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Abstract

We introduce and study a Euclidean-invariant distance histogram function for curves.
For a sufficiently regular plane curve, we prove that the cumulative distance histograms
based on discretizing the curve by either uniformly spaced or randomly chosen sam-
ple points converge to our histogram function. Robustness of the curve histogram
function under noise and pixelization of the curve is also established. We argue that
the histogram function serves as a simple, noise-resistant shape classifier for regular
curves under the Euclidean group of rigid motions. Extensions of the underlying ideas
to higher-dimensional submanifolds, as well as to area histogram functions invariant
under the group of planar area-preserving affine transformations, are discussed.

1 Introduction.

Given a finite set of points contained in Rn, equipped with the usual Euclidean metric,
consider the histogram formed by the mutual distances between all distinct pairs of points.
An interesting question, first studied in depth by Boutin and Kemper, [5, 6], is to what
extent the distance histogram uniquely determines the point set. Clearly, if the point set is
subjected to a rigid motion — a combination of translations, rotations, and reflections —
the interpoint distances will not change, and so two rigidly equivalent finite point sets have
identical distance histograms. However, there do exist sets that have identical histograms
but are not rigidly equivalent. (The reader new to the subject may enjoy trying to find an
example before proceeding further.) Nevertheless, Boutin and Kemper proved that, in a wide
range of situations, the set of such counterexamples is “small” — more precisely, it forms
an algebraic subvariety of lower dimension in the space of all point configurations. Thus,
one can say that, usually, the distance histogram uniquely determines a finite point set up
to rigid equivalence. This motivates the use of the distance histogram as a simple, robust,
noise-resistant signature that can be used to distinguish most rigidly inequivalent finite point
sets, particularly those that arise as landmark points on an object in a digital image.

The goal of this paper is to develop a comparable distance histogram function for continua
— specifically curves, surfaces, and higher-dimensional submanifolds of Euclidean spaces.
Most of the paper, including all proofs, will concentrate on the simplest scenario: a “fully

1Supported in part by NSF Grant DMS 08–07317.
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regular” bounded plane curve. Regularity, as defined below, does allow corners, and so, in
particular, includes polygons. We will approach this problem using the following strategy.
We first sample the curve using a finite number of points, and then compute the distance
histogram of the sampled point set. Stated loosely, our main result is that, as the curve
becomes more and more densely sampled, the appropriately scaled cumulative distance his-
tograms converge to an explicit function that we name the global curve histogram function.
Alternatively, computing the histogram of distances from a fixed point on the curve to the
sample points leads, in the limit, to a local curve histogram function, from which the global
version can be obtained by averaging over the curve. Convergence of both local and global
histograms is rigorously established, first, for uniformly sampled points that are separated
by a common arc length distance; second, for randomly sampled points; and, finally, for
“pixelized curves”, where we discretize using pixel coordinates in a digital representation of
the curve.

The global curve histogram function can be computed directly through an explicit arc
length integral. By construction, it is invariant under rigid motions. Hence, a basic question
arises: does the histogram function uniquely determine the curve up to rigid motion? While
there is ample evidence that, under suitably mild hypotheses, such a result is true, we have
been unable to establish a complete proof, and so must state it as an open conjecture. A proof
would imply that the global curve histogram function, as approximated by its sampled point
histograms, can be unambiguously employed as an elementary, readily computed classifier
for distinguishing shapes in digital images, and thus serve as a much simpler alternative to
the joint invariant signatures proposed in [17]. Extensions of these ideas to subsets of higher-
dimensional Euclidean spaces, or even general metric spaces, are immediate. Moreover,
convergence in sufficiently regular situations can be established along the same lines as the
planar curve case treated here.

Following Boutin and Kemper [5], we also consider area histograms formed by triangles
whose corners lie in a finite point set. In two dimensions, area histograms are invariant
under the group of equi-affine (meaning area-preserving affine) transformations. We exhibit
a limiting area histogram function for plane curves that is also equi-affine invariant, and
propose a similar conjecture. Generalizations to other transformation groups, e.g., similarity,
projective, conformal, etc., of interest in image processing and elsewhere, [11, 18], are worth
developing. The corresponding discrete histograms will be based on suitable joint invari-
ants — for example, area and volume cross ratios in the projective case — which can be
systematically classified by the equivariant method of moving frames, [17]. Analysis of the
corresponding limiting histograms will be developed elsewhere.

Our study of invariant histogram functions has been motivated in large part by the poten-
tial applications to object recognition, shape classification, and geometric modeling. Discrete
histograms appear in a broad range of powerful image processing algorithms: shape repre-
sentation and classification, [1, 25], image enhancement, [23, 25], the scale-invariant feature
transform (SIFT), [12, 20], object-based query methods, [24], and as integral invariants,
[13, 21]. They provide lower bounds for and hence establish stability of Gromov–Hausdorff
and Gromov–Wasserstein distances, underlying an emerging new approach to shape theory,
[14, 15]. Local distance histograms underly the method of shape contexts, [3]. The method
of shape distributions, [19] for distinguishing three-dimensional objects relies on a variety
of invariant histograms, including local and global distance histograms, based on the fact
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that objects with different Euclidean-invariant histograms cannot be rigidly equivalent; the
converse, however, was not addressed. Indeed, there are strong indications that the distance
histogram alone is insufficient to distinguish surfaces, although we do not know explicit ex-
amples of rigidly inequivalent surfaces that have identical distance histograms.

2 Distance Histograms.

Let us first review the results of Boutin and Kemper, [5, 6], on distance histograms defined
by finite point sets. For this purpose, our initial setting is a general metric space V , equipped
with a distance function d(z, w) ≥ 0, for z, w ∈ V , satisfying the usual axioms.

Definition 1. The distance histogram of a finite set of points P = {z1, . . . , zn} ⊂ V is the
function η = ηP : R+ → N defined by

η(r) = # { (i, j) | 1 ≤ i < j ≤ n, d(zi, zj) = r } . (2.1)

In this paper, we will restrict our attention to the simplest situation, when V = Rm is
endowed with the usual Euclidean metric, so d(z, w) = ‖ z − w ‖. We say that two subsets
P,Q ⊂ V are rigidly equivalent, written P ' Q, if we can obtain Q by applying an isometry
to P . In Euclidean geometry, isometries are rigid motions : the translations, rotations, and
reflections generating the Euclidean group, [27]. Clearly, any two rigidly equivalent finite
subsets have identical distance histograms. Boutin and Kemper’s main result is that the
converse is, in general, false, but is true for a broad range of generic point configurations.

Theorem 2. Let P(n) = P(n)(Rm) denote the space of finite (unordered) subsets P ⊂ Rm

of cardinality #P = n. If n ≤ 3 or n ≥ m + 2, then there is a Zariski dense open subset
R(n) ⊂ P(n) with the following property : if P ∈ R(n), then Q ∈ P(n) has the same distance
histograms, ηP = ηQ, if and only if the two point configurations are rigidly equivalent : P ' Q.

In other words, for the indicated ranges of n, unless the points are constrained by a certain
algebraic equation, and so are “non-generic”, the distance histogram uniquely determines the
point configuration up to a rigid motion. Interestingly, the simplest counterexample is not
provided by the corners of a regular polygon. For example, the corners of a unit square
have 4 side distances of 1 and 2 diagonal distances of

√
2, and so its distance histogram

has values η(1) = 4, η(
√

2 ) = 2, while η(r) = 0 for r 6= 1,
√

2. Moreover, this is the only
possible way to arrange four points with the given distance histogram. A simple nongeneric
configuration is provided by the corners of the kite and trapezoid quadrilaterals shown in
Figure 1. Although clearly not rigidly equivalent, both point configurations have the same

distance histogram, with nonzero values η(
√

2) = 2, η(2) = 1, η(
√

10 ) = 2, η(4) = 1. A
striking one-dimensional counterexample, discovered in [4], is provided by the two sets of
integers P = {0, 1, 4, 10, 12, 17} and Q = {0, 1, 8, 11, 13, 17}, which, as the reader can check,
have identical distance histograms, but are clearly not rigidly equivalent.

