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Abstract. The orthogonal projection of a closed, bounded, strictly convex body in
three-dimensional space onto a two-dimensional plane defines a closed strictly convex curve
known as an outline of the body. The collection of all such outlines traces out a three-
dimensional submanifold, that we call the total outline, of a certain vector bundle over
two-dimensional projective space. We analyze the induced action of the three-dimensional
Euclidean group of rigid motions (translations and rotations) on the total outline and use
the method of equivariant moving frames to explicitly determine the fundamental first
order differential invariant and the three invariant differential operators. We further prove
that the entire differential invariant algebra is generated by the fundamental invariant
through invariant differentiation. This enables us to construct a Euclidean-invariant outline
signature that uniquely characterizes the total outline and hence the body up to Euclidean
motion.

1. Introduction.

Constructing a three-dimensional model of a solid body through scanning — includ-
ing computed tomography (CT), photogrammetry, laser scanning, structured light scan-
ning, etc. — is time-consuming, expensive, and only feasible for certain types of objects,
e.g., there are evident size and composition constraints. On the other hand, taking two-
dimensional photos is, especially with the advent of universally accessible digital cam-
eras and mobile phones, easy, almost cost-free, and achievable for well nigh any visible
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three-dimensional object. Moreover, since human and animal visual systems are extremely
good at reconstructing (internal) three-dimensional models from their retinal image data,
one can envision designing automatic computer-based algorithms that mimic construct-
ing such models from a sufficient number of camera views. Indeed, there is an extensive
literature on the reconstruction of solid bodies from two-dimensional images; see, for ex-
ample, [8, 9, 12, 13, 14, 19, 21, 22, 23, 26, 37, 38, 39, 40, 41]; methods employed include
photometric stereo (shape from shading), structure from motion, epipolar geometry, and
stereoscopy.

In general, one must take into account the camera calibration. Here, we restrict our
attention to the simplest scenario: a camera with infinite focal length. In this case, a
“photo” of the object is obtained by orthogonal projection onto the camera image plane.
The projection of a solid three-dimensional body produces a planar region, whose boundary
is known as its outline, apparent contour , profile, or silhouette, [8, 9, 13, 22, 23]. Thus, the
most basic reconstruction problem is to determine the bounding surface of the body from
the complete collection of such outlines. The complications are evident. First, the shape
of the outline varies with the viewing plane, although parallel planes produce identical
projections (or, more accurately, parallel projections) and so we need only consider the
planes passing through the origin, i.e., the Grassmannian of two-dimensional subspaces
of R3, [42], which, by identifying each plane with its normal line, is isomorphic to the
projective space RP

2. Secondly, if the body is not convex, then there will be occlusions
and interesting singularities of the outlines. Here, though, we will further simplify the
problem by assuming the body is strictly convex and compact, although, since our results
are local, they do apply, with appropriate restrictions, to the visible parts of non-convex
bodies. Convexity and smoothness of the boundary of the body implies that each outline
is a simple closed curve that is smooth and strictly convex, and can be identified as the
projection of a simple closed smooth plane curve contained in the body’s surface, known
as the rim, [23], or contour generator , [9]. See [13, 14, 37] for methods that enable one,
in favorable situations, to reconstruct a body from its outlines.

Subjecting a body to a rigid motion — a combination of rotations and translations†

— does not alter its overall shape, and hence the reconstruction should take such transfor-
mations into account. Let SE(3) denote the Euclidean group consisting of all rigid motions
of three-dimensional space. The equivalence problem for surfaces, that is characterizing
when one can be mapped to the other by a rigid motion, can be solved, using the Car-
tan equivalence method, [6, 28, 31, 35], by constructing a suitable differential invariant
signature, which, in this case, is parametrized by the basic differential invariants: mean
and Gauss curvature and their invariant derivatives. The question to be addressed here is
how rigid motions affect the outlines of bodies, to construct the corresponding differential
invariants, and thereby prescribe an outline signature that will characterize the outlines
of (locally) rigidly equivalent bodies. Practical implementations and applications of these
results to object recognition and symmetry detection will be the subject of future research.
We remark that there is now a wide range of applications of other types of differential in-

† In this paper, we will ignore the action of reflections, although our analysis can be readily
adapted to include them.
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variant signatures in image processing, including cancer detection, [16, 17], the reassembly
of broken objects, such as jigsaw puzzles, [20], egg shells, [15], bones and lithics, [1], as
well as in classical invariant theory, [3, 29], and algebraic geometry, [10, 25].

Remark : In [4, 5, 24], the behavior of Euclidean invariants of space curves under
projection was analyzed. However, these results are not directly applicable to the present
problem because the outlines of a solid body are not projections of a unique space curve.

We begin our analysis, in Section 2, by presenting the basic geometry of convex bodies
in three-dimensional space and their projected outlines. The collection of all such outlines
forms a three-dimensional submanifold of a certain vector bundle over projective space, that
we call the total outline, and we are interested in how the Euclidean group acts thereon.
The method of normal forms will enable us to derive and generalize a striking formula
due to Koenderink, [22], relating the curvature of the outline curve to the curvature of
the normal curve in the camera direction and the Gaussian curvature of the surface. In
Section 3 we apply the method of equivariant moving frames to determine the differential
invariants and invariant differential operators for the total outline of the body. Finally,
in Section 4, we prove that the outline differential invariant algebra is generated by a
single first order differential invariant, which enables us to prescribe an outline signature
for a generic convex body, parametrized by its invariant derivatives of order at most 2.
Appendix A contains a brief introduction to the method of equivariant moving frames,
while Appendix B summarizes the normal form theory of plane and space curves, and of
surfaces in three-dimensional space under the Euclidean group.

2. Outlines and Rims.

We begin by describing the geometry underlying the orthogonal projection of a solid
body onto planes, which serves to model taking photographs at various angles with a cam-
era that has infinite focal length. We use the standard Euclidean metric and associated dot
product throughout. The relevant transformation group is the six-dimensional Euclidean
group SE(3) = SO(3)⋉ R

3 consisting of orientation-preserving rigid motions — rotations
and translations:

p 7−→ R (p+ a), R ∈ SO(3), a ∈ R
3, p ∈ R

3, (2.1)

where, in order to simplify later calculations, we act by first translating and then rotating.

