
Automatic Solution of Jigsaw Puzzles

Daniel J. Hoff1 Peter J. Olver1

Department of Mathematics School of Mathematics
University of California, San Diego University of Minnesota
La Jolla, CA 92093 Minneapolis, MN 55455
d1hoff@math.ucsd.edu olver@math.umn.edu

http://www.math.umn.edu/∼olver

Abstract

We present a method for automatically solving apictorial jigsaw puzzles that is based
on an extension of the method of differential invariant signatures. Our algorithms
are designed to solve challenging puzzles, without having to impose any restrictive
assumptions on the shape of the puzzle, the shapes of the individual pieces, or their
intrinsic arrangement. As a demonstration, the method was successfully used to solve
two commercially available puzzles. Finally we perform some preliminary investigations
into scalability of the algorithm for even larger puzzles.

Keywords:
jigsaw puzzle, curvature, Euclidean signature, bivertex arc, piece fitting, piece locking

1 Introduction.

In this paper, we present a new algorithm for the automatic solution of apictorial jigsaw
puzzles, meaning that there is no design or picture and the solution requires matching only
the shapes of the individual pieces, cf. [10]. Our method is founded on the extended Euclidean
signature method for object recognition and curve matching that we developed in [16]. We
illustrate its efficacy by automatically solving two commercially available jigsaw puzzles: The
Rain Forest Giant Floor Puzzle, [23], has fairly standard shaped pieces and is relatively easy
to solve by hand, especially if one also uses the puzzle picture to guide in placement of the
pieces. The Baffler Nonagon, [33], is considerably more challenging, as it is truly apictorial,
with very irregularly shaped pieces, each of a distinct textured color.

The initial step in our procedure is to accurately photograph the puzzle pieces, in random
orientations, which are then presented to the computer in the form of JPEG digital images.
Following segmentation and smoothing of the boundary curves of each piece, the algorithm
applies invariant numerical algorithms, [1, 4] to calculate the two simplest Euclidean differen-
tial invariants — the curvature and its derivative with respect to arc length — that are used
to parametrize the Euclidean signature curve. A fundamental theorem, [4, 20], states that
two sufficiently regular plane curves are equivalent under a rigid motion if and only if they

1Supported in part by NSF Grant DMS 08–07317.

1

have identical Euclidean signatures. An important feature is that, unlike, say, characterizing
curves via curvature as a function of arc length, [15], such differential invariant signatures are
fully local, and hence can be readily adapted both to curves under occlusion, and to puzzle
pieces where one only matches a part of the boundary curves. The extension developed in
[16] breaks up the complete signatures into subarcs, which corresponds to a decomposition
of the original curves into “bivertex arcs” (see Section 2 for definitions). Individual bivertex
arcs with the same signature are then matched by rigid motions; if these all agree, the curves
are rigidly equivalent.

A key feature is that our algorithms rely solely on the shapes of the puzzle pieces, and not
on any picture or design which may appear thereon. (At the opposite end of the spectrum
are algorithms that deal solely with image information, on puzzles with all square pieces,
[12].) It is worth emphasizing that our method is founded upon the characterization of the
(approximate) bivertex arcs of the puzzle boundaries, which in turn are characterized through
the two curvature invariants used to construct the differential invariant signature. With the
bivertex arc signatures already known, we can efficiently compare them to determine potential
fits between puzzle pieces, which are then refined using a new method we call “piece locking”.
With some tuning of the parameters used in the various components, the resulting method
is remarkably accurate and able to automatically solve large scale, challenging, commercial
puzzles.

While of limited practical use, at least outside the entertainment world, puzzle assembly
has been studied with a number of more important applications in mind. In [18, 24], for
instance, puzzle solution techniques are applied to broken tiles to simulate the reconstruction
of archaeological artifacts. In fall, 2011, DARPA held a competition, with a $50,000 prize,
to automatically reconstruct a collection of shredded documents, [8]. Recreational solving
of jigsaw puzzles belongs to the class of problems for which humans have a natural aptitude
but automation remains considerably more challenging. This is especially true of puzzles
that combine to form a picture, in which case human solution is typically more a matter
of patience than mental exertion. Because of this natural motivation, much previous work,
e.g., [13, 30, 32], has focused on solving archetypical jigsaw puzzles, whose overall form is
constrained by several rather restrictive assumptions, the most common being:

(1) The individual pieces have four well-defined sides, each of which contains either an “in-
dent” or an “outdent”.