To proceed, it will be more convenient to introduce the (renormalized) cumulative distance
histogram

ΛP (r) =
1

n
+

2

n2

∑
s≤r

ηP (s) =
1

n2
# { (i, j) | d(zi, zj) ≤ r } , (2.2)
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Figure 1: Kite and Trapezoid.

where n = #P . We note that we can recover the usual distance histogram (2.1) via

η(r) = 1
2
n2
[

ΛP (r)− ΛP (r − δ)
]

for sufficiently small δ � 1. (2.3)

We further introduce a local distance histogram that counts the fraction of points in P that
are within a specified distance r of a given point z ∈ Rm:

λP (r, z) =
1

n
# { j | d(z, zj) ≤ r } =

1

n
#(P ∩ Br(z)), (2.4)

where

Br(z) = { v ∈ V | d(v, z) ≤ r } , Sr(z) = ∂Br(z) = { v ∈ V | d(v, z) = r } (2.5)

denote, respectively, the ball (in the plane, the disk) of radius r centered at the point z
and its bounding sphere (circle). Observe that we recover the cumulative histogram (2.2) by
averaging its localization:

ΛP (r) =
1

n

∑
z ∈P

λP (r, z) =
1

n2

∑
z ∈P

#(P ∩ Br(z)). (2.6)

In this paper, we are primarily interested in the case when the points lie on a curve. Until
the final section, we restrict our attention to plane curves: C ⊂ V = R2. A finite subset
P ⊂ C will be called a set of sample points on the curve. We will assume throughout that
the curve C is bounded, rectifiable, and, usually (although not necessarily), closed. Further
mild regularity conditions will be introduced below. We use z(s) to denote the arc length
parametrization of C, measured from some base point z(0) ∈ C. Let

l(C) =

∫
C

ds <∞ (2.7)

denote the curve’s length, which we always assume to be finite.
Our aim is to study the limiting behavior of the cumulative histograms constructed from

more and more densely chosen sample points. It turns out that, under reasonable assump-
tions, the discrete histograms converge, and the limiting function can be explicitly charac-
terized as follows.
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Definition 3. Given a curve C ⊂ V , the local distance histogram function based at a point
z ∈ V is

hC(r, z) =
l(C ∩ Br(z))

l(C)
, (2.8)

i.e., the fraction of the total length of the curve that is contributed by those parts contained
within the disk of radius r centered at z. The global distance histogram function of C is
obtained by averaging the local version over the curve:

HC(r) =
1

l(C)

∫
C

hC(r, z(s)) ds. (2.9)

Observe that both the local and global distance histogram functions have been normalized
to take values in the interval [0, 1]. The global function (2.9) is invariant under rigid motions,
and hence two curves that are rigidly equivalent have identical global histogram functions. An
interesting question, which we consider in some detail towards the end of the paper, is whether
the global histogram function uniquely characterizes the curve up to rigid equivalence.

Modulo the definition of “fully regular”, to be presented in Section 4, our main result
can be stated as follows. (See Section 5 for details on how “randomly chosen points” are
selected.)

Theorem 4. Let C be a regular plane curve. Then, for both uniformly spaced and randomly
chosen sample points P ⊂ C, the cumulative local and global histograms converge to their
continuous counterparts :

λP (r, z) −→ hC(r, z), ΛP (r) −→ HC(r), (2.10)

as the number of sample points goes to infinity.

3 Local Histogram Functions.

Our proof of Theorem 4 begins by establishing convergence of the local histograms. In this
section, we work under the assumption that the sample points are uniformly spaced with
respect to arc length along the curve.

Let us recall some basic terminology concerning plane curves, mostly taken from Guggen-
heimer’s book, [10]. We will assume throughout that C ⊂ R2 has a piecewise C2 arc length
parametrization z(s), where s belongs to a bounded closed interval [0, L ], with L = l(C) <∞
being its overall length. The curve is always assumed to be simple, meaning that there are
no self-intersections, and either closed, i.e., a Jordan curve, or what we will call a curve
segment that has distinct endpoints z(0) 6= z(L). By convention, we will also designate a
single point to be a segment of length 0. We use t(s) = z′(s) to denote the unit tangent, and1

κ(s) = z′(s) ∧ z′′(s) the signed curvature at the point z(s). Under our assumptions, both
t(s) and κ(s) have left- and right-hand limiting values at their finitely many discontinuities.

1The symbol ∧ denotes the two-dimensional cross product, which is the scalar v ∧ w = v1w2 − v2w1 for
v = (v1, v2), w = (w1, w2).
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A point z(s) ∈ C where either the tangent or curvature is not continuous will be referred to
as a corner.

A closed curve is called convex if it bounds a convex region in the plane. A curve segment
is convex if the region bounded by it and the straight line segment connecting its endpoints
is a convex region. A curve segment is called a spiral arc if the curvature function κ(s) is
continuous, strictly monotone2, and of one sign, i.e., either κ(s) ≥ 0 or κ(s) ≤ 0. Keep in
mind that, by strict monotonicity, κ(s) is only allowed to vanish at one of the endpoints of
the spiral arc.

Definition 5. A plane curve is called regular if it is piecewise C2 and the union of a finite
number of convex spiral arcs, circular arcs, and straight lines.

Thus, any regular curve has only finitely many corners, finitely many inflection points,
where the curvature has an isolated zero, and finitely many vertices, meaning points where
the curvature has a local maximum or minimum, but is not locally constant. In particular,
polygons are regular, as are piecewise circular curves, also known as biarcs, [16]. (But keep
in mind that our terminological convention is that polygons and biarcs have corners, not
vertices!) Examples of irregular curves include the graph of the infinitely oscillating function
y = x5 sin 1/x near x = 0, and the nonconvex spiral arc r = e−θ for 0 ≤ θ <∞, expressed in
polar coordinates.

Theorem 6. If C is a regular plane curve, then there is a positive integer mC such that the
curve’s intersection with any disk having center z ∈ C and radius r > 0, namely C ∩ Br(z),
consists of at most mC connected segments. The minimal value of mC will be called the
circular index of C.

Proof : This is an immediate consequence of a theorem of Vogt, [26] — see also [10, Exercise
3-3.11] — that states that a convex spiral arc and a circle intersect in at most 3 points. Thus,
mC ≤ 3j+ 2k, where j is the number of convex spiral arcs, while k is the number of circular
arcs and straight line segments needed to form C. Q.E.D.

Example 7. Let C be a rectangle. A disk Br(z) centered at a point z ∈ C will intersect the
rectangle in either one or two connected segments; see Figure 2. Thus, the circular index of
a rectangle is mC = 2.

For each positive integer n, let Pn ⊂ C denote a collection of uniform sample points
separated by a common arc length spacing ∆l = L/n. Observe that when C is a closed
curve, n equals the number of sample points, while when C is a nonclosed curve segment,
there are n+ 1 sample points including the two endpoints.

Proposition 8. Let C be a regular curve. Then, for any z ∈ C and r > 0, the corresponding
cumulative local histograms based on uniformly spaced sample points Pn ⊂ C converge:

λn(r, z) = λPn(r, z) −→ hC(r, z) as n→∞. (3.1)

2Guggenheimer, [10], only requires monotonicity, allowing spiral arcs to contain circular subarcs, which
we exclude. Our subsequent definition of regularity includes curves containing finitely many circular arcs and
straight line segments.

6



z z

Figure 2: Intersections of a Rectangle and a Disk.

Proof. We will prove convergence by establishing the bound

|hC(r, z)− λn(r, z) | ≤ mC ∆l

L
, (3.2)

where mC is the circular index of C.
By assumption, since z ∈ C, the intersection C ∩ Br(z) = S1 ∪ · · · ∪ Sk consists of k

connected segments whose endpoints lie on the bounding circle Sr(z), where 1 ≤ k ≤ mC .
Since the sample points are uniformly spaced by ∆l = L/n, the number of sample points ni
contained in an individual segment Si can be bounded by

(ni − 1) ∆l ≤ l(Si) < (ni + 1) ∆l.

