IαJ = ι(uαJ ), i = 1, . . . , p, α = 1, . . . , q, #J ≥ 0.

One can further apply the invariantization process to differential forms by the same
procedure. First transform the differential form by acting on it by a general group element
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g and then invariantization by replacing the group parameters by their expressions g = ρ(z)
in terms of the moving frame. Details can be found in [12]. In particular the (horizontal
components of) the invariantized basis horizontal one-forms dxi give the fundamental
(contact-)invariant one-forms, which we denote by1

ωi = ι(dxi)H , i = 1, . . . , p. (2.3)

In curve geometries, ω = ι(dx)H is the invariant arc length element, usually denoted as
ds. The corresponding dual invariant differential operators are denoted by D1, . . . ,Dp,
and can be directly obtained by substituting the moving frame formulas for the group
parameters into the corresponding implicit differentiation operators used to produce the
prolonged group actions. The invariant differential operators map differential invariants
to differential invariants, and hence can be iteratively applied to generate the higher order
differential invariants.

Theorem 2.4. If the moving frame has order n, then the set of fundamental differential
invariants

I(n+1) = {Hi, IαJ | i = 1, . . . p, α = 1, . . . , q, #J ≤ n+ 1}
of order ≤ n+ 1 forms a generating set, meaning that all other differential invariants can
be obtained by invariant differentiation.

In many cases, I(n+1) does not form a minimal generating set, owing to the existence
of syzygies (algebraic relations) among the differentiated invariants. Nevertheless, these
syzygies and indeed the entire structure of the differential invariant algebra can be com-
pletely determined by the moving frame calculus, using the powerful recurrence formulae.
See [12, 35] for details.

2.2. Centro-affine differential invariants for plane curves. Let us now implement
the moving frame calculation, based on Section 2.1, for the centro-affine group A(2,R)
acting on plane curves. In this case the group is acting on J5(R2, 1). We represent the
planar centro-affine action explicitly in a slightly more convenient form:(

u
v

)
= λ

(
α β
γ δ

)(
x
y

)
, where det

(
α β
γ δ

)
= 1, λ 6= 0.

By a direct computation, the prolonged centro-affine transformations up to order 4 are
given by

u = λαx+ λβy, v = λγx+ λδy,

vu =
γ + δyx
α+ βyx

, vuu =
yxx

λ(α+ βyx)3
,

vuuu =
(α+ βyx)yxxx − 3βy2xx

λ2(α+ βyx)5
,

vuuuu =
(α+ βyx)2yxxxx − 10β(α+ βyx)yxxyxxx + 15β2y3xx

λ3(α+ βyx)7
.

Let ε = sign [(yxx/(xyx − y)]. Further, after possibly reparametrizing or applying a centro-
affine transformation, we can specify sign(y − xyx) = 1. To construct a moving frame, we
use the cross-section normalization

u = 0, v = 1, vu = 0, vuu = −ε.
Solving for the group parameters yields

λ4 =
εyxx

(xyx − y)3
, α = λy, β = −λx, γ = − yx

λ(y − xyx)
, δ =

1

λ(y − xyx)
, (2.4)

which prescribes the right-equivariant moving frame. Invariantizing the horizontal one-
form

duH = (λα+ λβyx)dx

by substituting the moving frame formulae (2.4) produces the centro-affine arc-length
element

ds = ι(dx)H = sign(y − xyx)

√
ε

yxx
xyx − y

dx =

√
ε

yxx
xyx − y

dx, (2.5)

1We ignore all contact forms, [30], which is the meaning of the H subscript.
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By a direct calculation, we produce the fundamental differential invariant

κ = ι(yxxx) = sign(y − xyx)
3xy2xx + (y − xyx)yxxx

y2xx

√
ε

yxx
xyx − y

=
3xy2xx + (y − xyx)yxxx

y2xx

√
ε

yxx
xyx − y

, (2.6)

which we identify as the centro-affine curvature. Higher order invariants are all obtained
by invariant differentiation of κ with respect to the centro-affine arc length (2.5), and so
a complete list of differential invariants is given by κ, κs, κss, . . . . In particular, one can
show, either by direct calculation or by using the recurrence formulae [12], that

ι(yxxxx) = κs +
3

2
κ2 − 3, ι(yxxxxx) = κss + 5κκs + 3κ3 − 16κ,

and so on.
It is also of interest to obtain the formulas for the centro-affine curvature and arc length

for a general parametrized curve. Consider a smooth curve parameterized by

x(p) = (x(p), y(p))T ,

where x(p), y(p) are smooth functions of the parameter p defined over a certain interval
I, and the superscript “T” represents the transpose of a vector or matrix. We use dots to
denote derivatives with respect to the parameter p. In particular ẋ = dx/dp is the tangent
vector.