Let RP2 be the real projective plane consisting of all lines passing through the origin
in R

3. Each line ℓ ∈ RP
2 defines a plane ℓ⊥ = {w ∈ R

3 |w · ℓ = 0 } through the origin,
namely its orthogonal complement, and vice versa. The tautological bundle K → RP

2 is
defined so that the fiber of K over a line ℓ ∈ RP

2 is the line itself: K|ℓ = ℓ. It is not hard
to prove that K is an analytic line bundle, [42]. We let K⊥ → RP

2 be its dual, the normal
plane bundle, whose fiber over a line ℓ ∈ RP

2 is its orthogonal complement: K⊥|ℓ = ℓ⊥.
Observe that the vector bundle K⊥ has two-dimensional fibers and hence forms a four-
dimensional analytic manifold, which we will refer to as the outline bundle, for reasons that
will shortly become clear. We can alternatively identify K⊥ as the tautological bundle over
the Grassmannian of two-dimensional subspaces of R3.
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We introduce the following coordinate systems on the outline bundle K⊥. On RP
2,

we can employ homogeneous coordinates [α, β, γ ], where (α, β, γ) ∈ R
3 \ {0} is a nonzero

vector in the direction of a line ℓ, and we identify [α, β, γ ] ≃ λ [α, β, γ ] whenever λ 6=
0. Alternatively, let P

0
= {γ = 0} denote the αβ plane. On the dense open subset

U
0
= {ℓ 6∈ P

0
} ≃ R

2 ⊂ RP
2, we employ inhomogeneous coordinates (p, q) = (α/γ, β/γ) to

represent the line [p, q, 1] ≃ [α, β, γ ].

On the Cartesian product RP
2 × R

3, given a line ℓ with homogeneous coordinates
[α, β, γ ], a point w = (ξ, η, ζ) ∈ ℓ⊥ if and only if αξ + βη + γ ζ = 0. The normal plane
bundle can thus be identified with the algebraic codimension 1 submanifold

K⊥ = { [α, β, γ; ξ, η, ζ ] | αξ + βη + γ ζ = 0 } ⊂ RP
2 × R

3. (2.2)

Over the open dense subset U
0
⊂ RP

2 coordinatized by (p, q) as above, we can identify its
restriction as the graph of a simple bilinear function:

K⊥ | U
0
= { (p, q; ξ, η, ζ) | ζ = −pξ − q η } ⊂ R

5. (2.3)

We will employ the local coordinates (p, q; ξ, η) on K⊥ to perform our calculations.

Let Ω ⊂ R
3 be a convex three-dimensional body , meaning that it is compact, with

non-empty interior and smooth (C2) boundary S = ∂Ω. We will assume that Ω is strictly
convex , by which we mean that the principal curvatures (relative to the outwards normal)
of S are everywhere strictly positive. Given ℓ ∈ RP

2, let πℓ:R
3 → ℓ⊥ denote the orthogonal

projection along the line ℓ onto its orthogonal complement ℓ⊥. LetDℓ = πℓ(Ω) ⊂ ℓ⊥ denote
the planar domain obtained by projecting Ω onto ℓ⊥. Our convexity assumption implies
that Dℓ is a compact strictly convex planar domain, whose boundary Cℓ = ∂Dℓ is called
the outline of Ω in the direction ℓ, [23]. Convexity and smoothness of S = ∂Ω implies that
Cℓ is a strictly convex closed plane curve of class at least C3, [23]. (When Ω is non-convex,
the outline curves can exhibit interesting singularities, [9, 22, 38].)

The rim Rℓ ⊂ S associated with a line ℓ ∈ RP
2 is defined as the set of all points in

the surface that project to the outline: πℓ(Rℓ) = Cℓ, [23]. Strict convexity of S implies
that πℓ:Rℓ −→̃ Cℓ is one-to-one. A point p ∈ S belongs to Rℓ if and only if ℓ ∈ TS|p, or,
equivalently, n · ℓ = 0, where n is the unit outward normal to S at p.

In this study, we are particularly interested in how the differential invariants of S, its
rim curves Rℓ, and its outlines Cℓ are interrelated. To this end, we will apply normal form
techniques, as described in Appendix B; see also [36]. Let us assume, by applying a suitable
rotation, that the projection direction is parallel to the y axis, i.e., the line ℓy = [0, 1, 0].
Thus, at each point p ∈ Ry = Rℓy

in the corresponding rim curve, the tangent plane TS|
p

contains ℓy. We can further rotate around ℓy so that the tangent plane TS|
p
also contains

ℓx = [1, 0, 0], i.e., that it coincides with the xy plane. By translating p to the origin, the
effect is to place the surface at the point p in rotated normal form, obtained by rotating
the standard Euclidean normal form expansion for a surface — see (B.5) — through an
angle θ equal to the angle between the y axis and the second principal direction. In other
words, the surface can be identified as the graph of a function passing through the origin
with Taylor expansion

u(x, y) = 1

2
κ
1
x̂2 + 1

2
κ
2
ŷ2 + 1

6
κ
1,1 x̂

3 + 1

2
κ
1,2 x̂

2ŷ + 1

2
κ
2,1 x̂ ŷ

2 + 1

6
κ
2,2 ŷ

3 + · · · , (2.4)
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where

x̂ = x cos θ − y sin θ, ŷ = x sin θ − y cos θ. (2.5)

Here κ
1
, κ

2
are the principal curvatures of the surface at the point p, and the additional

numerical subscripts on the coefficients of the third order terms indicate the third or-
der differential invariants obtained by invariant differentiation of the principal curvatures;
see the discussion following (B.5). Higher order terms in the Taylor expansion can be
systematically determined using the equivariant moving frame recurrence formulae (A.2).