Summing over all segments, and noting that

k∑
i=1

ni = #(Pn ∩ Br(z)) = nλn(r, z),
k∑
i=1

l(Si) = l(C ∩ Br(z)) = LhC(r, z),

we deduce that
Lλn(r, z)− k∆l ≤ LhC(r, z) < Lλn(r, z) + k∆l,

from which (3.2) follows. Q.E.D.

Example 9. Let C be a circle of radius 1. A set of n evenly spaced sample points Pn ⊂ C form
the corners of a regular n–gon. Using the identification R2 ' C, the cumulative histogram
of Pn is given by

λn(r, z) =
1

n
#
{
j
∣∣ 1 ≤ j ≤ n, | e2π i j/n − z | < r

}
.

On the other hand, the local histogram function (2.8) for a circle is easily found to have the
explicit form

hC(r, z) =
1

π
cos−1

(
1− 1

2
r2
)
, (3.3)
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Figure 3: Local Histogram Functions for a Circle.

which, by symmetry, is independent of the point z ∈ C.
In Figure 3, we plot the discrete cumulative histogram λn(r, z) for n = 20, along with the

bounds hC(r, z)±∆l/(2π) coming from (3.2), which reflect the fact that a circle has circular
index mC = 1. In the first plot, the center z coincides with a data point, while the second
takes z to be a distance .01 away, as measured along the circle. Observe that the discrete
histogram stays within the indicated bounds at all radii, in accordance with our result.

4 Global Histogram Functions.

We now turn our attention to the convergence of the global histograms. Again, we work
under the preceding regularity assumptions, and continue to focus our attention on the case
of uniformly spaced sample points Pn ⊂ C.

First, we observe that the local histogram function h(s) = hC(r, z(s)) is piecewise con-
tinuous as a function of s. Indeed, h(s) is continuous unless the circle of radius r centered
at z(s) contains one or more circular arcs that belong to C, in which case h(s) has a jump
discontinuity whose magnitude is the sum of the lengths of such arcs. By our assumption
of regularity, C contains only finitely many circular arcs, and so h(s) can have only finitely
many jump discontinuities. On the other hand, regularity implies that the global histogram
function is everywhere continuous.

Therefore, the global histogram integral (2.9) can be approximated by a Riemann sum3

based on the evenly spaced data points:

HC(r) =
1

L

∫
C

hC(r, z(s)) ds ≈ 1

L

∑
z∈Pn

hC(r, z) ∆l. (4.1)

Since C has finite length, ∆l = L/n→ 0 as n→∞, and so the Riemann sums converge. On
the other hand, (3.1) implies that the local histogram function can be approximated by the
(rescaled) cumulative point histogram λn(r, z), and hence we should be able to approximate

3When C is not closed, the right hand side is technically not a Riemann sum, since it includes contributions
from both endpoints. However, this does not affect the convergence. An alternative approach is to assign
the endpoints a weighting of 1/2 when forming the histogram functions.
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the Riemann sum in turn by

1

L

∑
z∈Pn

λn(r, z) ∆l =
1

n

∑
z∈Pn

λn(r, z) = Λn(r), (4.2)

using the first equality of (2.6). This will imply the global convergence result (2.9).
To bound the approximation error, we proceed as follows. Recall, [2], that the total

variation of a function f(x) on the interval [a, b ] is defined as

Vba[f ] = sup
n−1∑
i=1

| f(xi+1)− f(xi) | , (4.3)

where the supremum is taken over all subdivisions a ≤ x1 < x2 < · · · < xn ≤ b. If f(x)
is monotone, then Vba[f ] = | f(b)− f(a) |. If f(x) is continuous and piecewise continuously

differentiable, then Vba[f ] =
∫ b
a
| f ′(x) | dx is the integral of the absolute value of its derivative.

A function is said to have bounded variation if Vba[f ] < ∞. In particular, all piecewise C1

functions are of bounded variation, as are all functions that are monotone on a finite number
of subintervals. Indeed, any function of bounded variation is the difference of two monotone
functions. The cumulative property states that if a ≤ b ≤ c, then Vca[f ] = Vba[f ] + Vcb [f ].

Curiously, we were unable to find an exact statement and proof in the literature of the
following simple result concerning the numerical approximation of the integral of a function
of bounded variation.

Theorem 10. If f(x) is of bounded variation on [a, b ], then the difference between the integral∫ b
a
f(x) dx and any approximating Riemann sum is bounded in absolute value by Vba[f ] ∆x,

where ∆x is the maximal subinterval length appearing in the Riemann sum.

Proof : Let a ≤ x1 < x2 < · · · < xn ≤ b be a subdivision, and

R =
n−1∑
i=1

f(yi) ∆xi

a corresponding Riemann sum, where xi ≤ yi ≤ xi+1 and ∆xi = xi+1 − xi. On the i-th
subinterval [xi, xi+1 ], let x+

i and x−i be the points at which f(x) achieves, respectively, its
maximum and minimum values. Then

f(x−i ) ∆xi ≤
∫ xi+1

xi

f(x) dx ≤ f(x+
i ) ∆xi,

and hence ∣∣∣∣ ∫ xi+1

xi

f(x) dx− f(yi) ∆xi

∣∣∣∣ ≤ | f(x?i )− f(yi) | ∆xi ≤ Vxi+1
xi

[f ] ∆xi,

where x?i = x+
i or x−i is the point that maximizes | f(x)− f(yi) | on the interval. Therefore,

by the cumulative property of the total variation,∣∣∣∣∣
∫ b

a

f(x) dx−
n−1∑
i=1

f(yi) ∆xi

∣∣∣∣∣ ≤
n−1∑
i=1

Vxi+1
xi

[f ] ∆xi ≤ Vba[f ] ∆x,

completing the proof. Q.E.D.
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Given a C1 curve C, the parallel curve Πr(C) at distance r > 0 is defined as the locus
of points that are a distance r away from C, as measured along the normal direction, [10].
Since there are two normal directions at each point, Πr(C) consists of two connected, not
necessarily simple, curves. If C is only piecewise C1, then Πr(C) is defined as the union of
parallel curves at distance r to each C1 segment combined with the circular arcs of radius r
centered at each corner that connect the endpoints of the parallel curve segments.

Definition 11. A regular curve C is called fully regular if, for each r > 0, the intersection
C ∩ Πr(C) has finitely many connected components.

Not all regular curves are fully regular. For example, it is possible to slightly deform part
of a circle of radius 1

2
r to produce a smooth convex curve that intersects its parallel curve

of distance r infinitely often. On the other hand, most regular curves, including all polygons
and biarcs, are fully regular.

Theorem 12. If C is a fully regular curve, then its local histogram function h(s) = hC(r, z(s))
is piecewise continuous and of bounded variation on [0, L ].

This result is a consequence of the following formula for the derivative of the local his-
togram function.

Proposition 13. Let z = z(s) ∈ C, and assume that h(s) = hC(r, z(s)) is continuous at s.
Let y1 = z(s1), . . . , yk = z(sk) denote the points of intersection of C with the circle Sr(z) of
radius r centered at z. For each j = 1, . . . , k, let lj denote the line through z and yj. Let
θj denote the angle between lj and the tangent vector t(s) = z′(s) to C at z in the direction
of increasing s. Let ϕj denote the angle between the line lj and the tangent vector (not
necessarily in the direction of increasing s) to C at yj that points outside the circle. Then

dh

ds
=

d

ds
hC(r, z(s)) =

1

L

k∑
j=1

cos θj
cosϕj

. (4.4)

Proof : Referring to Figure 4, note first that cosϕj = 0 if and only if the curve C is tangent
to the circle Sr(z) at the intersection point yj. In this case, the line lj is normal to C at yj,
and hence z ∈ Πr(C), the parallel curve at distance r. We exclude these configurations from
the remainder of the argument.

