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Abstract
Image feature points are detected as pixels which locally maximize a detector
function, two commonly used examples of which are the (Euclidean) image gradient
and the Harris-Stephens corner detector. A major limitation of these feature
detectors are that they are only Euclidean-invariant. In this work we demonstrate
the application of a 2D equi-affine-invariant image feature point detector based on
differential invariants as derived through the equivariant method of moving frames.
The fundamental equi-affine differential invariants for 3D image volumes are also
computed.

1 Introduction

Image feature points have been widely used for decades as fundamental components of computer
vision algorithms, and they continue to find use in such applications as medical image registration,
estimation of homographies in stereo vision, and stitching of images for panoramas or satellite
imagery. Features are generally defined as pixels (or sets of pixels) in an image which can be reliably
identified and distinctly described across images. The goal of feature detection and description is to
abstract images as point sets which can be matched to each other. These correspondences can then be
used to compute (estimate) the transformation between the point sets and, thus, between the images.

Feature detectors are scalar functions which measure some sort of response on an image, and features
are typically identified as local extrema in these functions. For example, the popular Harris-Stephens
corner detector identifies feature points as pixels which locally maximize the function

R (x, y) = det (H)− α tr (H)
2 (1)

where α is a parameter and H is the second moment matrix of the image [1]. This function responds
strongly on pixels where the image varies greatly in two directions, and thus is a corner detector. The
popular SIFT feature algorithm uses a multi-scale image representation and computes a difference-of-
Gaussians function (an approximation of the Laplacian-of-Gaussian) as a detector [2]. SIFT features
are local maxima of this function over both space and scale. This multi-scale representation allows
identification of features at different spatial scales, and also serves to smooth noise out of the image.

A major drawback to these detectors is that they are only Euclidean-invariant. In other words, these
detectors will identify roughly the same image points as feature points in two images only if the two
images are related by a Euclidean transformation (rotation, translation, reflection). The Euclidean
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Figure 1: Two images of a scene related by an equi-affine transformation.

group can be generalized to the affine group by including stretching and skewing transformations
(see Figure 1). The equi-affine group — meaning the group of area- or volume-preserving affine
transformations — in particular, is useful in that is is a good approximation to projective transfor-
mations which are near the identity. Additionally, these transformations do not suffer from known
difficulties associated with projective equivalence [3]. Several affine-invariant image detectors have
been proposed in the literature [4, 5]. An affine-invariant extension of the SIFT algorithm is proposed
in [6]. This is a brute-force method which detects affine-invariant feature points in two images by
simulating many affine transformations of each image and performing the SIFT algorithm between all
image pairs. In contrast to affine-invariant detectors, projective invariance and moving frame-based
signatures have been successfully applied in vision [7, 8].

In this work, we propose the use of an invariant-theory based approach to equi-affine-invariant feature
detection. The equivariant method of moving frames [9, 10] was inspired by the classical moving
frame theory, most closely associated with Élie Cartan — see [11] — but whose history can be
traced back to the early nineteenth century, [12]. The equivariant method can be readily employed to
compute various invariants of a given transformation (Lie) group, including differential invariants,
joint invariants, joint or semi-differential invariants, etc., [13]. These invariants are then combined
into an equi-affine-invariant feature detector function [14]. Standard methods for feature description
can then be applied to characterize each point. In contrast to the linear smoothing performed during
the aforementioned multi-scale feature algorithms, we apply a nonlinear, affine-invariant scale-space
to smooth our image.

The paper will have a tutorial flavor so as to remain fairly self-contained. In Section 2 we introduce
the fundamental concepts of the method of moving frames and discuss how the method leads to
the computation of differential invariants for a given Lie group acting on a manifold. In Section 3
the method is explicitly applied to the equi-affine group acting on coordinates of functions on R2

(i.e., images), and the fundamental second-order differential invariants of this action are computed.
The differential invariants for the equi-affine group acting on functions in R3 are also computed. In
Section 4 these invariants are used to compute a feature detector which is demonstrated to perform
well at equi-affine registration of 2D image pairs.