(2) Each piece has at most four primary neighbors, one on each side (except, of course, for
pieces on the puzzle boundary) that are fitted together via the “indents” and “outdents”.

(3) The solved puzzle has pieces positioned on an (approximate) grid.

(4) The boundary of the solved puzzle is an easily identified smooth shape, e.g., a rectangle.

For example, the algorithm proposed in [34] employs bitangents and distinguished points
to match simple “indents” and “outdents”, and relies heavily on recognizing the boundary
and corner pieces to start the assembly process. Using all four assumptions, two intermixed
104-piece puzzles were solved in [30]. A more recent work, [13], solves a 204-piece puzzle,
where adjacent pieces are matched by comparing ellipses fitted to the “indents” and “out-
dents”. However, the algorithms developed in [13, 30, 34] will not extend to more challenging

2

situations such as the Baffler Nonagon puzzle, shredded documents, or broken ceramics re-
construction, where none of these simplifying assumptions hold.

Our goal is to develop a method of puzzle assembly that does not require any of as-
sumptions (1–4), and therefore can be readily extended beyond the realm of standard jigsaw
puzzles. We do impose a mild restriction that the puzzle pieces have smooth boundary curves,
of class at least C3, that are also “v-regular”, in the terminology of [16]. The latter technical
assumption is defined below, and, being purely mathematical, is automatically satisfied in
practical applications. One might, however, justifiably question our smoothness assumption,
as many physical puzzle pieces, as well as pieces of broken pottery and tiles, have corners.
Despite this limitation, in practice we are able to successfully deal with puzzle pieces with
corners by applying a preliminary curve smoothing procedure that slightly rounds them off,
and this has sufficed in all the examples we have tested the algorithm on. Indeed, when
the images of the puzzles pieces are coarsely digitized, a preliminary smoothing step is es-
sential for accurate computation of the required Euclidean signatures. Competing general
algorithms can be found in [10], which focusses on the types of “junctions”, where three or
more pieces touch, [22], which bases curve matching on polar coordinate systems centered
around vertices of their boundaries, i.e., local extrema of the curvature, and [18], which uses
dynamic programming methods to match the curvature and arc length invariants of pairs of
pieces, and then refines the result by matching piece triples.

Our approach to fitting puzzle pieces together is based on two principal tools. First,
we note that the problem of matching individual piece boundaries is closely related to the
recognition of planar objects under rigid motions. Based on Élie Cartan’s solution to the
equivalence problem for submanifolds under general Lie group actions, cf. [20], the use of
differential invariant signature curves for planar object recognition was promoted in [4], and
then extended to cover more general cases in [16]. The extended invariant signature method
naturally lends itself to puzzle solving since it decomposes boundary curves into bivertex
arcs, as defined below, thereby readily allowing one to compare parts of piece boundaries. In
Subsection 5.1, we adapt the ideas of [16] to formulate an algorithm for finding possible piece-
to-piece fits. An important point is that the piece fitting algorithm concentrates exclusively
on the bivertex arcs, and hence ignores any straight line segments and circular arcs appearing
in the piece boundaries. In particular, this approach frees our algorithm from reliance on
the existence of a rectangular or other prescribed boundary of the entire puzzle; indeed, the
boundary pieces tend to be among the last to be placed during the assembly process.

The second tool was developed after we recognized a need to increase the quality and
confidence with which pieces are placed. This is desirable not only because it maximizes
the overall solution confidence, but also because it minimizes the need for back-tracking and
branching, allowing for larger puzzles to be successfully solved. When humans correctly place
a jigsaw puzzle piece, they are rewarded with a noticeable feeling of it “snapping” into place.
Moreover, it is shown in [3] that for robotic puzzle assembly, monitoring the feedback force
can be a useful simulation of this sensation. In Subsection 5.2, we develop a method of
piece locking, which is designed as a computational analogue of this feeling and based on the
magnitude of a fictitious electrostatic force and torque between matching piece boundaries.

In the penultimate section, we apply our method to two commercially available puzzles,
[23, 33]. Accurate photos of the individual puzzle pieces were segmented using a standard
snake algorithm, [6, 7, 17]. The resulting contours were then subjected to a preliminary

3

smoothing using a näıve spline algorithm. After the preprocessing step, the piece fitting and
locking algorithms were run until completion. Unlike most previous puzzle solving algorithms,
ours work from the “inside out”; in other words, the initially selected piece tends to be
located inside the puzzle, not on its boundary, and the subsequent pieces are successively
fitted together, building the puzzle up from its interior, and avoiding any need to identify
boundary pieces as such. With appropriate choices of adjustable parameters, effectively
balancing processing speed versus accuracy of the piece placements, the Rainforest and Baffler
puzzles were successfully solved in, respectively, 58 and 31 minutes on an Intel R© CoreTM 2
Duo E8500 3.17GHz processor.