The calculation is simplified by identifying R2 ' C, so z = x+ i y. We place z = z(s) = 0
at the origin, with the tangent vector to C at z in the direction of the positive x axis. Let
0 < ∆s� 1. To first order, z(s+ ∆s) = ∆s+ · · · . Moreover, as ∆s varies, the intersection
point yj = z(sj) = rje

i θj moves to a point

wj = z(sj + ∆sj) = yj + e i (θj−ϕj) ∆sj + · · · = e i θj (rj + e− iϕj ∆sj) + · · ·

on the circle Sr(z(s+ ∆s)), satisfying the algebraic equation

r2 = |wj − z(s+ ∆s) |2 = | e i θj (rj + e− iϕj ∆sj)−∆s |2 + · · ·
= | rj + e− iϕj ∆sj − e− i θj ∆sj |2 + · · ·
= (rj + ∆sj cosϕj −∆s cos θj)

2 + (−∆sj sinϕj −∆s sin θj)
2 + · · ·

= r2 − 2r∆s cos θj + 2r∆sj cosϕj + · · · .
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Figure 4: Calculating the Derivative of the Distance Function.

Solving, to leading order,
∆sj
∆s

=
cos θj
cosϕj

+ · · · .

Taking the limit as ∆s→ 0, summing over the points yj in the intersection, and then dividing
by L completes the proof. Q.E.D.

Proof of Theorem 12 : As a consequence of (4.4), the derivative h′(s) is defined and nonzero,
unless either z = z(s) is a corner of C, or cosϕj = 0, or cos θj = 0. As noted above, the
second possibility means that the point z ∈ Πr(C). The third possibility means that the point
yj ∈ C ∩ Sr(z) lies a distance r away from z ∈ C, as measured along the normal direction at
z, and hence yj ∈ Πr(C). Thus, by our fully regular hypothesis, h′(s) is defined and nonzero
except on a finite number of points and/or connected subintervals. We conclude that h(s) is
piecewise continuous, piecewise monotone, and hence of bounded variation. Q.E.D.

Let V = VL0 [h] denote the total variation of h(s) = hC(r, z(s)). Theorem 10 implies that
the error in the Riemann sum approximation (4.1) can be bounded by∣∣∣∣∣ 1

n

∑
z∈Pn

hC(r, z)− 1

L

∫
C

hC(r, z(s))ds

∣∣∣∣∣ ≤ V ∆l.

On the other hand, (3.2) and the triangle inequality imply that∣∣∣∣∣ 1

n

∑
z∈Pn

λn(r, z)− 1

n

∑
z∈Pn

hC(r, z)

∣∣∣∣∣ ≤ mC ∆l

L
. (4.5)
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Combining these two estimates, we find that the difference between the continuous and
discrete global histogram functions can be bounded by

|Λn(r)−HC(r) | =

∣∣∣∣∣ 1

n

∑
z∈Pn

λn(r, z)− 1

L

∫
C

hC(r, z(s))ds

∣∣∣∣∣ ≤ mC + V

L
∆l. (4.6)

Thus, under our hypotheses, the convergence to the global histogram function is first order
in the interpoint spacing ∆l.

Example 14. Let C be a unit square, so that L = l(C) = 4. Measuring the arc length s
along the square starting at a corner, the local histogram function hr(s) = hC(r, z(s)) can be
explicitly constructed using elementary geometry, distinguishing several different configura-
tions. For 0 ≤ s ≤ 1

2
,

hr(s)=



1
2
r, 0 ≤ r ≤ s,

1
4
s+ 1

4
r + 1

4

√
r2 − s2 , s ≤ r ≤ 1− s,

1
4

+ 1
4

√
r2 − s2 + 1

4

√
r2 − (1− s)2 , 1− s ≤ r ≤ 1,

1
4

+ 1
2

√
r2 − 1 + 1

4

√
r2 − s2 + 1

4

√
r2 − (1− s)2 , 1 ≤ r ≤

√
1 + s2 ,

1
4
s+ 1

2
+ 1

4

√
r2 − 1 + 1

4

√
r2 − (1− s)2 ,

√
1 + s2 ≤ r ≤

√
1 + (1− s)2 ,

1,
√

1 + (1− s)2 ≤ r,

(4.7)

while other values follow from the fact that hr(s) is both 1–periodic and even:

hr(1− s) = hr(s) = hr(1 + s).

0.5 1 1.5 2

0.5

1

1.5

2

Figure 5: Total Variation of the Local Histogram Function of a Square.

Integration around the square with respect to arc length produces the global histogram
function

HC(r) =


1
2
r +

(
1
8
π − 1

4

)
r2, r < 1,

1
2
− 1

4
r2 +

√
r2 − 1 + 1

4
r2
(

sin−1 1
r − cos−1 1

r

)
, 1 ≤ r <

√
2 ,

1, r ≥
√

2 .

(4.8)
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It is interesting that, while the local histogram function has six intervals with different ana-
lytical formulas, the global function has only three.

The total variation of hr(s) is obtained by integrating the absolute value of its derivative.
In Figure 5, we plot the variation as a function of r. (The little dip after r = .5 is genuine, and
the reader may enjoy seeking a geometrical explanation.) The maximal variation, Vmax = 2,
occurs at r =

√
5/2, where h√5/2(s) varies monotonically from 3

4
to 1 and then back four times

as we go around the square. On the other hand, according to Example 7, mC = 2. Thus, an
overall bound (4.6) for the error in λP (r, z), valid for all r, is (mC + Vmax) ∆l/L = 5

2
∆l.
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Figure 6: Global Histogram Bounds for a Square.

Figure 6 plots the global cumulative histograms of a square based on n = 20 evenly spaced
points, along with the bounds 1

4
∆l and 1

2
∆l. Observe that the discrete histogram stays

within 1
4

∆l of the curve histogram, a tighter bound than we are able to derive analytically.
Interestingly, a similarly tight bound appears to hold in all the examples we have looked at
so far.

5 Random Point Distributions.

We have thus far proved, under suitable regularity hypotheses, convergence of both the local
and global cumulative histograms constructed from uniformly spaced sample points along the
curve. However, in practice, it may be difficult to ensure precise uniform spacing of the sample
points. For example, if C is an ellipse, then this would require evaluating n elliptic integrals.
Hence, for practical shape analysis, we need to examine more general methods of histogram
creation. In this section, we analyze the case of sample points Pn = {z1, . . . , zn} ⊂ C that
are randomly chosen with respect to the uniform arc length distribution.

In this case, we view the cumulative local histogram λn(r, z) as a random variable repre-
senting the fraction of the points zi that lie within a circle of radius r centered at the point
z. Indeed, we can write

λn(r, z) =
1

n

n∑
i=1

σi(r, z),
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where each σi(r, z) is a random variable that is 1 if d(zi, z) ≤ r and 0 otherwise. Then, for
each i = 1, . . . , n,

E [σi(r, z) ] = Prob{d(zi, z) ≤ r} =
l(C ∩ Br(z))

L
= hC(r, z),

and hence

E [λn(r, z) ] =
1

n

n∑
i=1

E[σi(r, z) ] = hC(r, z). (5.1)

Similarly, to construct a statistical variable whose expectation approximates the global
histogram function HC(r), consider

Λn(r) =
1

n2

n∑
i=1

#(P ∩ Br(zi)) =
1

n
+

1

n2

∑
i

∑
j 6=i

σi,j(r),

where σi,j(r) is a random variable that is 1 if d(zi, z) ≤ r and 0 otherwise. As above, its
expected value is

E [σi,j(r) ] = Prob{d(zi, zj) ≤ r}

=
1

L

∫ L

0

Prob{d(zi, z(s)) ≤ r} ds =
1

L

∫ L

0

hC(r, z(s)) ds = HC(r).

Therefore,

E[Λn(r) ] =
1

n
+

1

n2

∑
i

∑
j 6=i

E[σi,j(r) ] =
1

n
+
n− 1

n
HC(r). (5.2)

Thus, the expected value of Λn(r) tends to the global histogram function HC(r) as n→∞.
Next we compute the variances of the local and global histogram functions. First,

Var[λn(r, z) ] = E [λn(r, z)2 ]− E [λn(r, z) ]2 =
1

n2

∑
i,j

Ei,j,

where
Ei,j = E [σi(r, z)σj(r, z) ]− E [σi(r, z) ]E [σj(r, z) ].