2 Method of Moving Frames

The method of moving frames is a powerful tool used to study the geometric properties of sub-
manifolds under the action of transformation (Lie) groups [9, 10]. In particular, the method allows
direct computation of the differential invariants of a transformation group. The equivarant method of
moving frames was introduced in [15] and permits a systematic application to general transformation
groups acting on manifolds. The salient points of this theory are summarized here.

Let G be an r-dimensional Lie group, acting on an m-dimensional manifold, M . A moving frame ρ
is defined as a G-equivariant map ρ : M → G. We will exclusively use right equivariant moving
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frames, which means that for g ∈ G and z a local coordinate on M , we have

ρ (g · z) = ρ (z) · g−1.

As we will demonstrate, the computation of a moving frame for a Lie group action will allow us to
compute the fundamental differential invariants of the group action on the submanifolds of a given
dimension, e.g., surfaces in R3.

The key theorem regarding the existence of such moving frames is as follows [9]:

Theorem 1 A moving frame exists near a point z ∈ M if and only if G acts freely and regularly
near z.

The freeness condition is best expressed in terms of isotropy subgroups of G. The isotropy subgroup
of G with respect to z ∈M is the set

Gz = {g | g · z = z} ,
that is, the set of all group elements which fix z. The group action is free if

Gz = {e} for all z ∈M, (2)

where e is the group identity. In other words, the action is free if for any z ∈ M , the only group
element fixing z is the identity. This requires that the orbits of G have the same dimension as G itself,
and hence a necessary (but not sufficient) condition for freeness is that dimG ≤ dimM . The group
action is regular if the orbits form a regular foliation of M .

Remark: In many cases arising in applications, the action is only locally free, meaning that the
isotropy subgroup is discrete, or, equivalently the group orbits have dimension equal to the dimension
of the group. Locally free actions produce locally equivariant moving frames and local invariants. A
good example is the Euclidean group acting on plane curves. The action is only locally free on the
first jet space since a 180◦ rotation does not affect the tangent to the curve. And, as a result, the basic
signed curvature differential invariant κ is only locally invariant since it changes sign under a 180◦

rotation of the curve.

If the group action is both free and regular, Cartan’s method of normalization is used to compute a
moving frame. We begin by choosing a coordinate cross-section to the group orbits. A cross section
is a restriction of the form

K = {z1 = c1, . . . , zr = cr} , (3)
that is, we restrict r of the coordinates to be fixed. This cross-section must be transverse to the group
orbits. By freeness, for any z ∈M , there is a group element g mapping z to this cross-section, i.e., to
the unique point in the intersection of the cross-section with the group orbit through z. This unique g
is then the right moving frame for the action. This is formalized in the following theorem, which
provides a method for practical construction of the right moving frame for a free and regular group
action based on a given cross-section.

Theorem 2 Let G act freely and regularly on M , and let K be a cross-section. For z ∈ M , let
g = ρ (z) be the unique group element mapping z to this cross-section:

g · z = ρ (z) · z ∈ K. (4)

Then ρ : M → G is a right moving frame for the group action.

The goal is to obtain the group transformation parameters g = (g1, g2, . . . , gr) in equation (4) by
applying the cross-section (3). Explicitly, if we write

w (g, z) = g · z (5)

then the cross-section choice gives us a system of r equations

wj (g, z) = cj , j = 1, 2, . . . , r. (6)

The system (6) is solved for the group parameters g = g (g1, . . . , gr) and the right moving frame is
ultimately given as

g = ρ (z) . (7)
This group element clearly maps each z to the cross-section K since the group parameters were
chosen to do so. Note that r of the coordinates of g · z are specified by the cross-section, and so there
remain m − r “un-normalized” coordinates, namely wr+1 (g, z) , . . . , wm (g, z). If we substitute
the previously computed moving frame parameters g = ρ (z) into these coordinates, we obtain the
fundamental invariants, as stated in the following theorem.
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Theorem 3 Let g = ρ (z) be the moving frame solution to the normalization equations (6). Then

I1 (z) = wr+1 (ρ (z) , z) , . . . , Im−r (z) = wm (ρ (z) , z)

are a complete system of functionally independent invariants, called the fundamental invariants.