The final section presents some preliminary investigations into scalability of our algorithm
to even larger puzzles. The Cathedral jigsaw puzzle [29], is a non-standard 1000 piece puzzle,
yet its individual pieces contain many standard “indents” and “outdents.” This combination
makes it particularly challenging, since there are many “local” near-matches, and yet sim-
plified algorithms designed for standard puzzles cannot be applied because of the unusual
structure. While we have not, as yet, achieved complete success in this much more chal-
lenging situation, the algorithm did successfully assemble 103 pieces of a 111 piece subpuzzle
before terminating, in approximately 36 hours. If we had a similar sized puzzle with more
irregular pieces, as in the Baffler, we would expect much greater success. Thus, while further
work remains to be done, our conclusion is that the algorithm does lend itself to applicability
to much larger puzzles and is eminently scalable.

2 Curves and Puzzles.

Let us introduce our basic terminology and assumptions, based on that used in [15, 16]. We
will be working exclusively with plane puzzles. (Extending our methods to three-dimensional
puzzles, e.g., a broken statue, would be an interesting challenge. While the mathematical
machinery is in place, [20], their practical implementation remains daunting.) We will work
in the Euclidean plane with the standard norm, denoted ‖ z ‖ =

√
x2 + y2 for z = (x, y) ∈

R2. We let SE(2) denote the three-dimensional special Euclidean group consisting of all
orientation-preserving isometries, or rigid motions :

z 7−→ Rz + c, z =

(
x
y

)
∈ R2, where R =

(
cos θ − sin θ
sin θ cos θ

)
, c =

(
a
b

)
, (2.1)

are, respectively, a 2 × 2 matrix representing rotation through angle θ and a translation
vector. We will consistently identify planar objects up to rigid motion. All curves C ⊂ R2

are assumed to be compact, rectifiable — and hence of finite length — and simple, i.e.,
without self-intersections. A closed curve is called a Jordan curve, while a non-closed curve,
with distinct endpoints, will be called an arc. Two arcs are said to be non-overlapping if they
have at most one or both endpoints in common.

By definition, a puzzle piece is a bounded, simply connected plane domain P ⊂ R2 whose
boundary C = ∂P is a Jordan curve of class C3. Two puzzle pieces P, P̃ are congruent, and
hence considered to be the same, if they are rigidly equivalent, meaning that there is a rigid
motion g ∈ SE(2) such that P̃ = g · P. Two puzzle pieces P, P̃ are said to fit together if they

share a common arc S = P ∩ P̃ = ∂P ∩ ∂P̃, or, more generally, if they do so after a rigid

4

motion: S = P̃ ∩ (g ·P) = ∂P̃ ∩ (g ·∂P) for some g ∈ SE(2). Keep in mind that pieces that fit
do not overlap. In practice, the shared arc should not be too short, although this requirement
need not be directly quantified as it will follow as a consequence of our fitting and locking
algorithms. We can also allow two puzzle pieces to fit along more than one connected arc,
although this is uncommon in real world puzzles. It is also not difficult to allow non-simply
connected puzzle pieces, again rare in examples.

Remark: The key assumption used in this work is that the puzzle pieces are smooth (of
class C3), and hence do not have corners. Clearly, many physical puzzles contain pieces with
corners, and it would be worth directly adapting our algorithms to cover such pieces. Such
an extension will not be difficult; indeed, during the course of the assembly process, we deal
with subpuzzles, that is, unions of puzzle pieces, whose boundary is only piecewise C3 (and
not necessarily simply connected). However, this adaption has proven to be unnecessary for
the practical solution of all the puzzles we have tried, since the digital images of the puzzle
pieces must be subjected to a preliminary smoothing operation anyways before the assembly
algorithm can proceed.