On the other hand, if i 6= j, then σi(r, z) and σj(r, z) are independent random variables,
so the expected value of their product is the product of their expected values, and hence
Ei,j = 0. If i = j, then

Ei,i = Var[σi(r, z)2 ] = E [σi(r, z)2 ]− E [σi(r, z) ]2 = hC(r, z)− hC(r, z)2,

since σi(r, z) represents an indicator function. We conclude that variance of the local his-
togram is

Var[λn(r, z) ] =
hC(r, z)− hC(r, z)2

n
. (5.3)

Similarly, to compute the global histogram variance,

Var[Λn(r) ] = E [Λn(r)2 ]− E [Λn(r) ]2 =
1

n4

 ∑
i,i′,j,j′

all distinct

Ei,i′,j,j′ +
∑

i,i′,j 6=i,j′ 6=i′
not all distinct

Ei,i′,i,j′

 ,
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where
Ei,i′,j,j′ = E [σi,j(r)σi′,j′(r) ]− E [σi,j(r) ]E [σi′,j′(r) ].

As above, the terms in the first summation are all 0, whereas those in the second are bounded.
As there are O (n3 ) of the latter, we conclude that

Var[Λn(r) ] = O
(
n−1

)
. (5.4)

Thus, Λn(r) converges to HC(r) in the sense that, for any given value of r, the probability
of Λn(r) lying in any interval around HC(r) approaches 1 as n→∞.

Although this probabilistic calculation yields a less stringent error bound in (5.4), it
nevertheless provides a practical method for calculating HC(r) in cases when the extraction
of evenly spaced sample points is problematic. However, we still face several important
issues. We assumed that P was a set of randomly selected points on the curve, but we
did not define how such points should be chosen. Since the calculation of Λn(r) essentially
reduces to evaluating (2.9), we require the points to be sampled uniformly with respect to
arc length. One way to accomplish this in practice is to select points using any convenient
parameterization of the curve, but weighting the sample in favor of the points with higher
curvature using, for instance, rejection sampling, [8].
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Figure 7: Comparison of approximate histograms of a rectangle.

Example 15. Let C be a 2× 3 rectangle. In Figure 7, we graph its global curve histogram
function HC(r) in black and the approximate histograms Λn(r), based on n = 20 sample
points, in gray. The first plot is for evenly distributed points, in which the approximation
remains within ∆l of the continuous histogram function, while the second plot is for randomly
generated points, in which the approximation stays within 2 ∆l. Thus, both methods work
as advertised.

6 Pixelization.

One of our motivating goals has been potential applications of distance histograms to the
recognition and classification of objects in digitized images. In such situations, it is often
more convenient to use the locations of the pixels that the curve passes through to represent
the sample points on the shape boundary. This results in two potential errors in the ensuing
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calculations. First, the normalization can change, because different pixels will not contain
the same length of curve. As long as the pixel width w is small, namely w < 1/κmax, where
κmax denotes the maximum curvature on that part of the curve, and the curve intersects
the pixel in only one connected segment, then the longest possible curve length is that of
a quarter circle, namely, 1

2
πw. The shortest possible length depends on the method used

to select pixels. In the extreme case, we include all pixels containing an arbitrarily short
curve segment — even if only a single point — and the potential variance in normalization is
1
2
πw. However, if the pixelization is very fine then the number of pixels selected to represent

the curve will be small compared to the total number of image pixels, and the relative pixel
normalizations should not have a noticeable effect.

Second, by using the coordinates of the center of a pixel containing a point, we introduce
a possible offset to the location of the sample point of up to a distance

δ =
w√
2
.

Thus, for every distance we calculate, we introduce an additional uncertainty of 2 δ =
√

2w.
If we approximate hC(r, z) ≈ λn(r, z), then, even with no statistical error, we still have an
uncertainty range of

λn(r − 2 δ, z) < hC(r, z) < λn(r + 2 δ, z).

Since both h and λn are monotonically increasing as functions of r, the resulting contribution
to the error can thus be bounded by

|λn(r + 2 δ, z)− λn(r − 2 δ, z) | ≈ 4 δ

∣∣∣∣ ∂λn∂r (r, z)

∣∣∣∣ = 2
√

2w

∣∣∣∣ ∂λn∂r (r, z)

∣∣∣∣ for δ � 1.

Thus, the error in the pixelized approximation will be proportional to the pixel width. This
error will not necessarily go to zero as n→∞. However, if we assume that the length of the
curve is L finite, then, according to Theorem 18 below, we can bound the number of pixels
that the curve passes through. Therefore, assuming h(r) is piecewise C1 and its derivative
∂h/∂r is bounded in absolute value, then, as n → ∞, the pixel width w → 0, and so the
local histogram function λn(r, z) still converges for pixelized images. Similarly, since the
global histogram function HC(r) is just the average of hC(r, z) along the curve, its pixelized
approximation will also converge.

This property is especially important in terms of resistance to noise. For curvature-
based techniques of object recognition, as in [7], noise causes large fluctuations in the local
curvature-based invariants, which interferes with their use in shape recognition. The distance
histogram is largely unaffected by such local noise, and, as we increase the number of points,
the effect disappears.

Example 16. Let C be a 2×3 rectangle, set at angle 15◦ with respect to the coordinate axes.
(Results for other angles, even when aligned with the axes, are very similar.) In Figure 7, we
compare the graphs of the global histogram HC(r) (in black) with the discrete approximations
Λn(r) for n = 20 points, using evenly distributed sample points (green), random points (blue),
and pixelized points (orange). The evenly distributed case provides the closest approximation
to the curve, and remains within ∆l of the curve histogram function. Both the randomly
generated points and the pixelized randomly generated points stay within 2 ∆l, and so all
three methods work as advertised.
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Figure 8: Comparison of Approximate Histograms of a Rectangle.

Example 17. Let us also recheck that the global distance histograms are indeed invariant
under Euclidean transformations. Since they preserve distances, the net effect of a rigid
motion is to resample the curve. In the random and pixelized cases, this effect is eliminated
by selecting the points randomly, but in the uniformly distributed case, selecting different
points could affect λn(r).

In Figure 9, we plot the approximate histograms for a square calculated using different
offsets for the points. The first graph uses n = 20 sample points, while the second has n = 50.
The individual graphs are clearly different, but as we increase the number of points, they
are converging to the same global histogram function (4.8), in accordance with our general
results.
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Figure 9: Approximate Histograms of a Square.

The one remaining point is to show how to bound the number of pixels that the curve
passes through. Surprisingly, we were unable to find a statement of such a result in the
literature, and therefore provide a direct proof. By convention, a pixel is a closed square box,
and so two neighboring pixels will have a nonempty intersection along a common bounding
line segment. As before, a pixel is counted even if the curve only touches one point.

Theorem 18. Let C be a rectifiable closed curve of length L = l(C) ≥ 3
√

2w. Then C
passes through at most n = 3L/(

√
2w) square pixels of pixel width w.

Proof : By a simple rescaling and translation, we can assume without loss of generality that
the pixels have unit width, w = 1, with corners on the integer lattice Z2 ⊂ R2.
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We first remark that the bound given in the statement of the theorem is sharp. It
is achieved when, for instance, C is a rectangle whose sides are at a 45◦ angle with the
horizontal, and whose corners lie on the pixel lattice. For example, the rectangle in Figure
10 has length L = 14

√
2 , and goes through n = 42 = 3L/

√
2 pixels. Even if one disallows

pixels that meet the curve in a single point, one can slightly perturb such rectangles to obtain
curves that come arbitrarily close to the pixel bound.

Figure 10: Pixels Containing a Rectangle.