For example, if a piece† of the surface under consideration is identified with the graph
of a function z = u(x, y), then the piece of the rim curve Ry associated with projection
along the y axis is given implicitly by the pair of equations

z = u(x, y), uy(x, y) = 0, (2.6)

where we use subscripts to indicate derivatives. Assuming uyy 6= 0, the second equation
can be locally uniquely solved for y = y(x), from which we obtain z(x) = u(x, y(x)).
The resulting piece of the rim curve Ry is parametrized by (x, y(x), z(x)) while the corre-
sponding piece of the outline curve Cy = πy(Ry) is obtained by projecting the rim onto the

xz plane and hence parametrized by (x, z(x)). Their derivatives are obtained by implicit
differentiation:

yx = −
uxy
uyy

,

yxx = −
uxxy + 2uxyy yx + uyyy y

2
x

uyy
= −

u2yyuxxy − 2uxy uyyuxyy + u2xyuyyy
u3yy

,

(2.7)

where we evaluate all derivatives at x = y = 0, and, similarly,

zx = ux + uyyx = 0,

zxx = uxx + 2uxy yx + uyy y
2

x + uyyxx =
uxxuyy − u2xy

uyy
,

(2.8)

and so on, where the second expression follows because the first order derivatives of u in
rotated normal form all vanish at the origin: ux = uy = 0.

Observe that since z(0) = zx(0) = 0, the outline curve Cy, parametrized by (x, z(x)),
is in planar Euclidean normal form (B.1), and hence we can identify

z(x) = 1

2
κOx2 + 1

6
κOs x

3 + · · · ,

where κO, κOs are, respectively, its curvature and the derivative of curvature with respect
to arc length at the projected point. Thus, using (2.4–5) to evaluate (2.8) and its higher
order counterparts, we deduce, after algebraic simplification, the following key result.

† By a piece, we mean a connected subset whose interior is non-empty and whose boundary
is piecewise smooth, cf. [34].
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Theorem 2.1. Given a projection direction ℓ ∈ RP
2, the curvature of the outline

curve Cℓ at a point q = πℓ(p) is given by

κO =
K

κ(θ)
, (2.9)

where K = κ
1
κ
2
is the Gauss curvature of S at the point p, while

κ(θ) = κ
1
sin2 θ + κ

2
cos2 θ, (2.10)

is Euler’s formula for the curvature of the curve C = P ∩ S obtained by intersecting

the surface with the plane P = span {n, ℓ} spanned by the normal n to S at p and the

projection line ℓ at an angle θ with the second principal direction. Furthermore,

κOs =
ψ(θ)

κ(θ)3
, (2.11)

where

ψ(θ) = κ3
2
κ
1,1 cos

3 θ+3κ
1
κ2
2
κ
1,2 sin θ cos

2 θ+3κ2
1
κ
2
κ
2,1 sin

2 θ cos θ+κ3
1
κ
2,2 sin

3 θ. (2.12)

The first of these, (2.9), is Koenderink’s beautiful formula for the curvature of the
outline curve, [22]; see also [9; p. 62]. The second, (2.11), appears to be new. Higher
order counterparts can be obtained by writing out the higher order terms in the normal
form Taylor expansions, making use of the recurrence formulae (A.2).

On the other hand, we can use the standard differential geometric formulas, [18], to
compute the curvature and torsion for the rim curve, which is parametrized by p(x) =
(x, y(x), z(x)). The key quantities are

‖px ‖ =

√
α(θ)

κ(θ)
, ‖px × pxx ‖ =

√
β(θ)

κ(θ)3
, px × pxx · pxxx = −

γ(θ) δ(θ)

κ(θ)6
, (2.13)

where

α(θ) = κ2
1
sin2 θ + κ2

2
cos2 θ, β(θ) = κ2

1
κ2
2
κ(θ)2α(θ) + γ(θ)2,

γ(θ) = κ2
2
κ
1,2 cos

3 θ + κ
2
(2κ

1
κ
2,1 − κ

2
κ
1,1) sin θ cos

2 θ

+ κ
1
(κ

1
κ
2,2 − 2κ

2
κ
1,2) sin

2 θ cos θ − κ2
1
κ
2,1 sin

3 θ,

δ(θ) = κ2
2
(3κ

1
κ
2,1 + κ

2
κ
1,1) cos

3 θ + 3κ
1
κ
2
(κ

1
κ
2,2 − κ

2
κ
1,2) sin θ cos

2 θ

+ 3κ
1
κ
2
(−κ

1
κ
2,1 + κ

2
κ
1,1) sin

2 θ cos θ + κ2
1
(κ

1
κ
2,2 + 3κ

2
κ
1,2) sin

3 θ.

(2.14)

Theorem 2.2. The curvature and torsion of the rim curve Rℓ are given by

κR =

√
β(θ)

α(θ)3
, τR = −

γ(θ) δ(θ)

β(θ)
. (2.15)
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3. The Total Outline and its Differential Invariants.

In this section, we apply the method of equivariant moving frames, as outlined in
Appendix A, to explicitly construct the basic first order differential invariant, as well
as the operators of invariant differentiation, for the total outline of a solid body under
Euclidean motion. As we subsequently prove, all higher order differential invariants can
be generated from the basic differential invariant by repeated invariant differentiation.

Given a strictly convex compact body Ω ⊂ R
3 with smooth bounding surface S = ∂Ω,

the subset of the outline bundle traced out by all of its outline curves forms a three-
dimensional submanifold, which we call the total outline of the body and denote by

O = O(Ω) =
{
(ℓ,w) ∈ K⊥

∣∣ w ∈ Cℓ = ∂ πℓ(S) ⊂ ℓ⊥
}
⊂ K⊥. (3.1)

The papers [13, 14, 37] explain how to reconstruct the surface S of the body from its total
outline.

Remark : Not every three-dimensional submanifold of the outline bundle is a total
outline. For this to be the case, its intersection with each fiber must be a closed convex
curve. Thus, there are transversality, topological, and geometrical constraints on the
submanifolds that form total outlines of convex bodies.