To write out the formulas, we will use the bracket notation

[a,b] = det (a,b) , a,b ∈ R2,

to denote the cross product in the plane. Let s be the centro-affine arc-length parameter,

where x′ = dx/ds is used to distinguish
•

x = dx/dp. We first note that a parametrized
curve x(p) is regular if and only if it satisfies[

x ,
•

x
]
6= 0,

[ •

x ,
••

x
]
6= 0. (2.7)

The required formulas are obtained by replacing the jet derivative coordinates yx, yxx, . . .
by using the chain rule to express x-derivatives in terms of p-derivatives, as given by

ynx 7−→ Dn
xy,

where

Dx =
1
•

x

d

dp

is the differentiation operator dual to the horizontal one-form dx =
•

x dp. Thus,

yx 7−→
•

y
•

x
, yxx 7−→

•

x
••

y −
••

x
•

y
•

x3
,

and so on. Substituting into (2.5) produces the general formula for the centro-affine arc-
length element of a parametrized curve

ds =

√√√√ε

[ •

x ,
••

x
][

x ,
•

x
] dp, where ε = sign

([ •

x ,
••

x
][

x ,
•

x
]) . (2.8)

One easily verifies that ε is invariant under centro-affine transformations and repara-
metrizations, including those that are orientation reversing. Similarly, its centro-affine
curvature (2.6) is given by the general formula√√√√ε

[
x ,

•

x
][ •

x ,
••

x
] ([x ,

••

x
][

x ,
•

x
] +

[
x ,

••

x
][ •

x ,
••

x
]
−
[
x ,

•

x
][ •

x ,
•••

x
]

2
[ •

x ,
••

x
][

x ,
•

x
] )

. (2.9)

It is easy to check that (2.9) is equivalent to (2.6), up to a constant factor. For the sake of
convenience, we choose (2.9) as the centro-affine curvature κ. In particular, parametrizing
the curve by centro-affine arc-length s, that is,[

x′ , x′′
]

[x , x′
] = ε, which implies

[
x′ , x′′′

][
x , x′

]
−
[
x′ , x′′

][
x , x′′

][
x , x′

]2 = 0,
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one obtains the formula [14, 34, 39, 45]:

κ =

[
x′′ , x

][
x′ , x

] , (2.10)

and

x′′ = κx′ − εx. (2.11)

Furthermore, from equation (2.11), we have

x′′′ = (κs + κ2 − ε)x′ − εκx, (2.12)

and

x′′′′ = (κ′′ + 3κκs − 2εκ+ κ3)x′ − ε(2κs + κ2 − ε)x.

Remark 2.5. For a regular curve x(p), ε ≡ 1 or ε ≡ −1. The value of ε indicates that
whether the vectors x,xss lie on the same or opposite sides of the tangent vector xs. For
example, in Figure 1, ε = 1 on the red parts and ε = −1 on the blue parts of the curve.
The points in between the red and blue parts are irregular points.

Figure 1. The geometrical properties of the centro-affine invariant ε.

Remark 2.6. If κ(s) < 0, s ∈ (a, b), let κ̃(s̃) = −κ(s) > 0, s̃ = −s ∈ (−b,−a). Then, by
solving the differential equation

d2x(s̃)

ds̃2
− κ̃(s̃)

dx(s̃)

ds̃
+ εx(s̃) = 0, s̃ ∈ (−b,−a),

modeled on (2.11), we obtain a curve C̃(s̃) with the centro-affine curvature κ̃(s̃) > 0,
s̃ ∈ (−b,−a). If we perform the orientation-reversing reparametrization s = −s̃ ∈ (a, b),

then the resulting curve C(s) is equivalent to the curve C̃(s̃), s̃ ∈ (−b,−a), and its centro-
affine curvature satisfies κ(s) < 0.
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3. Centro-affine planar curves with constant curvature

In any Klein geometry, submanifolds that have the property that all their differential
invariants are constant play a particularly important role. The regular ones can all be
algebraically characterized by the following theorem, originally due to Cartan [5, 12]. See
also [31, 36] for further details.