Secondly, if C passes through ≤ 9 pixels, then the bound is trivially satisfied due to the
restriction on its length. Indeed, by our convention, an individual pixel boundary, which
forms a unit square of length 4, passes through all 9 > 12/

√
2 pixels, and hence the stated

bound is not valid for curves of shorter length.
Keep in mind that we are dealing with a closed curve. If C is entirely contained within

a horizontal two pixel strip Ĥj = { (x, y) | j − 1 < y < j + 1 } for some j ∈ Z, then it passes
through at most L+4 pixels — the maximum being approached by curves that go arbitrarily
closely around the horizontal line segment { (x, j) | i ≤ x ≤ i + L/2 } for L an even integer.
Since L > 4, the number of pixels the segment passes through is bounded by L+4 < 3L/

√
2,

proving the theorem in this simple case. Thus, for the remainder of the proof, we may assume
C passes through at least 10 pixels, and is not contained in a two pixel strip.

Our strategy is to break C up into a finite collection of nonoverlapping segments, prove
an appropriate bound on the number of pixels each segment passes through, and then succes-
sively merge adjacent segments while maintaining the bound. To each such segment S ⊂ C,
let p(S) denote the collection of pixels that it passes through. We split p(S) = q(S) ∪ e(S)
into two disjoint subsets, where e(S) consists of some of the pixels that contain the endpoints
of S, satisfying

2 ≤ # e(S) ≤ 4, while # q(S) ≤ 3 l(S)√
2

. (6.1)

The initial segments will all be of the form S = E0 ∪ F ∪ E1, where F is curve
segment that, apart from its endpoints, lies strictly within a horizontal one pixel strip
Hj = { (x, y) | j < y < j + 1 } for some j ∈ Z, and such that one of its endpoints lies on one
bounding horizontal line y = j, while the other endpoint lies on the other line y = j + 1,
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while E0 and E1 are closed straight line segments contained, respectively, in the horizontal
lines y = j and y = j + 1, each sharing a common endpoint with F . We allow E0 and/or E1

to consist of just a single endpoint of S. We define e(S) to be the set of pixels that contain
the endpoints of S and lie outside the strip Hj, while q(S) = p(S) \ e(S). Note that each
endpoint contributes either two or one pixels to e(S), depending on whether it is a lattice
point or not, and so 2 ≤ # e(S) ≤ 4. A representative example can be seen in Figure 11:
F is the curved segment, E0 is the right hand endpoint, while E1 is the line segment on the
left. The 14 pixels in q(S) are lightly shaded, while the 3 in e(S) are darker.

Figure 11: Segment Contained in a Horizontal Strip.

In all situations l(F ) ≥ 1. If F passes through k ≥ 2 pixels in the strip, then l(F ) ≥√
1 + (k − 2)2, with the minimal length corresponding to a straight line whose ends are

lattice points on opposite sides of the strip. Therefore,

k ≤ k l(F )√
1 + (k − 2)2

≤ 3 l(F )√
2

,

where the maximum is attained when k = 3. (Keep in mind that k ≥ 2 is an integer. In
Figure 11, k = 8.) The bound trivially holds when k = 1. Moreover, it’s not hard to see
that, by construction, the total number of pixels in q(C) is bounded by

# q(S) ≤ k + 2 l(E0) + 2 l(E1) ≤
3√
2

[
l(E0) + l(E1) + l(F )

]
=

3 l(S)√
2

.

There are several cases, depending on whether the endpoints of S and F lie on the lattice or
not; details are left to the reader.

Now, let’s see what happens when we merge two adjacent segments that individually
satisfy (6.1), forming a larger segment S = S1 ∪S2 (C. The common endpoint of S1 and S2

(which is no longer an endpoint of S) is in either one or two pixels that belong to both e(S1)
and e(S2), the number depending on whether or not it is a lattice point. If S1 and S2 are
associated with different horizontal strips, e.g., Hj and Hj+1, then these one or two pixels
already appear in q(S) = q(S1)∪ q(S2), and so the bound (6.1) is an immediate consequence
of the bounds for S1 and S2. On the other hand, if S1 and S2 are associated with the same
horizontal strip, then the one or two pixels in both e(S1) and e(S2) that contain the common
endpoint do not appear in q(S1) or q(S2). However, there are an equal number of pixels that
are in both q(S1) and q(S2), and so #

(
e(S1) ∩ e(S2)

)
= #

(
q(S1) ∩ q(S2)

)
. Thus, setting

q(S) = q(S1) ∪ q(S2) ∪
(
e(S1) ∩ e(S2)

)
, we conclude that # q(S) ≤ # q(S1) + # q(S2), and

hence (6.1) also holds for such combined segments.
We continue to merge segments in this fashion. The only detail is in the final merger

to form C = Ŝ ∪ S̃, when the segments Ŝ and S̃ have two common endpoints. If the
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endpoints are more than a single pixel apart, then the merger process can be completed
without interference, and the result follows. (This is where the argument breaks down for a
pixel boundary square.) Our initial assumptions on C guarantee that we can suitably order
the merging process to ensure that this is the case. Q.E.D.

Remark: For a nonclosed curve, the same argument implies the number of pixels is
bounded by n = 4 + 3L/(

√
2w). Again, the bound is tight, as can be seen by deleting a

suitable part of the rectangle in Figure 10.

7 Histogram–Based Shape Comparison.

In this section, we discuss the question of whether distance histograms can be used, both
practically and theoretically, as a means of distinguishing shapes up to rigid motion. We
begin with the practical aspects. As we know, if two curves have different global histogram
functions, they cannot be rigidly equivalent. For curves arising from digital images, we will
approximate the global histogram function by its discrete counterpart based on a reasonably
dense sampling of the curve. Since the error in the approximations is proportional to ∆l =
L/n, we will calculate the average difference between two histogram plots, normalized with
respect to ∆l. Our working hypothesis is that differences less than 1 represent histogram
approximations that cannot be distinguished.

Tables 1 and 2 show these values for a few elementary shapes. We use random point
distributions4 to illustrate that identical parameterizations do not necessarily give identical
sample histograms. This is also evident from the fact that the matrix is not symmetric —
different random sample points were chosen for each trial. However, symmetrically placed
entries generally correlate highly, indicating that the comparison is working as intended.

Table 1 is based on discretizing using only n = 20 points. As we see, this is too small a
sample set to be able to unambiguously distinguish the shapes. Indeed, the 2 × 3 rectangle
and the star appear more similar to each other than they are to a second randomized version
of themselves. On the other hand, for the star and the circle, the value of 5.39 is reasonably
strong evidence that they are not rigidly equivalent.

Shape (a) (b) (c) (d) (e) (f)
(a) triangle .35 1.16 1.46 4.20 2.36 3.16
(b) square 1.45 .51 3.63 2.46 1.59 2.89
(c) circle 3.65 4.17 .67 5.87 3.14 5.39
(d) 2× 3 rectangle 3.85 1.95 4.82 1.78 1.85 .72
(e) 1× 3 rectangle 1.10 1.86 4.02 2.31 1.25 1.93
(f) star 3.90 3.80 5.75 .72 2.55 1.22

Table 1: 20–point Comparison Matrix.

As we increase the number of sample points, the computation time increases (in proportion

4More precisely, we first select n uniformly distributed random numbers si ∈ [0, L ], i = 1, . . . , n, and
then take the corresponding n random points z(si) ∈ C based on a given arc length parametrization. In our
experiment, the shapes are sufficiently simple that the explicit arc length parametrization is known.
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to n2 for calculating the histograms and n for comparing them), but our ability to differentiate
shapes increases as well. In Table 2, based on n = 500 sample points, it is now clear that
none of the shapes are rigidly equivalent to any of the others. The value of 4 for comparing
the 1 × 3 rectangle to itself is slightly high, but it is still significantly less than any of the
values for comparing two different shapes.

Shape (a) (b) (c) (d) (e) (f)
(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8
(b) square 28.2 .5 81.2 73.6 34.8 72.1
(c) circle 66.9 79.6 .5 137.0 89.2 138.0
(d) 2× 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9
(e) 1× 3 rectangle 31.8 36.7 83.7 55.7 4.0 46.5
(f) star 81.0 74.3 139.0 9.3 60.5 .9

Table 2: 500–point Comparison Matrix.

