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Abstract

Maximum entropy methods have proven to be a powerful tool for

reconstructing data from incomplete measurements or in the presence

of noise. In this note, we apply the method to the reconstruction

computed tomography data derived from backprojection over a finite

set of angles. In this case, one derives quite simple formulae which

may be easily implemented on computer.
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1 Introduction

Computed tomography (CT) is the reconstruction of an image (2D or 3D)
from its line of plane integrals. It has been an essential method in diagnostic
radiology, and, with the advent of faster scanners of higher resolution, is
becoming very important in image guided surgery and therapy as well.
One of the key examples of this technique is when a given cross-section

of the body is scanned by an X-ray beam. The intensity loss (which is tissue
dependent) is then recorded by a detector, and then computer processed to
produce a two dimensional image. There are various possible geometries for
the scanners [3], which is important in CT imaging but which we will ignore
in this note. The point is that under generic conditions, one can exactly
reconstruct a 2D image from its 1D line integrals. The problem is of course
that in practice one does not have infinite number of 1D projections, but
only a finite number in any given scan. Hence the problem becomes how to
find the ”best” reconstruction in some suitable sense of the image from such
a finite set.
In this note, we propose the use of maximum entropy. Maximum entropy

methods have proven to be very important for the reconstruction of data from
incomplete measurements or in the presence of noise. For a very nice survey
of such results see the paper [1]. Here we apply maximum entropy methods
to the problem of reconstruction of images in computed tomography from a
finite set of angles. As we will show, in a number of key cases, one can derive
some exact formulas for the maximal entropy solution in this framework.
We now summarize the contents of this paper. In Section 2, we outline

the theory of the Radon transform, and show how it may be used for image
reconstruction. In Section 3, we discuss the methodology of maximal en-
tropy with constraints. Then in Section 4, we give our formulae for optimal
reconstruction using a finite set of angles in the maximal entropy sense. Here
consider the cases of a continous density over the image domain, continuous
densities for each pixel, and then the discrete case (sampled image and quan-
tized density function). Finally, in Section 5, we sketch some directions for
future research on image reconstruction for computerized tomography.
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2 The Radon Transform and Image Recon-

struction

We briefly discuss the Radon transform and its relationship to image re-
construction. The basic problem in CT (computed tomography) is how to
reconstruct a 2D image from a set of 1D projections taken along various lines
through the image.
More precisely, for ρ(x, y) the intensity map of 2D grey-level image, we

consider the integral along a line `θ which is distance s from the origin and
makes an angle θ with the x-axis:

g(θ, s) =
∫

`θ

ρ(x, y)d`θ (1)

=
∫

ρ(x, y)δ(x sin θ − y cos θ − s) dx dy.

This is precisely the Radon transform.
This leads to a simple algorithm for image reconstruction via the so-called

Fourier Slice Theorem. Namely, it is easy to show that the 1D Fourier tran-
sorm of function g(θ, s) is the 2D Fourier transform of the intensity function
ρ(x, y). Thus using the the inverse Fourier transform we can reconstruct the
image. This leads to a backprojection filter

Q(θ, ω) = det J(ω) G(θ, ω)

where J(ω) is the Jacobian of the change of coordinates from rectangular
to polar, and G(θ, ω) is the 2D Fourier transform of ρ(x, y) evaluated at
(ω sin θ,−ω cos θ). We then have the filtered backprojection formula:

ρ(x, y) =
1

4π2

∫

Q(θ, ω) exp(iω(x sin θ − y cos θ)) dω dθ.

Clearly, if one can compute the Radon transform over all angles θ one
can reconstruct the image. In practice of course one can only making the
computation only a finite sample of angles. The question we now address is
what is the “best” backprojection reconstruction over such a finite sample?
In the next sections, we give a notion of best reconstruction in information
theoretic terms using the notion of maximal entropy.
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3 Maximal Entropy with Constraints

We minimize the functional
∫

ρ(x, y) log ρ(x, y) dx dy,
∫

ρ(x, y) dx dy = 1, ρ(x, y) ≥ 0, (2)

subject to

g(θ, s) =
∫

`θ

ρ(x, y)d`θ =
∫

ρ(x, y) δ(x cos θ − y sin θ − s) dx dy.

This is equivalent to maximizing the entropy functional

−
∫

ρ(x, y) log ρ(x, y) dx dy.

Accordingly we use the method of Lagrange multipliers. Here ρ(x, y) is de-
fined on some subdomain Ω ⊂ R2 (the image domain), which we may take
without loss of generality to be R2.
We now define the integral operator from L2 to L2 by

A[ρ](θ, s) :=
∫

ρ(x, y) δ(x cos θ − y sin θ − s) dx dy.

Notice the with respect to the standard innner product on L2 we can compute
the adjoint operator as follows: For λ(θ, s) ∈ L2

〈A[ρ], λ〉 = 〈ρ,A∗[λ]〉

=
∫

λ

(

θ, s)(
∫

λ(θ, s) ρ(x, y) δ(x cos θ − y sin θ − s) dx dy
)

dθ ds

=
∫

ρ(x, y)
(
∫

λ(θ, s) δ(x cos θ − y sin θ − s) dθ ds
)

dx dy

from which we see that

A∗[λ](x, y) :=
∫

λ(θ, s) δ(x cos θ − y sin θ − s) dθ ds.