Theorem 3.1. Let G be a Lie group acting on an m-dimensional manifold M . Then,
for 1 ≤ p < m, a regular p-dimensional submanifold S ⊂ M has all constant differential
invariants if and only if it is a subset of an orbit of a (suitable) p-dimensional subgroup
H ⊂ G. In this case, H can be identified with the local symmetry group of S.

The totally singular p-dimensional submanifolds, as defined above, are characterized by
their admitting a (local) symmetry group of dimension > p. They can be characterized
differentially by a Lie determinant condition [31]. The caveat “suitable” in the above result
means that the subgroup H has p-dimensional orbits and that such orbits are not totally
singular. See [31] for an algebraic characterization.

Specializing to plane curves, we assume the transformation group is ordinary, meaning
that it acts transitively and does not pseudo-stabilize [30], which is the case for all funda-
mental geometric transformation groups including the centro-affine and centro-equi-affine
groups. In this case, the differential invariant algebra is generated by invariantly differ-
entiating a single differential invariant, which we identify as the G-invariant curvature.
Thus, by the above results, a regular curve C ⊂ X has constant curvature if and only if
it forms part of the orbit of a suitable one-parameter subgroup H ⊂ G, and admits H

as its (local) symmetry group. Two such curves are equivalent, meaning the C̃ = g · C
for some g ∈ G is their corresponding symmetry groups are related by the adjoint map

H̃ = Ad g · H = g · H · g−1. Thus one can use the methods of classification of optimal
subalgebras of the Lie algebra of G to classify constant curvature curves up to equivalence.
On the other hand, totally singular curves are characterized by their admitting local sym-
metry groups of dimension ≥ 2. All other curves have at most a discrete group of local
symmetries.

Now let us apply these considerations to the centro-affine group. The first remark is
that a curve is totally singular if and only if it is a straight line segment. This follows
easily from the prolonged action, or by calculation of the Lie determinant. For the group
GL(2,R), there are three inequivalent families of one-parameter subgroups, respectively
generated by one of the Lie algebra elements(

1 0
0 α

)
,

(
1 1
0 1

)
,

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (3.1)

where α 6= 0 and 0 < ϕ < π. In particular, when α = 1, the corresponding orbit is
a straight line and hence totally singular. Exponentiating the infinitesimal generators
(3.1) to determine the corresponding one-parameter subgroups and orbits, we deduce the
following result.

Theorem 3.2. Let C be a constant centro-affine curvature curve with ε = 1.

(i) If κ > 2, then C is centro-affine equivalent to a curve

y = xα x > 0, 0 < α < 1, where κ =
1√
α

+
√
α.

(ii) If κ = 2, then C is centro-affine equivalent to the curve y = x log x.
(iii) If κ = 0, then C is centro-affine equivalent to the unit circle.
(iv) If 0 < κ < 2, then C is centro-affine equivalent to the logarithmic spiral with polar

coordinates

ρ = exp(θ cotϕ), 0 < ϕ < π/2, where κ = 2 cosϕ.

Note that the curves in Theorem 3.2 are generated from the subgroups in (3.1), with
ϕ = π/2 corresponding to the circle. The above values of the centro-affine curvature can
be found either by direct computation or by applying the intrinsic algebraic method of
[33].

Proposition 3.3. A non-degenerate centro-affine curve has centro-affine curvature κ = 0
if and only if it is locally centro-affine equivalent to the unit hyperbola y = x−1 or unit
circle x2 + y2 = 1.
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4. Centro-affine invariant geometric heat flow

Let us next investigate centro-affine invariant evolutionary processes. Consider a family
of embedded smooth Jordan curves parametrized by C : S1 × I → R2, where t ∈ I ⊂ R
can be viewed as the time parameter and p ∈ S1 is a free parameter of each individual
curve in the family. We assume that the curve family C(p, t) evolves according to the
centro-affine invariant evolution equation

∂C

∂t
= β(κ(s, t))Css (4.1)

with the initial condition

C(s, 0) = C0(s),

where s is the corresponding centro-affine arc-length, κ(s, t) is the centro-affine curvature,
β(κ) is a prescribed function of κ.

Geometrically, equation (4.1) means that any point of the curve moves with a velocity
in the direction of the “normal” vector Css, with speed proportional to a function of
the centro-affine curvature of the curve at this point. These kinds of equations arise in
differential geometry and a variety of applications due to their inherent invariance. On the
other hand, because the arc length parameter s changes with time, (4.1) is a non-linear
evolutionary equation.