Two bodies are said to be rigidly equivalent if there is a Euclidean transformation
mapping one to the other, so that Ω̃ = g · Ω for some g = (R, a) ∈ SE(3), as in (2.1). We
are interested in studying the induced action of the Euclidean group SE(3) on their total

outlines, mapping O(Ω) to O(Ω̃). In other words, we wish to understand how translations
and rotations act on the outline curves, and then determine their invariants.

Given the Euclidean action in the form (2.1), we claim that the induced action of
(R, a) ∈ SE(3) on the outline bundle K⊥ is provided by the formula

(ℓ,w) 7−→ (L,W) = (Rℓ,Rw̃), where w̃ = w + a− (a · n)n. (3.2)

Here, ℓ ∈ RP
2 is a line and n ∈ ℓ is a unit vector† in the camera direction, so ‖n ‖ = 1,

while w ∈ ℓ⊥ belongs to the orthogonal complement camera image plane. Observe that
the transformation (3.2) maintains the orthogonality relation, meaning that w̃ ∈ ℓ⊥ and
hence W ∈ L⊥. We will refer to (3.2) as the outline action of the Euclidean group SE(3).

In terms of the above local coordinates (p, q, ξ, η) on the outline bundle K⊥, as pre-
sented in (2.3),

n =
(p, q, 1)

n
, where n =

√
1 + p2 + q2 . (3.3)

The translations have trivial action on RP
2, while on the fiber coordinates the translation

corresponding to a = (a, b, c) ∈ R
3 maps the point w = (ξ, η, ζ) ∈ ℓ⊥ to the point

† Keep in mind that there is a sign ambiguity in the choice of unit vector n ∈ ℓ, but this does
not affect the formula (3.2). Also, n no longer denotes the surface normal.
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w̃ = (ξ̃, η̃, ζ̃) ∈ ℓ⊥, where

ξ̃ = ξ +
am2 − bpq − cp

n2
, η̃ = η +

−apq + b l2 − cq

n2
, ζ̃ = ζ +

−ap− bq + c(p2 + q2)

n2
,

(3.4)
and where, for later convenience, we set

l = ‖ (1, 0,−p) ‖ =
√
1 + p2, m = ‖ (0, 1,−q) ‖ =

√
1 + q2. (3.5)

Note that, as a consequence of (2.3), only the first and second entries of (3.4) are needed
to prescribe the outline action of the translations.

On the other hand, the rotation R ∈ SO(3) acts by its standard representation on
(x, y, z) ∈ R

3 and [α, β, γ ] ∈ RP
2, which in turn induces the linear fractional action

R: (p, q) 7−→ (P,Q) =

(
r1 · n

r3 · n
,
r2 · n

r3 · n

)
=

(
r1
1
p+ r1

2
q + r1

3

r3
1
p+ r3

2
q + r3

3

,
r2
1
p+ r2

2
q + r2

3

r3
1
p+ r3

2
q + r3

3

)
(3.6)

on the inhomogeneous coordinates. Here r1, r2, r3 are the rows of R, while rij are its
individual entries. Similarly, the rotations act via the usual representation on the translated
fiber coordinates: w̃ 7→ Rw̃, or, in full detail, in view of (2.3),

R:
(
ξ̃, η̃

)
7−→ (Ξ, H) =

(
(r1

1
− r1

3
p) ξ̃ + (r1

2
− r1

3
q) η̃, (r2

1
− r2

3
p) ξ̃ + (r2

2
− r2

3
q) η̃

)
. (3.7)

The action

(p, q; ξ, η) 7−→ (P,Q; Ξ, H) (3.8)

of SE(3) on the total outline is given in local coordinates by the combined rotation and
translation formulas (3.4–7).

Let us now implement a normalization process that places the body and hence its
outline in a suitable normal form. The first step is to rotate the camera direction into
normal form, by applying R̂ ∈ SO(3) so that the rotated line R̂ℓ is parallel to the z axis†,
or, equivalently, normalize p = q = 0. Thus, in view of (3.6), this requires that the first

and second rows of R̂ be orthogonal to the camera direction ℓ, and hence r̂1, r̂2 form an
orthonormal basis of its orthogonal complement ℓ⊥. Consequently (again ignoring sign
ambiguities) the third row is r̂3 = n, as in (3.3). The first two rows are then determined
modulo a subsequent rotation around the z axis.

We shall employ the orthonormal basis obtained by applying Gram–Schmidt to the
evident non-orthogonal basis (1, 0,−p), (0, 1,−q) of ℓ⊥, producing

r̂1 =
(1, 0,−p)

l
, r̂2 =

(−pq, l2,−q)

ln
, r̂3 = n =

(p, q, 1)

n
. (3.9)

† In the preceding section, it was more convenient to use the y axis for the camera direction.

This could be maintained here, but would require a different system of local coordinates on K
⊥.
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As noted above, this normalization specifies the rotation matrix R up to a rotation around
the z axis, and hence

R = Rϕ R̂, Rϕ =




cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


, R̂ =




r̂1

r̂2

r3


, (3.10)

where ϕ is the remaining as yet unnormalized rotation parameter.

The next step is to apply a translation to move the point w ∈ ℓ⊥ to the origin. Setting
ξ̃ = η̃ = 0 in (3.4) serves to specify two of the translation parameters:

a = pc− l2ξ − pq η, b = q c− pq ξ −m2η. (3.11)

Note that the rotated point W = Rw̃ remains at the origin.

To normalize the remaining group parameters, namely c and ϕ, we prolong the group
action to the first jet space J1(K⊥, 3) that is determined by three-dimensional submanifolds
(total outlines) of the outline bundle. In terms of the above local coordinates, we assume
that the total outline O ⊂ K⊥ can be locally written as the graph of a smooth function of
the form

η = f(p, q, ξ), (3.12)

which is valid under an appropriate transversality assumption on O. Keep in mind that not
every graph (3.12) can be locally identified with a total outline; see the remarks following
equation (3.1).