In this way, we have computed all of the coordinates of the map z 7→ ρ (z) · z as

ρ (z) · z = (c1, . . . , cr, I1 (z) , . . . , Im−r (z)) (8)

As the name implies, the fundamental invariants are very useful, as evidenced by the following
theorem.

Theorem 4 Any invariant I (z) can be uniquely expressed as a function

I (z) = H (I1 (z) , . . . , Im−r (z))

of the fundamental invariants.

Further, given any (scalar) function on our manifold, we can “invariantize” the function by composing
it with the moving frame map.

Definition 5 Given a function F : M → R, the invariantization of F with respect to right moving
frame g = ρ (z) is the invariant function I = ι (F ) defined as

I (z) = F (ρ (z) · z) , (9)

and is the unique invariant function that agrees with F on the cross-section.

As a result, invariantization does not affect invariants: I = ι (I). In fact, the expression of invariants
in terms of the fundamental invariants as in Theorem 4 can be accomplished from the following
Replacement Theorem.

Theorem 6 If F (z1, . . . , zm) is any function, then

ι [F (z1, . . . , zm)] = F (c1, . . . , cr, I1 (z) , . . . , Im−r (z)) .

In particular, if I (z1, . . . , zm) is any invariant, then

ι [I (z1, . . . , zm)] = I (c1, . . . , cr, I1 (z) , . . . , Im−r (z)) .

Thus, any invariant is easily rewritten in terms of the fundamental invariants, which serves to prove
Theorem 4.

A major difficulty arises when we attempt to apply this construction to some common group actions:
many group actions are not free, typically because the dimension of the manifold is less than the
dimension of the group. In these cases, the normalization equations (6) cannot be fully solved for
the group parameters. Examples of non-free group actions include the Euclidean and equi-affine
groups on R2. Theorem 1 does not allow direct construction of moving frames for such non-free
group actions. However, we may increase the dimension of the manifold by prolonging the group
action to the jet spaces; that is, we consider instead the prolonged group action on the jet space of
sufficiently high order n, which is coordinatized by the independent and dependent variables and
their derivatives up to order n:

G(n) : Jn (M,p)→ Jn (M,p) . (10)

(See below for explicit examples and [16] for the general theory.) Generally, if the action is prolonged
to a high enough order jet space, the action will become (locally) free, [16], and we can proceed
with our construction; we will have enough equations to solve system (6). This prolongation can be
accomplished by implicit differentiation, as demonstrated in the following section.

3 Equi-Affine Invariants for 2D Images

In this section we follow the second author’s note [17] to apply the above procedure to construct the
basic 2D equi-affine differential invariants in the context of 2D image transformations. In particular,
we are considering a grayscale image as a function u : Ω ⊂ R2 → R, and we seek the differential
invariants of this function under equi-affine transformations of the domain coordinates, (x, y) ∈ Ω.
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This expression in terms of image derivatives is useful since these can be computed (approximated)
directly from image data.

The equi-affine group SA(2) = SL(2) nR2 acts on plane coordinates (x, y) as(
z
w

)
=

(
α β
γ δ

)(
x
y

)
+

(
a
b

)
, (11)

subject to the unimodular constraint
αδ − βγ = 1

required so that the transformation is area-preserving. The general transformation in SA (2) contains
five independent parameters, and hence SA(2) is a five-dimensional Lie group. Note that these
transformations are always invertible, with inverse(

x
y

)
=

(
δ −β
−γ α

)(
z − a
w − b

)
. (12)

We let M = R3 with coordinates x, y, u, where the image function u depends on x, y and is not
affected by the equi-affine group transformations. Since dimG = 5 > dimM = 3, this group action
is not free. Hence, Theorem 1 does not apply to the action on M , and we must prolong the group
action to a higher-order jet space such that the action becomes free. For this example, we need only to
prolong to the second jet space, which has dimension 8, with coordinates x, y, u, ux, uy, uxx, uxy, uyy
corresponding to the derivatives of u = f(x, y) with respect to x, y up to order 2. (Although the first
order jet space has dimension 5, the fact that u is invariant means that the action is not free at order
1.) We expect 8− 5 = 3 independent differential invariants, one of which is u itself.