By an apictorial puzzle, or puzzle for short, we mean a bounded plane domain P ⊂ R2

that is the union,

P =
n⋃
i=1

(gi · Pi), (2.2)

of individual puzzle pieces Pi subject to rigid motions gi ∈ SE(2), which we sometimes
refer to as placements. We suppose that any two pieces, when placed, are either disjoint,
(gi ·Pi) ∩ (gj ·Pj) = ∅, or touch at a single point1 {z0 } = (gi ·Pi) ∩ (gj ·Pj), or fit together
according to the preceding definition. However, while standard jigsaw puzzles satisfy this,
our algorithms don’t actually require this assumption to hold, and so could, in principle,
solve “multi-layered puzzles”, whose pieces are allowed to overlap. (While this strikes us as
an intriguing extension of standard jigsaw puzzles, we are not aware of any actual examples.)
In the puzzle assembly problem, we are given the pieces P∗ = {P1, . . . ,Pn}, and our task is to
determine the corresponding rigid motions g1, . . . , gn required to assemble P . Our methods
work best when pieces that fit together do so uniquely, and only fit in accordance with their
positions in the final puzzle assembly. However, more sophisticated backtracking techniques
could be developed to better deal with non-uniqueness of fits (e.g., as in [18]).

3 Equivalence of Curves.

Our algorithm for fitting puzzle pieces together is based on the solution to the equivalence
problem for plane curves based on extended Euclidean-invariant signatures developed in [16].
Let us review the key points, leaving the complete details to the aforementioned reference.

Given a C3 Jordan curve C ⊂ R2, let z(s), 0 ≤ s ≤ L, denote its arc length paramet-
rization, so that L is the length of C and z(s) is periodic of period L. Let κ(s) denote the
signed curvature at the point z(s) ∈ C, and κs(s) = dκ/ds its derivative with respect to arc

1More generally, one can allow pieces to touch at a finite number of points, although this is uncommon
in real world examples.

5

length. Note that both κ and κs are Euclidean differential invariants, meaning that they are
unaffected by rigid motions, [20].

A point z(s) ∈ C is called regular if κs(s) 6= 0. An ordinary vertex is a local extremum
of curvature, [15]. We define a generalized vertex to be maximal connected arc V ⊂ C on
which κs(s) ≡ 0. Thus, a generalized vertex is either an ordinary vertex, or a critical point of
curvature, or a circular arc, or a straight line segment. In this paper, all curves are assumed
to be v-regular, [16], meaning that they have only finitely many generalized vertices. Curves
with infinitely many vertices exist in theory, but are pathological and cannot arise in real
world applications.

By a bivertex arc, we mean an arc B ⊂ C that has κs = 0 at both endpoints, but all of
whose interior points are regular. A basic result of [16] states any v-regular C3 Jordan curve
that is not a circle has a unique bivertex decomposition,

C =
m⋃
j=1

Bj ∪
n⋃
k=1

Vk, (3.1)

into a finite union of m ≥ 4 non-overlapping bivertex arcs B1, . . . , Bm, and n ≥ 0 generalized
vertices V1, . . . , Vn. Note that we exclude point vertices from the bivertex decomposition,
since they are accounted for by the endpoints of the bivertex arcs Bj.

Two plane curves C, C̃ ∈ R2 are said to be rigidly equivalent, or congruent for short, if
there exists a rigid motion g ∈ SE(2) such that C̃ = g ·C. We extend the notion of congruence
to disconnected unions of curves, keeping in mind that for two unions to be congruent, their
constituent curves must be pair-wise congruent under the same rigid motion. The following
result was established in [16].

Proposition 1. Two v-regular plane curves C, C̃ ⊂ R2 are congruent if and only if the
unions of their constituent bivertex arcs are congruent.

Using a reformulation of Cartan’s general solution to the local equivalence problem of
submanifolds under Lie group actions, [5], a solution to the equivalence problem for plane
curves based on their Euclidean signature was proposed in [4], and subsequently applied to
object recognition and symmetry detection in a variety of contexts, [25, 26].

Definition 2. Let C be a plane curve of class C3 and of length L <∞. The Euclidean sig-
nature of C is the (non-simple) plane curve S(C) = { (κ(s), κs(s)) | 0 ≤ s ≤ L } parametrized
by the curvature and its derivative with respect to arc-length.

The following theorem is a consequence of Proposition 1, combined with general results
on group-invariant signatures2 of regular submanifolds, [20].

Theorem 3. Let C, C̃ ⊂ R2 be v-regular, non-circular Jordan curves whose bivertex decom-
positions contain the same number, n, of non-overlapping bivertex arcs. Assume that, for
each j = 1, . . . , n, the bivertex arcs Bj and B̃j have identical signatures : S(Bj) = S(B̃j),

which implies that Bj, B̃j are congruent, and hence there exist rigid motions gj ∈ SE(2) such

that B̃j = gj · Bj. If, in addition, all the gj = g are the same, then the entire curves are

rigidly equivalent : C̃ = g · C.