In other words, in our jet bundle computations, we treat p, q, ξ as independent vari-
ables and η as a dependent variable. The corresponding first order jet coordinates are
ηp, ηq, ηξ, representing partial derivatives of (3.12), and similarly for their higher order
counterparts. In non-transversal situations, one can employ a different system of local co-
ordinates, or, alternatively, derive the formulae for the differential invariants for a general
parametrized total outline submanifold, incorporating the infinite-dimensional reparame-
trization pseudo-group in the (more challenging) calculation; this will not be attempted
here. Moreover, it is not hard to produce the parametric formulas directly from their non-
parametric versions by replacing the derivatives of the dependent variable with respect to
the independent variables by their more complicated parametric counterparts, although
the resulting expressions are too unwieldy to write down in this paper.

The required formulas for the prolonged actions of the Euclidean group on jet bundles
are obtained by applying the associated implicit differentiation operators, [11], which are




DP

DQ

D
Ξ


 = J−T




Dp

Dq

Dξ


 where J =




DpP DqP DξP
DpQ DqQ DξQ
DpΞ DqΞ DξΞ


. (3.13)

Here J denotes the total Jacobian matrix for the transformed independent variables, as
given in (3.8), whose invertibility is required to maintain transversality of the transformed
outline hypersurface S = g · S for g ∈ SE(3):

S =
{
η = f(p, q, ξ)

}
7−→ S = g · S =

{
H = F (P,Q,Ξ)

}
. (3.14)

9



The prolonged Euclidean action on the jet coordinates is obtained by repeatedly applying
DP ,DQ,DΞ

to the transformed dependent variable H. The resulting expressions are too
lengthy to write out, but are readily handled by symbolic manipulation software, e.g.,
Mathematica. Note: It is important that the formulas for the prolonged action be com-
puted before any moving frame normalizations are implemented. An alternative approach
would be to employ the recursive moving frame algorithm in [32], but the additional
intricacies are not necessary in this relatively simple situation.

Substituting the preceding normalizations (3.10, 11) into the prolonged action formu-
las, after simplification we find the transformed jet coordinate ηξ is given by

H
Ξ
= D

Ξ
H =

ρ sinϕ+ nηξ cosϕ

ρ cosϕ− nηξ sinϕ
, where

ρ = l2 + pq ηξ ,

σ = pq +m2ηξ,
(3.15)

the latter quantity appearing in subsequent calculations. We thus normalize H
Ξ
= 0 by

setting tanϕ = −nηξ/ρ, and so (ignoring sign ambiguities as usual),

cosϕ =
ρ

l τ
, sinϕ = −

nηξ
l τ

, (3.16)

where

τ =
√
ρ+ σηξ =

√
l2 + 2pq ηξ +m2η2ξ =

√
1 + η2ξ + (p+ q ηξ)

2 (3.17)

is real. Substituting all the preceding normalizations (3.10, 11, 16) into the two remaining
formulas for the prolonged action on ηp, ηq, we find that the first, namely HP = DPH,
is independent of the as yet unormalized translation parameter c, and thus provides the
fundamental first order differential invariant

I =
n2(ρηp + σηq) + (q − pηξ) (ρξ + ση)

ρ+ σηξ
, (3.18)

where n, ρ, σ are given in (3.3, 15). We remark that the absolute rational differential
invariant I is a ratio of two relative polynomial differential invariants having a common
weight, [28]. In particular, when the total outline (3.12) goes through the origin p = q =
ξ = η = 0, then the formula (3.18) for the fundamental differential invariant simplifies to

I|
0
=
ηp + ηqηξ
1 + η2ξ

. (3.19)

On the other hand, the normalized formula for the prolonged action on ηq does contain the
remaining translation parameter c, which can be normalized by solving HQ = DQH = 0,
producing

c = τ−2

{
l2(ηq − ηpηξ) +

[
pl2 + (2p2 − 1)q ηξ − p(q2 + 2)η2ξ

]
ξ

+
[
(p2 + 2)q + p(2q2 − 1)ηξ + qm2η2ξ

]
η
}
.

(3.20)

The combined formulas (3.9, 10, 16, 11, 20) serve to prescribe the equivariant moving frame
ρ: J1(K⊥, 3) −→ SE(3).
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Finally, the explicit formulas for the invariant differential operators D
1
,D

2
,D

3
are

obtained by substituting the moving frame formulas for the group parameters into the
implicit differentiations DP ,DQ,DΞ

as given in (3.13), respectively. After simplification
with the aid of Mathematica, the resulting expressions are

D
1
=

n

τ3
{
τ2(ρDp + σDq ) + (αηp + βηq + γ ξ + δ η )Dξ

}
, D

3
=

1

τ
Dξ,

D
2
=
n2

τ3
{
τ2(−ηξDp +Dq ) +

[
σ (ηp ηξ − ηq ) + (p+ q ηξ)(ξ ηξ − η)

]
Dξ

}
,

(3.21)

where

α = l2σ +m2ηξρ = pq l2 + 2 l2m2ηξ + pqm2η2ξ , β = m2τ2 − 2n2,

γ = l2 (p+ 2q ηξ) + p(q2 − 1)η2ξ , δ = (p2 − 1)q +m2(2p+ q ηξ)ηξ.

The invariant differential operators (3.21) map the differential invariants to higher order
differential invariants. Moreover, as we will prove below in Theorem 4.1, all higher order
differential invariants can be obtained by repeatedly applying the invariant differential
operators to the basic first order differential invariant (3.18), which therefore generates the
entire outline differential invariant algebra.

4. The Outline Signature.

In the preceding section, we constructed the right-equivariant moving frame on the
first order jet space corresponding to the cross-section

p = q = ξ = η = ηq = ηξ = 0. (4.1)

This amounts to placing the body in the normal form so that its total outline (3.12) passes
through the origin, as defined by our choice of local coordinates on the outline bundle, and
has the following Taylor expansion there:

η = I p+ 1

2
J
1
p2 + J

2
pq + 1

2
J
3
q2 + J

4
pξ + J

5
q ξ + 1

2
J
6
ξ2 + · · · . (4.2)

As usual, [36], once the submanifold is placed in normal form, its non-constant Taylor
coefficients, when expressed in terms of of the original (unnormalized) jet coordinates,
form a complete system of functionally independent differential invariants. Thus, the total
outline has a single first order differential invariant† I = ι(ηξ), given by (3.18), followed by
6 independent second order differential invariants, 10 independent third order differential
invariants, and so on.