In view of (2.8), let

g(p) :=

√
ε

[Cp , Cpp]

[C , Cp]
(4.2)

be the invariant centro-affine metric for the curve C(p, t). The arc length parameter s is
obtained by integration:

s(p) =

∫ p

p0

g(ξ)dξ.

In view of the elementary commutator relation
∂

∂t

∂

∂p
=

∂

∂p

∂

∂t
, we have

∂

∂t

∂

∂s
=

∂

∂t

(
1

g

∂

∂p

)
= −gt

g

∂

∂s
+

∂

∂s

∂

∂t
.

Next, let us compute the centro-affine metric evolution. Firstly, using equation (4.2),

∂(g2)

∂t
= ε

(
[Cpt , Cpp] + [Cp , Cppt]

)
[C , Cp]− [Cp , Cpp]

(
[Ct , Cp] + [C , Cpt]

)
[C , Cp]

2 .

Note that since the tangent Cs is not parallel to C, then the right hand side of (4.1) can
be expressed as the linear combination of Cs and C, which means

βCss = WCs + UC, where W = βκ, U = −εβ.

By a direct computation, we obtain

Cp =gCs,

Cpp =ggsCs + g2Css = (ggs + g2κ)Cs − εg2C,
Cpt =(WCs + UC)p

=g(WsCs +WCss + UsC + UCs) = g(Ws +Wκ+ U)Cs + g(Us − εW )C,

Cppt =
[
ggs(Ws + κW + U) + g2(Wss + 2κWs + (κs + κ2 − ε)W + Us + κU)

]
Cs

+
[
ggs(Us − εW )− εg2(2Ws + κW − εUss + U)

]
C.

Then

[Cpt , Cpp] = εg2(g(Ws + U + εκUs)− gs(W − εUs)) [C , Cs] ,

[Cp , Cppt] = εg2(g(2Ws + κW − εUss + U)− εgs(Us − εW )) [C , Cs] ,

[Cp , Cpp] = εg3 [C , Cs] ,

[Ct , Cp] = gU [C , Cs] ,

[C , Cpt] = g(Ws +Wκ+ U) [C , Cs] .
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It follows that

1

g

∂g

∂t
=

1

2
(2Ws + εκUs − εUss) =

1

2
(βss + κβs) + κsβ. (4.3)

We now come to a crucial computation, namely the centro-affine curvature evolution.

∂κ

∂t

∣∣∣∣
p

=
∂

∂t

[C , Css]

[C , Cs]

=

(
[Ct , Css] + [C , Csst]

)
[C , Cs]− [C , Css]

(
[Ct , Cs] + [C , Cst]

)
[C , Cs]

2 .

A direct computation gives

Cst = Cts −
gt
g

Cs = (WCs + UC)s −
gt
g

Cs = (Ws + κW + U − gt
g

)Cs + (Us − εW )C,

Csst = Csts −
gt
g

Css =

[
(Ws + κW + U − gt

g
)Cs + (Us − εW )C

]
s

− κgt
g

Cs + ε
gt
g

C

=

[
Wss + (κs + κ2 − ε)W + 2Us + κ(2Ws + U − 2

gt
g

)−
(
gt
g

)
s

]
Cs

− ε
[
−2Ws + κW − εUss + U − 2

gt
g

]
C.

Thus we arrive at

∂κ

∂t
= κsW + 2Us −

ε

2
(κsUs + κ2Us − Usss)

= βκκs − 2εβs +
1

2
((κs + κ2)βs − βsss).

(4.4)

We now focus on the case of β ≡ 1, namely the heat flow in centro-affine geometry

∂C

∂t
= Css. (4.5)

Equation (4.3) implies that

gt = gκs. (4.6)

Consequently, in view of equation (4.4), we see that the centro-affine curvature satisfies
the first order inviscid Burgers’ equation

∂κ

∂t
= κκs. (4.7)

To sum up, we arrive at the following results.

Theorem 4.1. The centro-affine curve evolution process
∂C

∂t
= Css,

C(s, 0) = C0,

is equivalent to the initial problem of the inviscid Burgers’ equation:
∂κ

∂t
= κ

∂κ

∂s
,

κ(s, 0) = κ0(s),

where κ0(s) is the signed centro-affine curvature of the initial curve C.

Comparing equation (4.6) with equation (4.7), one has

∂κ

∂t
− κ

g

∂g

∂t
= 0.