The prolonged action of the transformation indicates how the coordinate mapping (11) will affect the
image function u and its derivatives. Clearly, the function u is unchanged by a change of coordinates.
Applying the chain rule of multivariate calculus, we can use the transformation (11) to construct the
prolonged derivatives, that is, how the derivatives of the “transformed” function relate to the original
derivatives and the transformation parameters. For the x-coordinate,

uz = ux
∂x

∂z
+ uy

∂y

∂z
= δux − γuy. (13)

Similarly,
uw = −βux + αuy. (14)

More generally, this differentiation can be represented by the implicit differentiation operators

Dz = δDx − γDy, Dw = −βDx + αDy

where the D represent total differentiation operators with respect to their subscripts [16]. Continuing
in this fashion, we can construct the higher-order prolonged derivatives by repeated application of
these operators. The second-order derivatives are

uzz = δ2uxx − 2γδuxy + γ2uyy, (15)

uww = β2uxx − 2αβuxy + α2uyy, (16)
uzw = −βδuxx + (αδ + βγ)uxy − αγuyy. (17)

The next step in the procedure is to normalize by choosing a cross-section to the group orbits. This
amounts to equating several of expressions (11), (13–17) to constants. These constants must be chosen
such that the resulting system is solvable for the group parameters. Since SA(2) is five-dimensional,
we need to choose five constants. The cross-section we will use is

K = { z = w = uz = uzw = 0, uw = 1 } . (18)

as in [17].

Remark: Cross-sections are chosen so as to make the computations are easy as possible. Usually
this means setting coordinates to zero unless this is not possible. For example, here if we were to
set uw = 0 we would not have a valid cross-section, which we would immediately detect by being
unable to solve the resulting equations for the group parameters.

5



The (nonlinear) system (18) is readily solved for the group parameters. Notice that since we
normalized uz = 0 and uw = 1, we obtain

δ = γ
uy
ux

and α =
1 + βux
uy

, (19)

respectively. Combining these with the unimodularity constraint, αδ − βγ = 1 and then using
expression (19), we find

γ = ux and δ = uy. (20)
Substituting these relationships into the second-order equation uzw = 1, we can solve for β as

β =
uyuxy − uxuyy

u2xuyy − 2uxuyuxy + u2yuxx
. (21)

With this in hand, we substitute these expressions back into (19) to compute

α =
uyuxx − uxuxy

u2xuyy − 2uxuyuxy + u2yuxx
. (22)

The translation parameters a and b can be computed easily from the choices z = w = 0 as

a = −αx− βy and b = −γx− δy, (23)

where the values found for the other parameters may be substituted in. Taken together, these formulas
for the group parameters define the right moving frame ρ : J2(M, 2)→ SA(2) corresponding to our
cross-section K.

With the moving frame formulas in hand, we are now in a position to compute invariant objects. In
particular, given any function F of u and its derivatives, we can invariantize F by transforming it
under (11) and then replacing all instances of the group parameters by their moving frame expressions.
Some natural functions to transform are those used in the cross-section normalization. For example,
let F = ux and notice

ux 7−→ uz = δux − γuy.
Plugging in the above expressions,

ι (ux) = uyux − uxuy = 0. (24)

This is obvious, of course, since the expressions for the group parameters were chosen according to
the cross-section in which we insisted uz = 0. The invariantized forms of the functions used in the
cross-section normalization are constant, and are known as the phantom invariants, [15, 17].

More interestingly, Theorem 3 guarantees the existence of a set of fundamental second-order in-
variants. Consider the second derivatives uzz and uww which were not used in the normalization.
Invariantizing these, we obtain the well-known second order equi-affine differential invariants:

ι (uzz) = u2yuxx − 2uxuyuxy + u2xuyy = J, (25)

and

ι (uww) =
uxxuyy − u2xy

J
=
H

J
. (26)

According to Theorem 4, H and J form a complete system of second-order differential invariants. It
can be checked directly via chain rule that these are truly equi-affine invariant. These fundamental
equi-affine differential invariants were found in [14] where they were used to define an equi-affine
invariant gradient for edge detection in digital images.