There are three invariant differential operators, (3.21), and hence one expects to be
able to produce 3 combinations of the second order differential invariants by differentiating
the first order differential invariant I. The general theory, [11], says that, because the
moving frame is of order 1, the differential invariants of order ≤ 2 generate all higher order
differential invariants. In fact, as we shall prove below, one can produce all 6 second order

† Here ι denotes the invariantization map associated with the moving frame; see Appendix A.
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differential invariants, and hence all the differential invariants, by invariant differentiation
of I alone.

For the outline action of the Euclidean group, the recurrence formulas, cf. (A.2),
relating the differentiated invariants can be explicitly constructed using its infinitesimal
generators of the group action. A straightforward calculation based on the local coordinate
formulas (3.4–7) produces the vector fields

v
1
=

1 + q2

1 + p2 + q2
∂

∂ξ
−

pq

1 + p2 + q2
∂

∂η
,

v
2
= −

pq

1 + p2 + q2
∂

∂ξ
+

1 + p2

1 + p2 + q2
∂

∂η
,

v
3
= −

p

1 + p2 + q2
∂

∂ξ
−

q

1 + p2 + q2
∂

∂η
,

v
4
= −pq

∂

∂p
− (1 + q2)

∂

∂q
+ (pξ + q η)

∂

∂η
,

v
5
= −(1 + p2)

∂

∂p
− pq

∂

∂q
+ (pξ + q η)

∂

∂ξ
,

v
6
= −q

∂

∂p
+ p

∂

∂q
− η

∂

∂ξ
+ ξ

∂

∂η
. (4.3)

The first three, v
1
,v

2
,v

3
, generate translations in the coordinate directions, while the

latter three, v
4
,v

5
,v

6
, generate rotations around, respectively, the x, y and z axes. As the

reader can check, they satisfy the usual commutation relations for the Lie algebra se(3).

Using the general symbolic moving frame calculus, the initial recurrence formulae are
given by

D
1
I = J

1
, D

2
I = J

2
, D

3
I = J

4
. (4.4)

Furthermore, the moving frame symbolic calculus, [11, 27, 33], can be used to produce
the commutator relations for the three invariant differential operators:

[D
1
,D

2
] = −J

4
D

1
− J

5
D

2
+ (2I J

5
− J

3
)D

3
,

[D
1
,D

3
] = −J

6
D

2
+ (2I J

6
− J

5
)D

3
,

[D
2
,D

3
] = J

6
D

1
. (4.5)

We can appeal to a variant of the commutator trick that was introduced in [31] to gen-
erate all the commutator invariants — that is, the coefficients of the invariant differential
operators on the right hand side of the commutator formula (4.5) — by differentiation of
I for sufficiently generic total outlines. In more detail, applying the commutators to I
produces the required formulas:

J
6
=

[D
2
,D

3
]I

D
1
I

=
D

2
J
4
−D

3
J
2

J
1

,

J
5
= 2I J

6
−
J
6
D

2
I + [D

1
,D

3
]I

D
3
I

=
D

3
J
1
−D

1
J
4
+ 2I J

4
J
6
− J

2
J
6

J
4

,

J
3
= 2I J

5
−
J
4
D

1
I + J

5
D

2
I + [D

1
,D

2
]I

D
3
I

=
D

2
J
1
−D

1
J
2
+ 2I J

4
J
5
− J

1
J
4
− J

2
J
5

J
4

,

(4.6)

which, combined with (4.4), produces all 6 second order invariants as rational functions
of the invariant derivatives of I — provided the denominators J

1
= D

1
I, J

4
= D

3
I do

not vanish, which is true generically. (It would be of interest to characterize those special
outlines which do not satisfy this condition; see [36] for the analogous issue in Euclidean
surface geometry.) We have thus proved:
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Theorem 4.1. The algebra of differential invariants of a generic total outline is

generated by the normalized first order differential invariant I = ι(ηξ) through invariant

differentiation.

One possibility for non-genericity is when the differential invariant I is constant. As
far as I can tell, this does not necessarily imply that the outline differential invariants
J
3
, J

5
, J

6
are constant, since the formulas (4.6) are no longer valid. On the other hand,

by a general theorem due to Cartan, [28], the differential invariants are all constant if
and only if the total outline coincides with a piece of a three-dimensional orbit of a three-
dimensional subgroup of the Euclidean group SE(3). According to [2; Table 1] there are
precisely 4 inequivalent three-dimensional subgroups. Two of these act transitively on R

3

and so are not relevant to the problem at hand. The third is equivalent to SE(2) whose
orbits are planes, and hence do not occur as pieces of the boundary of a strictly convex
body. The last class is represented by the rotation subgroup SO(3), whose orbits are
spheres. Observe that, while SO(3) acts non-freely as a symmetry group of the sphere, it
acts freely on its total outline which can be identified with a circle bundle over RP2. The
orbits of the other three classes of 3-dimensional subgroups contained in the outline bundle
are, thus, not total outlines, even locally. This observation serves to justify the following
result:

Theorem 4.2. The differential invariant I is constant on (a piece of ) the total

outline if and only if the corresponding part of the surface coincides with (a piece of ) a

sphere.

In the case when the body is not spherical, but its boundary includes one or more
spherical pieces, the local symmetry groupoid of each piece contains an open neighborhood
of the identity in SO(3). We refer the reader to [34] for further details on symmetry groups
and symmetry groupoids.

As a consequence of Theorem 4.1, the differential invariant I can be used to generate
a signature that provides necessary and sufficient conditions for two suitably generic† total
outlines to be locally equivalent under a Euclidean motion.

Theorem 4.3. Generically, a total outline is locally uniquely characterized up to

rigid motion by a differential invariant signature prescribed by I and its invariant deriva-

tives of order ≤ 2.