2The older term “classifying submanifold” is used in place of “signature” in [20].

6

In practical applications, the puzzle pieces are inputted to the computer as digital images
and then segmented to retrieve their boundaries. (See Section 6 for practical details.) As
a result, each piece is represented by a discrete set of sample points C∆ = {z1, . . . , zN},
where each zj lies on or near its boundary curve C. The actual curve can be approximately
reconstructed from C∆ by some form of interpolation, e.g., periodic splines, possibly coupled
with smoothing to reduce the effect of noise. We similarly (approximately) discretize the
signature curve S(C) by S∆ = (σ1, . . . , σN), where each point σj = (κj, κjs) ∈ S∆ consists
of suitable numerical approximations to the curvature and its arc length derivative at the
corresponding sample point zj = (xj, yj) ∈ C∆. For example, the entries of σj may be
found directly from the discretized curve C∆ by employing the Euclidean-invariant numerical
approximations to the curvature invariants developed in [1, 4].

According to the algorithm developed in [16], to determine if two discretized curves are
rigidly equivalent, the first step is to construct their (approximate) bivertex decompositions
by splitting each curve into subarcs whenever |κs | − δ0 changes sign, where δ0 > 0 is a fixed
small cut-off. In order to achieve more consistent approximate Bivertex Arc Decompositions,
we additionally split curves wherever |κs| achieves a local minimum, provided that minimum
exceeds the parameter δ0. This added convention helps to reduce sensitivity to the value
of δ0. Additionally, instead of eliminating insignificant arcs over which curvature changes
by less than δ1 (as in [16]), we eliminate arcs on which the maximum of |κ| is less than δ1.
Details on the selection of δ0 and δ1 are presented in [16], though we note that in this paper

the quantity Dκ(C, C̃) therein is taken as a maximum over all inputed pieces (rather than
just two), and is denoted dκ.

The next step is to compare individual (discrete) bivertex arcs using their (discrete) Eu-
clidean signatures. The method, developed in detail in [16], is based, roughly, on the idea of
regarding the discrete signatures as two collections of oppositely charged points, and deter-
mining the mutual electrostatic attraction, [31]. (Or, equivalently, their mutual gravitational
attraction as point masses.) After some manipulation, we determine a signature similarity

coefficient p(B, B̃) ∈ [0, 1] that serves to measure the closeness of two individual bivertex arc

signatures, where a score of 1 reflects identical signatures, while p(B, B̃) decreases to 0 as the
signatures become increasingly disparate, and hence the arcs less and less likely to be con-
gruent. To compare the two curves, we first construct approximate bivertex decompositions,
and then ensure that they contain the same number of arcs; if not, there is a good chance the
curves are not rigidly equivalent, but this may be due to noise, even with our selection of the
cut-off parameter δ0. In this case, the procedure for eliminating arcs from the larger collection
is to delete those on which the curvature changes least. Sometimes, several possible deletions
are tested. We then test the pairwise congruence of the resulting two collections of bivertex
arcs, ordered as one traverses the curves with the same orientation. If they are congruent,
one then checks whether the corresponding rigid motions are (approximately) identical, and
if so the curves are deemed to be congruent.

4 Puzzle Assembly.

We now present the steps used in our puzzle solving algorithm. The method relies on suc-
cessively fitting individual pieces by matching bivertex arcs along their boundaries and then

7

improving the fits via piece locking. The details of piece fitting and locking will appear in
the following section.

We begin with the collection of puzzle pieces, denoted P∗ = {P1, . . . ,Pn}, whose bound-
aries Cj = ∂Pj are supplied as suitably segmented and smoothed (discrete) plane curves.
The puzzle is solved by constructing a corresponding collection of rigid motions G∗ =
{g1, . . . , gn} ⊂ SE(2) that form the completed puzzle (2.2). Without loss of generality,
one of these can be fixed as the identity transformation: gi1 = e.