Figure 2 demonstrates H and J computed on the image pair in Figure 1. These functions are
thresholded for clarity, but it can be observed that they are generally unchanged by the transformation.
Differences can be attributed to the fact that our derivative computations via finite differences are
computed on a Euclidean grid and are thus not equi-affine-invariant themselves.

Remark: Moving frames can be used to design group-invariant numerical approximations to differ-
ential invariants and invariant differential equations, as in [18, 19]. A future project is to develop
equi-affine finite difference approximations to the differential invariants, which would better serve to
localize invariant feature points.

Remark: Higher order differential invariants can be computed by either further prolongation and
invariantisation or by the method of invariant differentiation [9, 10].
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(c) (d)

Figure 2: Thresholded differential invariants H (top) and J (bottom) for the images in Figure 1.

3.1 The 3D Case

The extension to 3D image volumes has recently been investigated. Fully three-dimensional image
data has become more popular recently, for example, in the medical field. Here we describe the
computation of differential invariants of the equi-affine group acting on three-dimensional images.

The equi-affine group SA(3) = SL(3) nR3 acts on space coordinates (x, y, z) as(
u
v
w

)
=

(
α β γ
δ ε ζ
η θ λ

)(
x
y
z

)
+

(
a
b
c

)
= A

(
x
y
z

)
+ ~a, (27)

subject to the constraint det (A) = 1. Clearly, SA(3) is an 11-dimensional Lie group since there are
11 independent parameters. As in the two-dimensional case, this group action is certainly not free,
and we must prolong the group action to a higher-order jet space such that the action becomes free.
Interestingly, when we prolong to the second jet space, J2, the group action is still not free, even
though the dimensions satisfy

dim J2 = 13 > 11 = dim G.

Through our constructions, we will produce 3 functionally independent second-order differential
invariants, and this proves that the (generic) orbits are 10-dimensional, which precludes freeness of
the second order prolonged action.

We thus need to prolong the group action to the third-order jet space in order to find a usable
cross-section. The cross-section we will employ is

K = { x = y = z = 0, ux = uy = uxy = uyz = uzz = uzzz = 0, uz = uxz = 1 } (28)

Notice that the variables uxx and uyy are not involved in the normalization, and so the invariantization
of these quantities will give our desired fundamental second-order invariants.

7



The next step in the procedure would be to solve the system (28). In this case, this is a nonlinear
system of 11 equations, and computing the closed-form solution is not as straightforward as it was
in the 2D case. Instead, we will extend the 2D differential invariants H and J to the 3D case and
then apply the Replacement Theorem 6. Recall that this theorem allows us to express any invariant in
terms of the moving frame invariants. From the cross-section (28), we see

ι (∇u) =

(
0
0
1

)
and ι

(
∇2u

)
=

(
ι (uxx) 0 1

0 ι (uyy) 0
1 0 0

)
=

(
L 0 1
0 K 0
1 0 0

)
, (29)

where L = ι (uxx) and K = ι (uyy), not used in the normalization, are the fundamental invariants
we wish to determine.

Notice that the invariants H and J found in the 2D case can be written in more general forms:

H = uxxuyy − u2xy = det
(
∇2u

)
(30)

and
J

H
=

1

det (∇2u)

(
u2xuyy − 2uxuyuxy + u2yuxx

)
= ∇uT

(
∇2u

)−1∇u. (31)

If we consider now extending these to the 3D case, where u = u (x, y, z), the invariantization
results (29) give

H = ι
(
det
(
∇2u

))
= −K and J/H = ι

(
∇uT

(
∇2u

)−1∇u
)

= −L. (32)

That is, we can compute the fundamental invariants L and K for the 3D case directly as a generaliza-
tion of the 2D fundamental invariants J/H and H , respectively. Hence, the fundamental invariants
are now expressed as

ι (uxx) = ∇uT
(
∇2u

)−1∇u = J/H, ι (uyy) = det
(
∇2u

)
= H. (33)

which can be computed directly from the image.