Proof : Since the total outline has dimension 3, in the absence of any continuous local
symmetry group, a total outline has exactly three functionally independent differential
invariants. Generically, these could be I,D

1
I,D

2
I (or I,D

1
I,D

3
I, or I,D

2
I,D

3
I), and

hence we can locally write D
3
I and the second derived invariants as functions thereof:

D
3
I = Φ

3
(I,D

1
I,D

2
I), DiDjI = Φij(I,D1

I,D
2
I), 1 ≤ i, j,≤ 3. (4.7)

However, some of the latter syzygies are redundant, since we can differentiate the first to
determine some of the second, namely those for which j = 3. Nevertheless, once we know

† The notion of genericty here is not the same as in Theorem 4.1.
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all the second order syzygies, the higher order ones can all be constructed through further
invariant differentiation. Q.E.D.

In general, as described in detail in [34], at regular points, the local codimension of
the signature prescribes the dimension of the local symmetry groupoid of the boundary of
the body, which includes any global symmetries. For example, a piece of an ellipsoid with
two equal semi-axes has a local one-dimensional symmetry group consisting of rotations
around the other semi-axis, and hence its outline signature has codimension 1. Theorem 4.1
governs the case of a three-dimensional symmetry group, for which the outline is a single
point, i.e., has dimension 0. In the generic case when the boundary has a discrete local
symmetry group, the index of the outline signature, meaning the cardinality of the inverse
image of a point, determines the number of local symmetries at the point.

Remark : For a compact body to admit a one-parameter local symmetry group, its
boundary would have to locally be a surface of translation, a surface of revolution, or a
helicoid surface, obtained by, respectively, rotating, translating, or screwing a plane curve,
[36]. Another non-generic case not covered by Theorem 4.3 is when there is only one
differentiated invariant DiI that is functionally independent of I, but a second functionally
independent invariant shows up among the second derived invariants; in this case, as in
[28], one must extend to the third order derived invariants to construct a signature.

5. Further Directions.

At this point, a number of issues arise, which serve to indicate potentially fertile lines
of research for further developing and applying the results in this paper. In particular:

• While the results here have some mathematically appealing aspects, a critical question
is whether there are practical applications to imaging, which served to motivate
the study. In general, one would not expect to have access to the full extent of
the total outline of a solid body, and hence is discrete sampling thereof sufficient
to classify and (approximately) reconstruct Euclidean equivalent bodies and char-
acterize their (local) symmetries in real world situations? For example, as pointed
out in [37], as far as the reconstruction problem goes, the total outline contains
redundant information and one can reconstruct (a piece of) the body from a codi-
mension one submanifold such as that formed by a drone that flies past it. The
invariants and analysis of these sub-outlines would be worth pursuing.

• Most bodies are not convex, and so the extension of the analysis here to the non-convex
situation is a particularly important direction.

• Further, extensions to more realistic camera models with finite focal length, [9, 23]
are also of great interest.

• As for the outline differential invariants and signature, in practical situations one does
not have analytic formulas, and so the question arises as to how to construct effec-
tive numerical approximation schemes. As advocated in [7], the most promising
approach is to design numerical schemes that retain the underlying Euclidean in-
variance, which will involve suitable combinations of the “joint outline invariants”.
The latter are in need of classification, which can be accomplished by implementing
the equivariant moving frame method on the Cartesian product action, cf. [30].
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Appendix A. Moving Frames, Invariantization, and Recurrence Formulae.

Here we will quickly review the basics of moving frames, referring the reader to
[11, 27, 33, 36] for details. Let G be a Lie group acting (locally) freely on a manifold
M ; typically M is an open subset of a sufficiently high order jet bundle, and G acts via
prolongation, cf. [28]. (Another possibility is a Cartesian product action, [30].) A moving
frame is specified by a choice of cross-section K ⊂ M to the group orbits, meaning a
submanifold of complementary dimension that intersects them transversally. Usually, the
cross-section is specified by setting a certain number of the local coordinates to appro-
priately chosen constants. The right-equivariant moving frame map ρ:M → G is locally
uniquely specified by solving the normalization equations g·z ∈ K for the group parameters
g = ρ(z) in terms of the point z ∈M .

With the moving frame in hand, the invariantization I = ι(F ) of a function F (z) onM
is obtained by transforming it, to obtain F (g · z), and then substituting the moving frame
formulas for the group parameters; the result is an invariant function I(z) = F (ρ(z) · z ).
In particular, invariantization does not affect an invariant, ι(I) = I. Moreover, invari-
antization respects all algebraic operations. Let Ij(z) = ι(zj) denote the fundamental
invariants obtained by invariantizing the coordinate functions. In particular, those used
to specify the cross-section are the corresponding normalization constants, known as the
phantom invariants ; the remainder form a complete system of functionally independent in-
variants. The invariantization of a more general function is then found by merely replacing
its coordinate expression by the corresponding algebraic combination of the fundamental
invariants:

ι
[
F (z

1
, . . . , zm)

]
= F (I

1
, . . . , Im). (A.1)

In the particular case when F = I is an invariant, and hence unaffected by invariantization,
(A.1) becomes the Replacement Rule that allows one to immediately rewrite any invariant
in terms of the fundamental invariants.

Invariantization can be extended to other objects, including differential forms and
differential operators. As above, one transforms the object by the group transformations
and then replaces all the group parameters by their moving frame formulas. In particular,
on a jet bundle, invariantization of the differential functions produces the fundamental
differential invariants. The invariant differential operators D

1
, . . . ,Dp that map differential

invariants to higher order differential invariants are obtained by invariantization of the
total derivatives D

1
, . . . ,Dp, where p denotes the number of independent variables x =

(x
1
, . . . , xp), which transform into the implicit differentiation operators used to compute

the prolonged group action, while invariantization of the differential forms leads to invariant
differential forms, such as a G-invariant arc length form.