Hence
∂ (κ/g)

∂t
=

1

g

(
∂κ

∂t
− κ

g

∂g

∂t

)
= 0.

Thus we conclude:

Corollary 4.2.
κ

g
(p, t) =

κ

g
(p, 0) remains invariant for any t > 0.
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Therefore, equation (4.7) can be written as

∂κ

∂t
=
κ

g
(p, 0)

∂κ

∂p
. (4.8)

In fact, if κ0(s) = κ(s, 0) ≡ 0, by (4.8), the solution for (4.5) is C(·, t) = exp(−εt)C0. We
immediately deduce the following result.

Corollary 4.3. If the initial centro-affine curvature κ0(s) = κ(s, 0) ≡ 0, then at any time
t ≥ 0, the curve C(t) is centro-affine equivalent to the initial curve C0.

In the following, we assume κ(p, 0) 6= 0. Solve the above partial differential equation
(4.8) by the method of characteristics yields

κ(p, t) = Φ(t+ h(p)),

where Φ is any differentiable function of one variable and h(p) =

∫ p g

κ
(p̃, 0) dp̃. Since

κ(p, 0) 6= 0, the ratio g(p, 0)/κ(p, 0) will be of one sign, and hence h(p) defines a one-to-
one map. Thus we conclude:

Corollary 4.4. The curvature κ(p, t) remains invariant on the curve t+h(p) = C, where
C is constant. At the same time, κ(p, t) = κ(h−1(C), 0), i.e., at any given time t, we have
κ(p, t) = κ(h−1(t+ h(p)), 0).

The flow (4.1) can be written as

∂C

∂t
= Css = κCs − εC. (4.9)

In view of Corollary (4.2), the heat flow (4.9) is equivalent to

ε
κ

g
(p, 0)Cp − εCt = C,

which can be solved easily, to get

C(p, t) = exp(−εt)Ψ(t+

∫ p g

κ
dp),

where the vector function Ψ(
∫ p g

κ
dp) = C0, C0 = C(p, 0), p ∈ (p1, p2), is the initial value

of C(p, t), which implies

Ψ(p̃) = C0(h−1(p̃)), p̃ ∈ (h(p1), h(p2)). (4.10)

At any given time τ , Ψ(p̃+ τ) = C0(h−1(p̃+ τ)), where p̃ ∈ (h(p1)− τ, h(p2)− τ).
On the other hand, by (4.3), the evolution of centro-affine arc-length L for C(p, 0) at

(p1, p2) is
∂L

∂t
=

∂

∂t

∫ p2

p1

gdp = κ(p2)− κ(p1).

Hence, we have

Corollary 4.5. The solution to the initial problem of the heat flow (4.9) with initial curve
C0, p ∈ (p1, p2) and κ 6= 0 is given by C(p, t) = exp(−εt)Ψ(t+

∫ p g
κ

dp) with Ψ satisfying
(4.10).

A basic fact on the theory of curve evolution [6, 11] states that the geometric shape of
the curve, sometimes referred to as the trace or the image of the planar curve, is affected
only by the normal component of the flow field. The tangential component affects only the
parametrization, and not the the curves’ overall geometric shape. Thus, equation (4.9) is
equivalent to

∂C

∂t
= −εC. (4.11)

Solving the above equation, we have

C(p, t) = exp(−ε t)C(p, 0).

In this manner, we arrive at the long time behavior of the curves governed by the flow
(4.9):

Proposition 4.6. The curve family C(p, t) with ε = 1 will converge smoothly to the origin
as t→∞.
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5. Edge matching of curve profiles in digital images

For many vision tasks, including 3D reconstruction, image alignment, and tracking, a
key issue is finding correspondences between common objects in images. The SIFT and
SURF algorithms are among the most widely applied to the identification of corresponding
feature points. In fact, when the images have less texture complexity and color diversity,
it is not so easy to accurately extract and describe the feature points through application
of the SIFT and SURF algorithms. Another drawback to these detectors is that they are
only Euclidean-invariant.

In general, the camera is often modeled as a projective transformation from scene
coordinates to image coordinates. Especially, if a physical object has a smooth or piecewise
smooth boundary, its images obtained by cameras in varying positions undergo apparent
deformations, which are locally well approximated by affine transforms of the image plane.
In consequence, the solid object recognition problem will lead back to the computation
of affine invariant local image features. That is, during image matching, the Euclidean
group (rotation, translation, reflection) should be extended to the equi-affine or full affine
transformation group by including stretching and skewing transformations.