In Figure 3, we show these invariants for a typical 3D image. Several slices of an image volume
are shown, along with the differential invariants computed on these slices. The exhibit similar
characteristics as in the 2D case, being clustered about edges and corners, and are equi-affine
invariant.

Notice that we do not need to compute any third-order differential invariants. However, these can be
generated from the second-order differential invariants by invariant differentiation, but are omitted
for brevity since the computations prove somewhat lengthy.

4 Application: 2D Feature Detection with Scale-Space

In this section, the differential invariants H and J are combined into an equi-affine-invariant function
which will serve as a feature detector. To make detection more robust to noise, we construct a
scale-space of our images. Unlike traditional methods such as SIFT [2], our scale-space is nonlinear,
affine-invariant, and based on a geometric curve evolution equation.

4.1 Affine-Invariant Gradient Magnitude

The equi-affine differential invariants computed above were used in [14] to construct an equi-affine-
invariant analog to the traditional Euclidean gradient magnitude, namely

∇aff u =

∣∣∣∣HJ
∣∣∣∣ . (34)

This function is slightly modified to avoid zero divisors:

∇̂aff u =

√
H2

J2 + 1
. (35)

An example of this function applied to the image pair in Figure 1 is shown in Figure 4. This function
was previously applied as an edge detector for an equi-affine-invariant active contour model since
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(g) (h) (i)

Figure 3: Thresholded differential invariants H (top) and J (bottom) for a 3D image of a human
brain: image slices (top row), H (middle row), and J (bottom row).

it gives high response along edges and corners, as is typical of the traditional Euclidean gradient
magnitude [14]. Indeed, the function can be seen to give large response along object boundaries.

Some example feature points identified as local maxima of the function (35) are shown in Figures 6, 7,
and 8. As expected, these points largely cluster around object boundaries. This poses a difficulty,
since edge points are not distinct and tend to foil matching algorithms. A further modification may
be made such that, for example, candidate feature points are only retained as true feature points if
image variation is significant in multiple directions.

4.2 Equi-Affine-Invariant Scale-Space

An important pre-processing step for feature detection is the construction of the Gaussian (or linear)
scale-space of the image intensity signal by convolution of the image with Gaussian kernels of
increasing standard deviation or, equivalently, evolution of the image via the linear diffusion equation

ut = ∆u, (36)
with initial condition u (x, 0) = u0 (x), where u0 : Ω ⊂ R2 → R is the original image, ∆ is the
usual Laplacian operator, and t is an artificial time parameter. The solution to this equation, u (x, t),
for x ∈ R2 and t ∈ [0,∞) is the Gaussian scale-space of the image [20]. This is a multi-scale
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(a) (b)

Figure 4: Equi-affine-invariant gradient magnitudes of the images in Figure 1, thresholded for clarity.

representation of the image, a one-parameter family of images u (·, t) with the characteristic that as t
is increased, noise and high-frequency features are removed and we obtain successively smoothed
versions of the original image data [21]. Feature points can then be extracted from this scale-space
image representation by finding local detector maxima in both space and scale [2]. By searching
across all scale-space, feature points can be identified at a variety of scales. A notable drawback of
this linear approach is that important image features such as edges and corners are blurred by the
smoothing, and so feature localization is lost.

Nonlinear scale-spaces have also been investigated for feature detection. The popular KAZE algorithm
[22] relies on the Perona-Malik anisotropic diffusion framework in which an image scale-space is
constructed as the solution to the nonlinear diffusion equation

Φt = div (g · ∇Φ) , (37)

where g is a conductance function which serves to slow diffusion near edges in an image [23]. This
image representation preserves edges better than its linear counterpart (36), which is obtained from
(37) when g ≡ 1.