Our application of curve histogram functions as a means of classifying shapes up to rigid
motion inspires us to ask whether all shapes can be thus distinguished. As we saw, while
almost all finite sets of points in Euclidean space can be reconstructed, up to rigid motion,
from the distances between them, there are counterexamples, including the kite and trapezoid
shown in Figure 1, whose distance histograms are identical. However, the curve histograms
HC(r) based on their outer polygons can easily be distinguished. In Figure 12, we plot the
approximate global histograms Λn(r) based on n = 20 uniformly spaced sample points. The
kite is shown in blue and the trapezoid is shown in purple.
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Figure 12: Curve Histograms for the Kite and Trapezoid.

While we have as yet been unable to establish a complete proof, there is a variety of
credible evidence in favor of the following:

Conjecture: Two regular plane curves C and C̃ have identical global histogram func-
tions, so HC(r) = H eC(r) for all r ≥ 0, if and only if they are rigidly equivalent: C ' C̃.

One evident proof strategy would be to approximate the histograms by sampling and
then apply the convergence result of Theorem 4. If one could prove that the sample points
do not, at least when taken sufficiently densely along the curve, lie in the exceptional set of
Theorem 2, then our conjecture would follow.
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A second strategy is based on our observation that, even when the corners of a polygon lie
in the exceptional set, the associated curve histogram still appears to uniquely characterize
it. Indeed, if one can prove that the global distance histogram of a simple closed polygon (as
opposed to the discrete histogram based on its corners) uniquely characterizes it up to rigid
motion, then our conjecture for general curves would follow by suitably approximating them
by their interpolating polygons.

To this end, let K be a simple closed polygon of length L = l(K) all of whose angles
are obtuse, as would be the case with a sufficiently densely sample polygon of a smooth
curve. Let l? be the minimum side length, and d? be the minimum distance between any two
nonadjacent sides. Set m? = min{ l?, d? }. Then any disk Br(z) centered at a point z ∈ K of
radius r with 0 < r < 1

2
m? intersects K in either one or two sides, the latter possibility only

occurring when z is within a distance r of the nearest corner. Let z1, . . . , zn be the corners
of K, and let θj >

1
2
π denote the interior angle at zj — see Figure 13.

zzj xj

yj θj

r

r

Figure 13: Intersection of a Polygon and a Disk.

Then, for r > 0 sufficiently small, and all z ∈ K,

LhK(r, z) = l(K ∩Br(z)) =

{
xj + yj + r, xj = d(z, zj) < r,

2r, otherwise,
(7.1)

where, by the Law of Cosines, yj solves the quadratic equation

y2
j − 2xj yj cos θj + x2

j = r2, with xj = d(z, zj) < r. (7.2)

Thus, for small r, the global histogram function (2.9) for such an “obtuse polygon” takes
the form

HK(r) =
1

L

∮
K

hK(r, z(s)) ds =
2r

L
− 2nr2

L2
+

2

L2

n∑
j=1

Ψ(θj, r), (7.3)

where

Ψ(θj, r) =

∫ r

0

[
x+ yj(x)

]
dx, (7.4)

with yj = yj(x) for x = xj implicitly defined by (7.2). (There is, in fact, an explicit, but not
very enlightening, formula for this integral in terms of elementary functions.)
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Observe that (7.3) is a symmetric function of the polygonal angles θ1, . . . , θn, i.e., it is not
affected by permutations thereof. Moreover, for distinct angles, the integrals Ψ(θj, r) can be
shown to be linearly independent functions of r. This implies that one can recover the set
of polygonal angles {θ1, . . . , θn} from knowledge of the global histogram function HK(r) for
small r. In other words, the polygon’s global histogram function does determine its angles
up to a permutation.

The strategy for continuing a possible proof would be to gradually increase the size of
r. Since, for small r, the histogram function has prescribed the angles, its form is fixed
for all r ≤ 1

2
m?. For r > 1

2
m?, the functional form will change, and this will serve to

characterize m?, the minimal side length or distance between non-adjacent sides. Proceeding
in this fashion, as r gradually increases, more and more sides of the polygon can be covered
by a disk of that radius, providing more and more geometric information about the polygon
from the resulting histogram. This points the way to a proof of our polygonal histogram
conjecture, and hence the full curve conjecture. However, the details in such a proof strategy
appear to be quite intricate.

Barring a resolution of the histogram conjecture, let us discuss what properties of the
curve C can be gleaned from its histogram. First of all, the curve’s diameter is equal to
the minimal value of r for which HC(r) = 1. Secondly, values where the derivative of the
histogram function is very large usually have geometric significance. In the square histogram
in Figure 6, this occurs at r = 1. In polygons, such values often correspond to distances
between parallel sides, because, at such a distance, the disk centered on one of the parallel
sides suddenly begins to contain points on the opposite side. For shapes with multiple pairs
of parallel sides, we can see this effect at several values of r — such as when r = 2 and r = 3
in the case of a 2 × 3 rectangle shown in Figure 7. The magnitude of the effect depends on
the overall length of the parallel sides; for instance, the slope at r = 3 is larger than that at
r = 2. However, not every value where the derivative is large is the result of such parallel
sides. The histogram function of the Boutin–Kemper kite shown in Figure 12 has two visible
jumps, but the kite has no parallel sides.

In a more theoretical direction, let us compute the Taylor expansion of the global his-
togram function HC(r) at r = 0, assuming that C is sufficiently smooth. The coefficients
in the expansion will provide Euclidean-invariant quantities associated with a smooth curve.
We begin by constructing the Taylor series of the local histogram function hC(r, z) based at
a point z ∈ C. To expedite the analysis, we apply a suitable rigid motion to move the curve
into a “normal form” so that z is at the origin, and the tangent at z is horizontal. Thus, in a
neighborhood of z = (0, 0), the curve is the graph of a function y = y(x) with y(0) = 0 and
y′(0) = 0. As a consequence of the moving frame recurrence formulae developed in [9] — or
working by direct analysis — we can write down the following Taylor expansion.

Lemma 19. Under the above assumptions,

y = 1
2
κx2 + 1

6
κsx

3 + 1
24

(κss + 3κ3)x4 + 1
120

(κsss + 19κ2κs)x
5 + · · · , (7.5)

where κ, κs, κss, . . . denote, respectively, the curvature and its successive arc length derivatives
evaluated at z = (0, 0).

We use this formula to find a Taylor expansion for the local histogram function hC(r, z) at
r = 0. Assume that r is small. The curve (7.5) will intersect the circle of radius r centered at
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the origin at two points z± = (x±, y±) = (x±, y(x±)), which are the solutions to the equation

x2 + y(x)2 = r2.

Substituting the expansion (7.5) and solving the resulting series equation for x, we find

x+ = r − 1
8
κ2r3 − 1

12
κκsr

4 −
(

1
48
κκss + 1

72
κ2
s + 1

128
κ4
)
r5 + · · · ,

x− = −r + 1
8
κ2r3 − 1

12
κκsr

4 +
(

1
48
κκss + 1

72
κ2
s + 1

128
κ4
)
r5 + · · · .

(7.6)

Thus, again using (7.5),

LhC(r, z) =

∫ x+

x−

√
1 + y′(x)2 dx

=

∫ x+

x−

√
1 + κ2x2 + κκsx3 +

(
1
3
κκss + 1

4
κ2
s + κ4

)
x4 + · · · dx

=

∫ x+

x−

[
1 + 1

2
κ2x2 + 1

2
κκsx

3 +
(

1
6
κκss + 1

8
κ2
s + 3

8
κ4
)
x4 + · · ·

]
dx

=
[
x+ + 1

6
κ2x3

+ + 1
8
κκsx

4
+ +

(
1
30
κκss + 1

40
κ2
s + 3

40
κ4
)
x5

+ + · · ·
]
−

−
[
x− + 1

6
κ2x3

− + 1
8
κκsx

4
− +

(
1
30
κκss + 1

40
κ2
s + 3

40
κ4
)
x5
− + · · ·

]
.