At each step k = 1, 2, . . . , in the algorithm, we will have already assembled a subpuzzle
Qk ⊂ P consisting of k pieces Q∗k = {Pi1 , . . . ,Pik } ⊂ P∗, along with the corresponding rigid
motions H∗k = {gi1 , . . . , gik } required to assemble it:

Qk =
k⋃
ν=1

(giν · Piν) ⊂ P . (4.1)

Let R∗k = P∗ \ Q∗k denote the set of pieces that remain to be assembled. The algorithm
terminates with either a fully assembled puzzle, with Qn = P , or, for some k < n, a subpuzzle
Qk (P , for which the program is unable to fit any of the pieces remaining in R∗k .

For each 1 ≤ j ≤ n, we let B∗j = {B1, . . . , Bmj} be the set of bivertex arcs (or, more
accurately, discrete approximate bivertex arcs) associated with the puzzle piece Pj. It will
be important to order the arcs in B∗j consecutively as the boundary Cj is traversed in a
counterclockwise manner. During the assembly process, any bivertex arcs that have already
been fit to neighboring pieces, after successful piece locking, are deemed to be inactive, and
so not available during the subsequent fitting process. We let

V∗k ⊂
k⋃
ν=1

B∗iν

denote the set of active bivertex arcs for the subpuzzle Qk. In principle, V∗k should only
contain the bivertex arcs situated on the outer boundary of Qk, although noise or other
artifacts might prevent some interior bivertex arcs from being matched and hence remaining
in V∗k by “accident”. Fortunately, this does not seriously affect the performance of our
algorithm in practical situations.

It should be noted that for the purposes of pairing bivertex arcs, each assembled piece
retains its individuality, and bivertex arcs on a piece boundary remain consecutive whether
or not they are currently active. One evident limitation is that the program doesn’t consider
combinations of, say, two bivertex arcs from one assembled piece and three from an adjacent
assembled piece, fitting five consecutive arcs on a not yet placed piece. On the other hand,
the algorithm does use this extra information during piece locking, when the assembled sub-
puzzle is treated as a single piece. While developing a way to universally treat subpuzzles as
single pieces could improve performance, it seemed unnecessary for many practical situations,
including the puzzles treated here.

The first step in the assembly algorithm is to select a piece to form the initial subpuzzle
Q∗1 = {Pi1 }, and, by default, set gi1 = e. The choice of starting piece is not so important.
Our convention is to choose the piece that maximizes the total curvature

∑
|κi |, summed

over all the points in the piece’s discretized signature, because, as argued in [16], arcs of

8

high curvature tend to “better” determine a simple closed curve. Our aim is to maximize
the chances of finding successful fits early on, by ensuring that the starting piece has many
well-defined features. Indeed, since straight lines are of minimal curvature — and also not
included in the bivertex arcs and not candidates for fitting — this initial selection is also
more likely to be an interior piece of the puzzle.

To continue, at each step k ≥ 1, we construct the next subpuzzle by finding an unattached
piece Pi ∈ R∗k that fits the current subpuzzle Qk under a rigid motion gi ∈ SE(2), and
then setting Q∗k+1 = Q∗k ∪ {Pi }, G∗k+1 = G∗k ∪ {gi }. We select the piece Pi through an
adaptation of the piece fitting and locking algorithms; details appear in the following section.
If no suitable piece can be found, the algorithm terminates. Otherwise, the bivertex arcs that
were deemed to be matched in the piece locking stage that attaches Pi to Qk are relabeled
as inactive, and hence deleted from the collection V∗k ∪ B∗i in order to form the new set of
active bivertex arcs V∗k+1.

Remark: A more sophisticated approach would be to allow several distinct subpuzzles to
be assembled concurrently, and then deal with the problem of fitting the subpuzzles together.
This proved to be not necessary for the puzzles we tried our algorithm on.

5 Fitting Puzzle Pieces Together.

In this section, we present our algorithms for fitting and locking two individual puzzle pieces.
At the end, we explain how to adapt the basic algorithms to fit and lock a piece with a
subpuzzle.

As above, given two puzzle pieces P, P̃, by a fit, we just mean a rigid motion g ∈ SE(2).

The quality of the fit g measures how well an arc of g ·C approximates an arc of C̃. Finding
a good fit is accomplished in two steps. First, we apply the extended Euclidean-invariant
signature method developed in [16] to form a stockpile of potential piece-to-piece fits. Fits

are ranked according to their µ(P, P̃) confidence scores. We then attempt to refine the fits
using the ensuing method of piece-locking. Once a lock of sufficiently high quality is found,
that piece is added to the subpuzzle.