For a fully equi-affine-invariant multi-scale feature detection pipeline, we require both an equi-affine-
invariant scale-space image representation and an equi-affine-invariant feature point detector. A fully
equi-affine-invariant scale-space for plane curves was developed in [24]. In this work, a closed plane
curve C0 : [0, 1]→ R2 evolves according to the partial differential equation (PDE)

∂C

∂t
= κ1/3N, (38)

where t is an artificial time parameter, κ is the Euclidean curvature of C, and N is the inward unit
normal vector to C. The solution to this equation is a one-parameter family of plane curves, C (·, t),
which evolve in an equi-affine-invariant manner to smooth out the curve. By evolving the PDE for
larger amount of time, we obtain successively smoothed versions of the curve.

This nonlinear curve smoothing equation gives rise to an equi-affine-invariant scale-space for images
through an application of the level set method for interface propagation [25]. Given image u, the
level contours of u, namely the sets

Kc =
{

(x, y) ∈ R2 | u (x, y) = c
}

(39)

for each c ∈ R, are made to evolve simultaneously according to (38). Notice that differentiating with
respect to t along the k-level contour we obtain

d

dt
u (x, y) = ut +∇u · Ct = 0, (40)

where subscripts indicate partial derivatives. If we let this curve evolve according to (38),

Ct = κ1/3N = −κ1/3 ∇u
‖∇u‖

, (41)
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where we used the fact that the gradient of a function is normal to the level curves of that function.
Combining equations (40) and (41), we obtain

ut = κ1/3 ‖∇u‖ . (42)

Lastly, we wish to write (42) entirely in terms of u so that it may be applied directly to images
without explicitly considering the level sets of the image. Hence, we require an expression for κ, the
Euclidean curvature of the level contour, in terms of the image function u. This is well known, and
can be shown to be

κ = div
(
∇u
‖∇u‖

)
=
u2xuyy − 2uxuyuxy + u2yuxx(

u2x + u2y
)3/2 . (43)

Substitution of this into (42) gives

ut =
(
u2xuyy − 2uxuyuxy + u2yuxx

)1/3
, (44)

which is the 2D equi-affine-invariant geometric heat equation, introduced in [14]. The equi-affine-
invariant scale space of 2D images is constructed by solving the PDE (44) with initial data u0, the
original image. As with the curve evolution equation (38), we obtain smoothed versions of the image
as we evolve in time. An example of this image smoothing is shown and compared with the linear
case in Figure 5. This evolution is truly equi-affine-invariant, in the sense that for two initial images
u1 (x) and u2 (x) related by an equi-affine transformation, the scale-space images at any time t > 0,
namely u1 (x, t) and u2 (x), are related by the same equi-affine transformation.

These invariant flows are examples of a more general framework, developed in [26, 27], for construct-
ing invariant curve and surface flows under general Lie groups. Of future interest, the curve flow
PDE (42) was extended in [26] to an equi-affine-invariant surface evolution equation

St = κ
1/4
+ ‖∇S‖ (45)

where S is the surface in 3D and κ+ = max {0, κ} is the (non-negative) mean curvature of S. Similar
to above, this equation generates an equi-affine-invariant scale-space for 3D images and provides
invariant smoothing with edge preservation.

In our feature detection pipeline, the equi-affine-invariant scale-space of an image is first computed
by solving (44) via finite differences. As in traditional linear methods, we sample the scale-space at
six or eight discrete times, and we search for candidate feature points over each sample image. In this
way, we capture details at several different scales and levels of smoothness.

4.3 Examples

Once feature points are detected in both images, SURF descriptors are computed for each feature
point [28]. These descriptors represent smoothed versions of the local Hessian matrix about the pixel
of interest, which are known to represent local shape. These vectors are not equi-affine-invariant, and
so we apply an affine region normalization procedure prior to descriptor computation [29]. Points
are matched between images by comparing their descriptor vectors. Different metrics can be used to
assess the similarity between features. For example, the traditional Euclidean difference between the
feature vectors is a simple choice, which we use here.