In comparison with the above-mentioned methods, differential centro-affine-invariant
detection has the following advantageous features: (1) It depends on the differential in-
variants of smooth curves for reducing errors. (2) Centro-affine differential invariants
involve lower order derivatives of the curve parametrization, and hence are more accu-
rate and less error prone than fully affine differential invariants. (3) In some situations,
centro-affine invariance is equivalent to fully affine invariance if we can find a pair of exact
corresponding points (a point-correspondence) with respect to an affine transformation.
(4) More precisely, for every closed curve, its barycenter can be temporarily served as that
point-correspondence (or the local origin) only for its local centro-affine invariants. (5)
The method relies solely on edge detection, which may well be adequate for untextured
images.

Figure 2. The original images.

In this section, we apply the centro-affine differential invariants defined in the previous
sections to identify objects in different images. In Figure 2, photos of a sign with the word
“Standards” were taken by the camera at different angles and directions. We seek corre-
spondences between the letters according to the centro-affine invariants given in equations
(2.8) and (2.9).

In order to describe more clearly and accurately this process, we now focus on the
initial letter “S” as a main example; the others can be dealt with similarly. First of all, it is
necessary to obtain the boundaries of the objects in the images. Accurate boundaries of the
individual letters are segmented using level set method [23] or Canny edge detection [27].
We shall apply the centro-affine arc-length, the integral invariant of centro-affine curvature,
the area, the barycenter and corner points of every boundary as its descriptor, which can
be employed to recognize the corresponding boundaries in different digital images. Corner
point in a boundary represents critical information in describing object features, which
is the local extreme point related to the Euclidean curvature. Then after the boundary
extraction (segmentation), the letter “S” is located inside of its discrete boundary points.

Notice that, for a given closed curve, its local centro-affine invariants may be obtained
by placing the temporary origin at the barycenter of its closed boundary. To be precise,
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Figure 3. The smooth edges generated by the B-spline curve fit-
ting method and their ordinals, which will be used in Table 1.

the smoothing algorithm — curve shortening flow [10, 13] or Gaussian convolution for a
curve [27] — can play an auxiliary role in the pretreatment process for decreasing the
jaggedness in the curve. For simplicity, we use Gaussian convolution for smoothing. The
curve Γ is first parameterized by the parameter u, so Γ(u) = (x(u), y(u)). An evolved
version Γσ of Γ can then be computed, and is defined by Γσ = (x(u, σ), y(u, σ)), where
x(u, σ) = x(u)∗g(u, σ), y(u, σ) = y(u)∗g(u, σ), with ∗ denoting the convolution operator,
while g(u, σ) denotes a Gaussian of width σ. For all boundaries, we apply k-means cluster-
ing [18] to ensure that they are represented by the same number of points, which are used
for further fitting purposes. By experimentation, we find that it is adequate to select 85
points for every boundary. To obtain the centro-affine invariants by (2.8), (2.9), the dis-
crete boundary points should generate a curve smooth enough for computing derivatives.
B-spline curves are suitable for this role because of their affine invariance and smoothness
[7, 20]. Thus, by a direct operation, we obtain the smooth boundaries as shown in Figure
3.

If the boundary curve of the letter “S” is sufficiently smooth, it is easy to calculate
its centro-affine invariants ε and centro-affine curvature κ appearing in (2.8) and (2.9),
respectively. The final results are shown in Figure 4. To reduce the disturbance caused
by irregular points, we set threshold value of centro-affine curvatures |κ| to 100, deleting
the points whose centro-affine curvatures |κ| > 100. In view of the pictures in Figure 4,
we observe that they look similar modulo an overall translation in s. Now, it is crucial to
find the corresponding points between them.

We employ the L2 inner product

〈 f(x) , g(x) 〉 =

∫ b

a

f(x)g(x)dx

between functions f(x) and g(x) over the interval [a, b]. The associated norm

dist(f(x), g(x)) = ‖ f(x)− g(x) ‖ =

√∫ b

a

(f(x)− g(x))2dx,

will be used as a measure of their distance.
Now we can apply this concept to compare two discrete curves. Let us assume that,

the curve A consists of N points, denoted by

(xa1 , ya1)T , (xa2 , ya2)T , . . . , (xaN , yaN )T .

In this way, we denote the curve B consists of M points by

(xb1 , yb1)T , (xb2 , yb2)T , . . . , (xbM , ybM )T .