We remark that an algorithm that relies solely on selecting fits with the highest confidence
scores, without the extra refinement of piece-locking, is reasonably successful at solving small
puzzles. However, the resulting fit transformations tend to be insufficiently accurate, and
the method can easily accumulate increasing errors that can hinder its success with larger
puzzles. Figure 1(a), for instance, shows such a solution of a nine puzzle piece fragment.
While the pieces have been placed with correct adjacency, it is clear from figure 1(b) that
the refinement provided by piece locking generates a much better solution.

This may well inspire the reader to ask why not proceed directly to piece locking and
avoid the preliminary signature-based fitting procedure? The reason is efficiency: direct
piece-locking method is much slower than signature comparison, especially as the curvature
invariants comprising the signature were already been computed in order to characterize the
required bivertex arcs. Our combination of preliminary fitting followed by the more accurate
locking procedure on potential fits appears optimal for both speed and reliability.

9

(a) Solution by fit finding only (b) Solution by fit finding and piece locking

Figure 1: Two solutions of a nine piece puzzle fragment. Each has correct adjacency, but (b)
improves on (a) through the use of piece locking.

5.1 Fitting.

The problem of fitting two puzzle pieces together is essentially a curve matching problem. It
is thereby closely related to the recognition of plane curves under rigid motions, the primary
difference being that puzzle pieces match only along subarcs. The extended Euclidean signa-
ture of [16] naturally lends itself to puzzle solving since it relies on decomposing the boundary
curves into collections of bivertex arcs, and hence provides a useful, semi-local approach to
curve matching.

The piece fitting algorithm begins with two puzzle pieces P, P̃ ⊂ R2, or, more accurately,
their boundaries C = ∂P, C̃ = ∂P̃. (Keep in mind that we work with the discretized
boundaries and signatures throughout.) It requires the specification of a positive integer
m0 > 0, which governs the minimal number of matched bivertex arcs required for a fit, and
a real number 0 < p0 < 1, which sets a minimal level required for the identification of two
bivertex signatures through their p scores. The output is a confidence score µ(P, P̃) ∈ [0, 1]
that measures the likelihood of the two pieces fitting. The curve matching algorithm of [16]
relies on specification of several parameters, denoted ε, γ, α, β, C1, C2, λ0, λ1, and we refer
the reader to that paper for details on what they control. We note that for this paper,
the characteristic distances Dx and Dy of that paper are computed as a maximum over all
inputed pieces, rather than over a single pair of curves.

Piece Fitting Algorithm

(1) The first step is to find approximate bivertex arc decompositions of the two puzzle piece

boundaries: B∗ = {B1, . . . , Bm} ⊂ C, B̃∗ = {B1, . . . , Bm̃} ⊂ C̃. The arcs in B∗ are

ordered according to the counterclockwise orientation of C, while those in B̃∗ are ordered
and oriented using the opposite, clockwise orientation of C̃.

10

(2) For each pair of bivertex arcs B ∈ B∗ and B̃ ∈ B̃∗, compute their signature similarity

coefficient p(B, B̃) ∈ [0, 1] using the procedure presented in [16].

(3) Find maximal sequences of m + 1 ≥ m0 consecutive bivertex arcs {Bi, . . . , Bi+m} ⊂ B∗
and {B̃j, . . . , B̃j+m} ⊂ B̃∗ that satisfy p(Bi+l, B̃j+l) ≥ p0 for all 0 ≤ l ≤ m.

(4) If no suitable pairs of sequences exist, set µ(P, P̃) = 0. Otherwise, for each such pair,

use the method3 of [16] to approximate the transformations gk that takes Bi+k to B̃j+k,

and calculate the associated µ(P, P̃) score. As in (2.1), we represent each rigid motion
gk by its parameters (θk, ak, bk) ∈ S1 ×R2. The algorithm then returns the rigid motion
gfit = (θfit , afit , bfit), whose parameters are obtained by simply averaging4

θfit = arg

(
m∑
k=1

ei θk

)
, afit = mean {ak}, bfit = mean {bk}, (5.1)

as a possible piece-to-piece fit with confidence score µ(P, P̃).