Once matches (correspondences) are found between the feature points, we may now align the point
sets. Traditionally, an affine transformation can be fit to the correspondences by the least-squares
method. However, this method considers every correspondence as equal. In reality, feature algorithms
often return erroneous matches, and so we need a fitting algorithm that is robust to mismatches. One
such robust estimation method is RANSAC for model fitting [30, 31]. In this algorithm, candidate
equi-affine transformation models are generated by selecting a minimal set of correspondences and
computing the transformation based on only these points. Then, the number of correspondences that
agree (within some threshold) with this model are counted and are called inliers. The entire process
is repeated many times with different randomly-selected sets of correspondences. Ultimately, the
generated transformation with the largest number of inliers is selected as the ideal model. In this
manner, outliers are filtered out, since models generated using outliers will not have a large number
of inliers.
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Example alignments of equi-affine transform image pairs are shown in Figures 6, 7, and 8. In Figure 6,
the computed transformation does a very good job of aligning the images; any differences between
the overlaid images are difficult to notice. This image has a lot of variety, and so we expect to do well
here.

The computed equi-affine transform in Figure 7 exhibits errors. This is likely due to the equi-affine-
invariant gradient detector exhibiting strong response along object edges. Edge points are difficult to
match since they often only vary in one direction, and so could be believably matched to any other
pixel along the same edge. The transform shown in Figure 8 suffers from the same limitations.

Another limitation of the method is that the differential invariant computations are only approxima-
tions via finite differences using traditional rectangular grids. As such, they are imperfect, and even a
close inspection of Figure 2 will reveal that the responses for the two images are not exactly equal up
to equi-affine transformation. This results in inaccurate localization of feature points, and compounds
the aforementioned issue with the edge points. A further investigation might pursue more accurate
(invariant) numerical derivative approximations, but these would slow the algorithm.

Despite these limitations, the algorithm performs well for using no prior information. The method
might be used as a rough initial registration, after which a more sophisticated deformable registration
might be applied. Registration could be improved by incorporating other detectors (for example
Harris corners [1]) which, though perhaps not equi-affine-invariant, may return points which could be
reliably matched.

5 Future Directions

We have computed the fundamental equi-affine differential invariants for 3D image volumes. A future
investigation will focus on the application of these invariants to an analogous invariant feature point
detection and registration pipeline.

Moving frames have been used to design group-invariant numerical approximations, as in [18,
19]. These methods may be applied to develop equi-affine finite difference approximations to the
differential invariants, which would better serve to localize invariant feature points.

The most interesting invariants for computer vision applications are for the 3D-to-2D projective group,
since these transformations model how the real world is projected onto the image plane of a camera.
Unfortunately, the projective group invariants are numerically difficult in that they involve derivatives
of orders higher than two, and this is prohibitive for applications in which speed is a priority. The
computation of projective invariants is being investigated. Related works connect the differential
invariants of 3D curves and their 2D projections through the method of moving frames [32, 33].

6 Conclusion

In this paper, we have shown how the equivariant method of moving frames is used to compute the
fundamental second-order differential invariants of the equi-affine group acting on scalar functions on
R2. These invariants were used to construct an equi-affine-invariant feature point detector function,
which was demonstrated to perform well at alignment of equi-affine-related image pairs. The
differential invariants for the equi-affine group acting on 3D image volumes are also computed, and
the extension of the 2D pipeline to 3D image volumes (e.g., MRI) is an interesting future direction.

Acknowledgments: This project was supported by AFOSR grant FA9550-17-1-0435 and a grant from
the National Institutes of Health R01-AG048769.
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Figure 5: First column: samples of linear (Gaussian) scale-space of an image. Second column:
samples of the equi-affine-invariant scale-space of the same image. Scale parameter t increases as we
travel down the columns.
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(a) (b)

(c)

Figure 6: Feature points and alignment of an equi-affine related image pair. A very good registration
is obtained as a result of the large amount of variety of neighborhoods about the feature points (e.g.,
across the body of the plane).
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(a) (b)

(c)

Figure 7: Feature points and alignment of an equi-affine related image pair. The homogeneity of the
background and the presence of unremarkable edges leads to an imperfect alignment.
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(a) (b)

(c)

Figure 8: Feature points and alignment of an equi-affine related image pair. The homogeneity of the
background and the presence of unremarkable edges leads to an imperfect alignment.
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