So we introduce the Lagrange multiplier λ(θ, s) and consider the mini-
mization of

∫

ρ(x, y) log ρ(x, y) dx dy − 〈λ,A[ρ]− g〉 (3)

=
∫

ρ(x, y) log ρ(x, y) dx dy − 〈λ,A[ρ]〉 − 〈λ, g〉 (4)

=
∫

ρ(x, y) log ρ(x, y) dx dy − 〈A∗[λ], ρ〉 − 〈λ, g〉. (5)
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Taking the first variation with respect to ρ yields at a critical point,

1 + log ρ(x, y) = A∗[λ](x, y). (6)

This is the key relationship for which we will give an explicit solution in the
finite dimensional case. Notice that (6) implies that for each v ∈ kerA,

〈1 + log ρ, v〉 = 0,

and so ∫

log ρ(x, y)v(x, y) dx dy = −
∫

v(x, y) dx dy.

4 Optimal Reconstruction Using Finite Set

of Angles

We consider the problem of best reconstructing an image in the maximal
entropy sense using finite set of directions. We work out explicitly the cases
for a continous density over the image domain, continuous densities for each
pixel, and, finally, the discrete case with sampled image and quantized density
function.

4.1 Continuous Density over the Image Domain

We can use the equation (6)

1 + log ρ(x, y) = A∗[λ](x, y)

to the case of continuous density and finite set of sample angles θ1, . . . , θn.
In this case, it is easy to see that

A∗[λ](x, y) =
n
∑

i=1

∫

λ(θi, s)δ(x cos θi − y sin θi − s) ds

=
n
∑

i=1

λ(θi, x cos θi − y sin θi) =
n
∑

i=1

λi,

where λi is a function supported on the line

Li := {y cos θi = −x sin θi}, i = 1, . . . , n.
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Thus from equation (6), we see that

ρ(x, y) =
n
∏

i

ai, (7)

where each ai is a function whose support is contained in Li for i = 1, . . . n.
Let us see how this argument looks for horizontal and vertical sections

through the image, i.e.,

∫

ρ(x, y) dy = u(x),
∫

ρ(x, y) dx = v(y).

Consistency (Fubini’s Theorem) implies

∫

u(x) dx =
∫

v(y) dy =
∫ ∫

ρ(x, y) dx dy = s.

Our argument above implies that the function ρ(x, y) has to be of “rank
one”, meaning it is separable

ρ(x, y) = a(x) b(y).

Plugging into the constraint equations says

a(x) =
c u(x)

s
, b(y) =

v(y)

c
,

for some constant c, and so

ρ(x, y) =
u(x) v(y)

s

is the maximal entropy solution.

4.2 Finite Number of Continuous Pixel Density Dis-

tributions

We are given ρi(x, y) ≥ 0, i = 1, . . . N , pixel density distributions

N
∑

i=1

ρi(x, y) = 1.
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We choose a finite sample of angles

θ =









θ1

...
θn









for distance s to get

A









ρ1

...
ρN









=









g(θ1, s)
...

g(θn, s)









. (8)

Therefore from equation (6), we see that








1 + log ρ1

...
1 + log ρN









= A∗









λ1

...
λn









.

We have of course N > n (the number of pixels is greater than the number
of measurements).
Note that

Image of A∗ = (Kernel of A)⊥.

Let v1, . . . , vr be a basis of kerA,

vj =









vj1
...

vjN









, j = 1, . . . , r.

Therefore

vj ·









1 + log ρ1

...
1 + log ρN









= 0, j = 1, . . . , r,

or equivalently

N
∑

k=1

vjk(1 + log ρk) = 0, j = 1, . . . , r.

We can compute that

−
N
∑

k=1

vjk =
N
∑

k=1

vjk log ρk = log
N
∏

k=1

ρ
vjk
k .
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Thus we derive the system of equations for ρi:

N
∏

k=1

ρ
vjk
k = exp

(

−
N
∑

k=1

vjk

)

, j = 1, . . . , r. (9)

We also have the n original (dependent) constraint equations for the densities
(8). Note that dim Image(A) = m ≤ n. Then m+ r = N . From these n+ r

equations we get m+r = N independent equations for the required densities
ρi, i = 1, . . . , N.

4.3 Discrete Density Distributions

Let
ρ = (ρij)

be an m× n matrix representing an image. We impose the constraint equa-
tions

n
∑

j=1

ρij = ui,
m
∑

i=1

ρij = vj,

corresponding to the row and column sums of ρ. Consistency requires

s =
m
∑

i=1

ui =
n
∑

j=1

vj =
n
∑

i,j=1

ρij.

We regard the constraint equations as a linear system Aρ = g of m + n

equations inmn unknowns. The elements of the kernel kerA of the coefficient
matrix can be identified with m× n matrices. A basis for the kernel is given
by the matrices vijkl with 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n, that have two entries
equal to +1 in positions ij and kl, two entries equal to −1 in positions il
and kj, and zeros elsewhere. Therefore, according to section 4, the maximal
entropy solution must satisfy the equations

ρijρkl

ρilρkj
= 1

or
ρijρkl − ρilρkj = 0

for all 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n. The latter system of equations says
that all 2× 2 minors of the matrix ρ vanish. Therefore

ρ = a bT
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is a matrix of rank 1, i.e.
ρij = aibj,

where a ∈ Rm and b ∈ Rn are column vectors. Substituting this formula
into the constraint equations, we easily find the solution

a =
c u

s
, b =

v

c

where c is an arbitrary scalar. Therefore

ρij =
ui vj

s
.

This gives the maximal entropy solution for a general m× n matrix.

5 Conclusions and Further Research

In this note, we have begun a rigorous study of the use of a maximal entropy
technique for the reconstruction of imagery in computerized tomography.
Maximal entropy gives a neat, elegant mathematical solution for this prob-
lem.
There are still a number of fundamental issues that must be studied. The

first is to describe the procedure for all the various key scanning geometries
[2]. This is essential in developing explicit computer algorithms. The next
step would be then to actually apply our method to real CT imagery. Ro-
bustness to noise artifacts will of course be a major point to be carefully
investigated.
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