In general, the recurrence formulae express the resulting differentiated invariants in
terms of the fundamental differential invariants:

Diι(F ) = ι(DiF ) +
r∑

σ=1

Kσ
i ι

[
vσ(F )

]
, i = 1, . . . , p. (A.2)

Here F denotes a differential function, v
1
, . . . ,vr are a basis for the prolonged infinitesimal

generators of the Lie group action, while Kσ
i are certain differential invariants known as
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the Maurer–Cartan invariants . In particular, if we take F to be one of the cross-section
coordinates, then its invariantization is a constant phantom invariant, and hence the left
hand side of the recurrence formula (A.2) is zero. The phantom recurrence formulas form a
system of linear equations which can be uniquely solved for the Maurer–Cartan invariants
as rational functions of the normalized differential invariants. Substituting these expres-
sions back into (A.2) produces the explicit recurrence relations that completely specifies
the structure of the differential invariant algebra. Vice versa, the recurrence formulae can
be used to re-express the fundamental differential invariants in terms of the differentiated
invariants.

The recurrence formula (A.2) also applies as stated when F is a differential form, in
which case the differential operators/infinitesimal generators act via Lie differentiation. In
particular, setting F 7→ dxi, i = 1, . . . , p, to be the differentials of one of the independent
variables produces the commutator formulas for the invariant differential operators:

[Dj ,Dk ] = Dj Dk −Dk Dj =

p∑

i=1

Y i
jkDi. (A.3)

The coefficients

Y i
jk = −Y i

kj =

r∑

σ=1

[
Kσ

k ι(Djξ
i
σ)−Kσ

j ι(Dkξ
i
σ)

]
(A.4)

are known as the commutator invariants and are explicitly determined in terms of the
basic differential invariants by (A.4), in which ξiσ denotes the coefficient of ∂/∂xi in the
infinitesimal generator vσ .

Appendix B. Normal Forms for Curves and Surfaces.

In the method of equivariant moving frames, the choice of cross-section in jet space
can be viewed as placing a submanifold near a prescribed point into a distinguished normal
form through judicious application of group transformations; see [36] for details. In the
case of the planar Euclidean group acting on curves C ⊂ R

2, we first apply a translation
to move the base point p ∈ C to the origin. We then rotate the translated curve so that its
tangent is horizontal. The only remaining ambiguity is a 180◦ rotation about the origin,
but this can be fixed by specifying an orientation on the curve. The coefficients of the
Taylor expansion of the resulting Euclidean normal form, when expressed in terms of the
original jet coordinates, are thus the differential invariants obtained through the moving
frame normalization process. A calculation based on the recurrence formulas (A.2) reveals

y = 1

2
κx2 + 1

6
κsx

3 + 1

4!
(κss + 3κ3)x4 + 1

5!
(κssss + 19κ2κs)x

5 + · · · . (B.1)

where κ is the curvature and the s subscripts on κ indicate its derivatives with respect to
arc length.

In the case of space curves C ⊂ R
3, under the action (2.1) of the three-dimensional

Euclidean group SE(3), the standard normal form is obtained by translating and rotating
the curve so that it goes through the origin, has tangent in the direction of the x axis, and,

16



assuming we are not at an inflection point, has second order contact with the xy plane.
The resulting Taylor expansions have the form

y = 1

2
κx2 + 1

6
κsx

3 + 1

24
(κss + 3κ3 − κτ2)x4 + · · · ,

z = 1

6
κτ x3 + 1

24
(2τκs + κτs)x

4 + · · · ,
(B.2)

where κ, τ are the curvature and torsion. As before, the formulas for the coefficients are
found through application of the recurrence formulas (A.2). Observe that if τ ≡ 0, so that
the curve is planar, then the first equation in (B.2) reduces to the planar normal form
(B.1).

Let us finally review the normal form of a surface at a point p ∈ S ⊂ R
3 under the

action of the Euclidean group SE(3). We begin by translating so that p is mapped to the
origin. One can then rotate the surface around the origin so that its tangent plane becomes
horizontal, i.e., is the xy plane. Thus, the surface is locally prescribed by the graph of a
function z = u(x, y) whose Taylor expansion at the origin begins with quadratic terms.
We can further rotate the surface around the z axis in order to eliminate the xy term in
the expansion. Thus, the Euclidean normal form of the surface starts with the quadratic
Taylor polynomial

u(x, y) = 1

2
κ
1
x2 + 1

2
κ
2
y2 + · · · , (B.3)

where the coefficients κ
1
, κ

2
are differential invariants known as the principal curvatures .

Themean and Gauss curvatures are given by the average and product thereof, respectively:

H = 1

2
(κ

1
+ κ

2
), K = κ

1
κ
2
. (B.4)

The point p ∈ S is non-umbilic if κ
1
6= κ

2
; in this case, the full Euclidean normal form

expansion can be written down:

u(x, y) = 1

2
κ
1
x2 + 1

2
κ
2
y2 + 1

6
κ
1,1x

3 + 1

2
κ
1,2x

2y + 1

2
κ
2,1xy

2 + 1

6
κ
2,2 y

3 + · · · . (B.5)

Here the additional numerical subscripts on κ
1
, κ

2
indicate invariant differentiation with

respect to the underlying invariant differential operators D
1
,D

2
, so that κ

1,2 = D
2
κ
1
,

κ
1,21 = D

1
D

2
κ
1
, and so on. See [31, 35] for higher order terms and explicit formulas,

although these are not required here.

In the umbilic case, the remaining rotation around the normal direction cannot be
fixed by normalization at order 2. If the order 3 Taylor coefficients are not all zero, then
one can rotate in order to make one of them, say that of y3, equal to zero. There is thus
either a single distinguished direction or three distinguished directions depending upon
whether the associated cubic polynomial has 1 or 3 real roots. The resulting normal form
contains 5 third order basic differential invariants, namely the coefficients of the quadratic
and cubic terms in the Taylor expansion. If the third order terms all vanish, then one
can use the rotation to normalize one of the fourth order coefficients unless the fourth
order terms are a multiple of (x2 + y2)2. The chosen normalization constant need not be
zero if the quartic polynomial has no real roots. And so on. The only case where there
is a residual continuous rotational symmetry is when the surface is locally a surface of
revolution, z = h(x2 + y2), possessing (at least) a one-parameter isotropy group at the
point in question.
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