Locally, we can always assume that xa1 < xa2 < · · · < xaN and xb1 < xb2 < · · · < xbM .
For the sake of convenience, we use the following notations to indicate the maps of Curve
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Figure 4. The differential centro-affine invariants ε and |κ| for
the first letter “S”. The horizontal axis represents the centro-affine
arc-length up to a factor.

A and Curve B, that is,

yai = f(xai), ybj = g(xbj ), i = 1, 2, . . . , N, j = 1, 2, . . . ,M.

Two new sets of x-coordinates are generated by trimming the original {xai} and {xbi}
to only those values such that every x′ai in the new set has two neighbours from {xbi}
and every x′bi in the new set has two neighbours from {xai}. At the same time, we have

x′ai > x′bi−1
and x′bi > x′ai−1

. Then, we need to generate a common set of points for both
curves with x-coordinates from the following set.

{x1, x2, . . . , xK} = {x′a1 , x
′
a2 , . . . , x

′
aN′
} ∪ {x′b1 , x

′
b2 , . . . , x

′
bM′
},

where x1 < x2 < · · · < xK and max{M ′, N ′} ≤ K ≤M ′ +N ′. The next step is to define
the maps for the set {x1, x2, . . . , xK}, and here we take

f(xi) =


(xi − x′al−1

)f(x′al) + (x′al − xi)f(x′al−1
)

x′al − x′al−1

, x′al−1
≤ xi ≤ x′al , 1 < l ≤ N ′,

g(xi), xi < x′a1 ,
g(xi), xi > x′aN′ ,

and

g(xi) =


(xi − x′bl−1

)g(x′bl) + (x′bl − xi)g(x′bl−1
)

x′bl − x
′
bl−1

, x′bl−1
≤ xi ≤ x′bl , 1 < l ≤M ′,

f(xi), xi < x′b1 ,
f(xi), xi > x′bM′ .

The missing y-coordinates (if any) for each curve are obtained via interpolating neighboring
points. Thus, we can calculate the difference between Curve A and Curve B by the
normalized L1 or L2 distance:

error1 =
dist1

1

2N

N∑
i=1

|yai |+
1

2M

M∑
i=1

|ybi |

or error2 =
dist2

1

2N

√√√√ N∑
i=1

y2ai +
1

2M

√√√√ M∑
i=1

y2bi

,
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where

dist1 = max{|f(xi)− g(xi)|, i = 1, 2, . . . ,K} and dist2 =
1

K

√√√√ K∑
i=1

|f(xi)− g(xi)|2.

Figure 5. Finding the corresponding relations by using the data
in Figure 4.

Table 1. The centro-affine arc-lengths for the smooth boundaries
in Figure 2, where the row labels and column labels correspond to
the ordinals in Figure 2 and Figure 3.

1 2 3 4 5 6 7

Image A 21.5764 17.3975 16.0039 6.0827 13.1816 10.2993 6.1379

Image B 21.4343 18.1060 16.2536 6.0291 13.4718 9.9786 6.1225

Image C 21.3836 16.3080 15.0370 5.6557 12.2398 9.9733 6.1182

Image D 21.4965 17.0939 15.8373 5.9567 13.2712 11.4628 6.1752

(continued) 8 9 10 11 12 13

Image A 16.1042 6.0655 17.9754 10.5182 6.1844 20.9430

Image B 16.3201 5.8780 12.8081 9.4719 6.0826 20.6943

Image C 15.7962 5.8537 15.7287 11.1307 6.1087 20.9512

Image D 16.7117 6.0081 18.1944 10.3007 6.1984 20.7571

Table 2. The correlation coefficents for Table 1.

Image A Image B Image C Image D

Image A 1 0.9672 0.9930 0.9976

Image B 0.9672 1 0.9767 0.9624

Image C 0.9930 0.9767 1 0.9897

Image D 0.9976 0.9624 0.9897 1

By using the above method, under translations or orientation reversals of data sets, we
can find the minimum errors about ε and centro-affine curvatures between the first graph
in the Figure 4 and the remaining three. In the first row of Figure 5, the comparison
results are shown together. We apply the Dynamic Time Warping (DTW) algorithm [41]
to find the optimal alignment between the two sets of data points, which we view as time
series, as shown in the second row of Figure 5. In general, DTW is often used to determine
similarity, classification, and corresponding regions between two time series.