We now substitute (7.6) to produce

LhC(r, z) =
(
r + 1

24
κ2 r3 + 1

24
κκs r

4 +
(

1
80
κκss + 1

90
κ2
s + 3

640
κ4
)
r5 + · · ·

)
−

−
(
−r − 1

24
κ2 r3 + 1

24
κκs r

4 −
(

1
80
κκss + 1

90
κ2
s + 3

640
κ4
)
r5 + · · ·

)
= 2r + 1

12
κ2 r3 +

(
1
40
κκss + 1

45
κ2
s + 3

320
κ4
)
r5 + · · · .

(7.7)

Invariance of both sides of this formula under rigid motions implies that the formula holds
as written at any point z ∈ C.

To obtain the Taylor expansion of the global histogram function, we substitute (7.7) back
into (2.9), resulting in

HC(r) =
2r

L
+

r3

12L2

∫
C

κ2 ds+
r5

5L2

∫
C

(
1
8
κκss + 1

9
κ2
s + 3

64
κ4
)
ds+ · · · . (7.8)

If C is a closed curve, then we can integrate by parts to simplify the final integral:

HC(r) =
2r

L
+

r3

12L2

∮
C

κ2 ds+
r5

40L2

∮
C

(
3
8
κ4 − 1

9
κ2
s

)
ds+ · · · . (7.9)

Each integral appearing in the Taylor expansion is uniquely determined by the histogram
function. An interesting question is whether the resulting collection of integral moments,
depending on curvature and its arc length derivatives, uniquely prescribes the curve up to
rigid motion. If so, this would establish the validity of our conjecture for smooth curves.
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8 Extensions.

There are a number of interesting directions in which this research program can be extended.
The most obvious is to apply it to more substantial practical problems in order to gauge
whether histogram-based methods can compete with other algorithms for object recognition
and classification, particularly in noisy images. In this direction, the method of shape dis-
tributions, [19], touted for its invariance, simplicity, and robustness, employs a variety of
discrete local and invariant global histograms for distinguishing three-dimensional objects,
including distances between points, areas of triangles, volumes of tetrahedra, and angles
between segments. An unanswered question is to what extent the corresponding limiting his-
tograms can actually distinguish inequivalent objects, under the appropriate transformation
group: Euclidean, equi-affine, conformal, etc.

8.1 Higher Dimensions

Extending our analysis to objects in three or more dimensions requires minimal change to
the methodology. For instance, local and global histogram functions of space curves C ⊂ R3

are defined by simply replacing the disk of radius r by the solid ball of that radius in the
formulas (2.8), (2.9). For example, consider the saddle-like curve parametrized by

z(t) = (cos t, sin t, cos 2 t), 0 ≤ t ≤ 2π. (8.1)
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Figure 14: Approximate Distance Histograms for the Three-Dimensional Saddle Curve.

In Figure 14, we plot the discrete approximations Λn(r) to the curve histogram. The blue
plot corresponds to n = 10 points, purple to n = 20, and yellow n = 30. Note that the
discrete cumulative histograms appear to converge as n→∞.

We can also apply our histogram analysis to two-dimensional surfaces in three-dimensional
space. We consider the case of piecewise smooth surfaces S ⊂ R3 with finite surface area.
Let Pn ⊂ S be a set of n sample points that are (approximately) uniformly distributed with
respect to surface area. We retain the meaning of λn(r, z) as the proportion of points within
a distance r of the point z, (2.4), and Λn(r) as its average, (2.6). By adapting our proof of
Theorem 4 and assuming sufficient regularity of the surface, one can demonstrate that the
discrete cumulative histograms λn(r, z) aand Λn(r) converge, as n→∞, to the corresponding
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local and global surface histogram functions

hS(r, z) =
area(S ∩ Br(z))

area(S)
, HS(r) =

1

area(S)

∫∫
S

hS(r, z) dS. (8.2)

The convergence of the discrete histograms is illustrated in Figure 15. Plots of the discrete
approximations Λn(r) for the unit sphere S2 = {‖ z ‖ = 1} ⊂ R3 are shown, with n = 10
in blue, n = 30 in purple, and n = 100 in yellow. The global histograms are evidently
converging as n→∞, albeit at a slower rate than was the case with curves.
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Figure 15: Approximate Distance Histograms of a Sphere.

Future work includes rigorously establishing a convergence theorem for surfaces and
higher-dimensional submanifolds of Euclidean space along the lines of Theorem 4. Invariance
under rigid motions immediately implies that surfaces with distinct distance histograms can-
not be rigidly equivalent. However, it seems unlikely that distance histograms alone suffice
to distinguish inequivalent surfaces, and extensions to distance histograms involving more
than two points, e.g., that are formed from the side lengths of sampled triangles, are under
active investigation. An interesting question is whether distance histograms can be used to
distinguish subsets of differing dimensions. Or, to state this another way, can one determine
the dimension of a subset from some innate property of its distance histogram?

8.2 Area Histograms

In image processing applications, the invariance of objects under the equi-affine group, con-
sisting of all area- or volume-preserving affine transformations of Rn, is of great importance,
[7, 11, 18]. Planar equi-affine (area-preserving) transformations can be viewed as approxi-
mations to projective transformations, valid for moderately tilted objects. For example, a
round plate viewed at an angle has an elliptical outline, which can be obtained from a circle
by an equi-affine transformation. The basic planar equi-affine joint invariant is the area of
a triangle, and hence the histogram formed by the areas of triangles formed by all triples in
a finite point configuration is invariant under the equi-affine group. Similar to Theorem 2,
Boutin and Kemper, [5] also proved that, in most situations, generic planar point configura-
tions are uniquely determined, up to equi-affine transformations, by their area histograms,
but there is a lower-dimensional algebraic subvariety of exceptional configurations.
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For us, the key question is convergence of the cumulative area histogram based on densely
sample points on a plane curve. To define the continuous area histogram, we first note that
the distance histogram function (2.9) can be expressed in the alternative form

HC(r) =
1

L2

∫
C

∫
C

χr(d(z(s), z(s′)) ds ds′, (8.3)

where

χr(t) =

{
1, t ≤ r,

0, t > r,

denotes the indicator or characteristic function for the disk of radius r. By analogy, we define
the area histogram function

AC(r) =
1

L3

∮
C

∮
C

∮
C

χr(Area(z(ŝ), z(ŝ′), z(ŝ′′)) dŝ dŝ′ dŝ′′, (8.4)

where ŝ, ŝ′, ŝ′′ now refer to the equi-affine arc length of the curve, [10], while L =
∮
C
dŝ is its

total equi-affine arc length. (In local coordinates, if the curve is the graph of a function y(x)
then the equi-affine arc length element is given by dŝ = 3

√
y′′(x) dx.)

The corresponding approximate cumulative area histogram is

AP (r) =
1

n(n− 1)(n− 2)

∑
z 6=z′ 6=z′′∈P

χr(Area(z, z′, z′′)), (8.5)

which, under suitable equi-affine regularity conditions on the curve, and provided the points
are uniformly or randomly distributed with respect to equi-affine arc length, can be shown to
converge to the area histogram function (8.4). (Details will appear elsewhere.) We calculate
and plot this quantity, and observe that it does converge to the area histogram function (8.4)
as n → ∞. Figure 16 illustrates the convergence for a circle, taking n = 10 points in blue,
n = 20 in purple, and n = 30 in yellow.
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Figure 16: Area Histogram of a Circle.

Let us end by illustrating the equi-affine invariance of the curve area histogram function.
Since rectangles of the same area are equivalent under an equi-affine transformation, they
have identical area histograms. In Figure 17, we plot area histograms for a 2 × 2 square in
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Figure 17: Area Histograms of Affine–Equivalent Rectangles.

blue, a 1× 4 rectangle in purple, and a .5× 8 rectangle in yellow, using n = 30 sample points
in each case. As expected, the graphs are quite close.
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