Finally, applying the same algorithm to the other letters in the label, the corresponding

points can be found. The results are shown in Figure 6, where, between two images of
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every column, the correspondences are indicated by the different colors. For comparative

purposes, we also apply the SIFT, SURF and ASIFT methods to obtain their corresponding

points, which are shown in Figure 7, respectively.

Figure 6. The corresponding points between the two images of
every column obtained by using the centro-affine invariants
method.

Figure 7. The corresponding points obtained by the SURF
method (the first row), the SIFT method (the second row) and
the ASIFT method (the third row).

Further, by using equation (2.8), we can also obtain the centro-affine arc-lengths
for the boundaries of the letters in the label “Standards”, which are shown as in
Table 1. The centro-affine arc-lengths for the letters in the ith image of Figure
3 are listed in the ith row of Table 1. It is easy to see that there is a strong
correspondence between the centro-affine arc-lengths of the corresponding objects.
Furthermore, we calculate the correlation coefficients between them, as shown in
Table 2, which indicate that they are almost same.
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Centro-Affine SURF SIFT ASIFT

Figure 8. The homography transformation results by using the
corresponding points obtained in Figure 6 and Figure 7.

In projective geometry, a homography is an isomorphism of projective spaces,
induced by an isomorphism of the vector spaces from which the projective spaces
derive. Estimating the 2D homography (or projective transformation) from a pair
of images is a fundamental task in computer vision. Now let us find the homography
transformations between these images and compare the results with the correspond-
ing points obtained by the SURF, SIFT, ASIFT, and our Centro-Affine method.
Those corresponding points data sets in Figure 6 and Figure 7 are used to transform
the other three images to the second one in Figure 2, the final results are shown
in Figure 8. The transformation results derived by the corresponding points of the
centro-affine invariant method are shown at in the first column; the second column
shows the results by the SURF method; the third column shows the results by the
SIFT method; the last column shows the results by the ASIFT method. (The sec-
ond figure in the SIFT column is blank due to incorrect matching points; see the
second image of the SIFT row in Figure 7.)

Remark 5.1. When the images have less texture complexity and color diversity,
it is more challenging to extract and describe the feature points through the SIFT,
SURF, and ASIFT methods. The centro-affine invariant method can match the
corresponding points by the closed boundary, and hence is less affected by texture
and color. In view of Figures 6, 7, and 8, we find that between the images under
the large scale transformation of the camera, the centro-affine invariant method for
finding the corresponding points, using the corresponding boundaries, offers certain
advantages over SURF, SIFT and ASIFT. However, if the object itself admits affine
symmetries, for example, the “o” inside the letter “d”, it is not so easy to find the
proper corresponding points; this defect can be observed in Figure 6.
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6. Concluding remarks

In this paper, we have investigated the heat flow in centro-affine geometry and
applications of differential centro-affine invariants in edge matching. Differential
invariants and their algebraic relations for curves in centro-affine geometry are easily
obtained by applying the equivariant moving frame method [12]. A classification of
curves with constant centro-affine curvature has been provided. More interestingly,
we have shown that the heat flow in centro-affine geometry is equivalent to the first-
order inviscid Burgers’ equation, in contrast to the equations governed by the heat
flows in Euclidean, affine, and centro-equi-affine geometries, which are nonlinear
second-order parabolic equations. Thus, the evolution process for the centro-affine
heat flow is described by solving the inviscid Burgers equation through the method
of characteristics. An interesting question, to be explored later, is what the presence
of shock waves in the solution might mean for the corresponding curve evolution. In
addition, an application of centro-affine invariants to edge matching is presented. It
turns out that the resulting method offers certain advantages over other well-used
methods.

In conclusion, we would like to mention further possible issues relating to this
work.
• The Gaussian kernel, while being one of the most used in image analysis, has

several undesirable properties, principally when applied to planar curves. One of
these is that the filter is not intrinsic to the curve. This can be remedied by replacing
the linear heat equation by a geometric heat equation. In particular, if the Euclidean
geometric heat flow is used, a scale space invariant to rotations and translations is
obtained, while the (equi-)affine version leads to an (equi-)affine invariant multi-
scale representation; see [37, 44] for general results and recent developments. It
would thus be of interest to apply the centro-affine heat flow analyzed here to
construct a corresponding scale space.
• As shown here, the differential invariants for curves in centro-affine geometry

can be used to study edge matching in images. A natural question arises: whether
we can use differential invariants for surfaces in centro-affine geometry to study the
edge matching of three-dimensional images. In fact, the differential invariants for
the equi-affine group acting on image volumes have been constructed in [44].
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