5.2 Locking.

Piece locking quantifies the physical sensation a puzzle assembler experiences when two pieces
are successfully fit together. Our simulation of this feeling will be based on the generalized
electrostatic/gravitational attractive force that was used to compare signatures in [16], and
hence underlies our computation of the p scores used in the piece fitting algorithm of the pre-
ceding subsection. In the locking phase, we now work directly with the discretized boundary
curves and their constituent bivertex arcs, rather than their signatures. We view the curves
C and C̃ as two oppositely charged wires, or, more correctly since we use their discretizations,
as two oppositely charged collections of particles. Fixing ν ≥ 0 and 0 < ε� 1, the function

f(z, z̃) =
1

‖ z̃ − z ‖ν + ε

z̃ − z
‖ z̃ − z ‖

(5.2)

will represent the “electrostatic force of attraction” between two individual points z, z̃ ∈ R2.
Observe that the closer the points are, the larger the magnitude of the force, with the small
parameter ε included to avoid an infinite value if the points happen to coincide.

Fixing C̃, we seek to improve the original fit transformation by finding a nearby rigid
motion glock ≈ gfit , called a lock, that minimizes the total electrostatic potential energy

generated by matching parts of the boundaries glock ·C and C̃. The result of the computation
is a pair of lock quality scores q1 and q2, defined in (5.13) below, whose values tell us whether
or not to assemble the two pieces.

As above, we work with the discretized boundaries, now explicitly denoted by C∆ =
{z1, . . . , zn} and C̃∆ = {z̃1, . . . , z̃ñ} with approximated signatures S∆ = {(κ1, κ1

s), . . . , (κ
n, κns)}

3We note that there is a misprint in formula (11) of [16], where the numerator should contain p(σi, S̃∆)

instead of h(σi, S̃∆).
4By convention, arg 0 = 0.

11

and S̃∆ = {(κ̃1, κ̃1
s), . . . , (κ̃

n, κ̃ns)}. Let

d? =
1

n

[
‖ z1 − zn ‖+

n−1∑
i=1

‖ zi+1 − zi ‖

]
(5.3)

denote the average distance between the sample points in C∆.
For the sake of computational speed, we work with various subsets of points in each

discretized boundary. Namely, given z ∈ C∆, a group element g ∈ SE(2), and a positive
constant K > 0, define

Ẽ∆(z, g,K) =
{
z̃ ∈ C̃∆

∣∣∣ ‖ z̃ − g · z ‖ < K d?

}
,

Ẽ∆(g,K) =
⋃
z∈C∆

Ẽ∆(z, g,K), E∆(g,K) =
{
z ∈ C∆

∣∣∣ Ẽ∆(z, g,K) 6= ∅
}
.

(5.4)

the last two of which represent the subsets of points in, respectively, C̃∆ and C∆, that are
to be compared under the action of the rigid motion g. In particular, let gfit ∈ SE(2) be the

rigid motion (5.1) proposed by piece fitting of C∆ and C̃∆. Fixing constants K1 ≥ K2 >
K3 ≥ K4 > 0 and ρ > 0, the following algorithm is repeatedly applied up to some maximal
number of iterations: jmax ≥ 1.

Piece Locking Algorithm

(1) Set j = 0, and g0 = gfit to be the rigid motion prescribed by piece fitting.

(2) Set d0 = K1 d?, which reflects the current “separation” of the pieces. Set θ−1 = c−1 = 0,
which reflects the current direction of “motion” of the piece C.

(3) Thinking of the points in E∆(gfit , K1), as defined in (5.4), as unit masses, the quantity
n1 = #E∆(K1) represents their total mass, while

zcm =
1

n1

∑
z∈E∆(gfit ,K1)

z (5.5)

is their center of mass. Initialize w0 = g0 · zcm to be its image under the rigid motion
obtained from piece fitting. Further, set

r2 =
∑

z∈E∆(gfit ,K1)

‖ z − zcm ‖2 , r∞ = max
z∈E∆(gfit ,K1)

‖ z − zcm ‖, (5.6)

so that r2 represents the moment of inertia of the set E∆(gfit , K1) around its center of
mass, while r∞ measures its overall extent.

(4) For the current iterate j, calculate the “total force”

f totj =
∑

z∈E∆(gfit ,K1)

fj(z), (5.7)

12

where

fj(z) =

∑

z̃∈Ẽ∆(z,gfit ,K1)

f(gj · z, z̃), if ‖ gj · z − z̃ ‖ ≥ K4d? for all z̃ ∈ Ẽ∆(z, gfit , K1),

0, otherwise.
(5.8)

and the “total torque”

τ totj =
∑

z∈E∆(gfit ,K1)

(gj · z − wj) ∧ fj(z), (5.9)

where ∧ denotes the scalar cross product: v ∧ w = v1w2 − v2w1 for v = (v1, v2), w =
(w1, w2) ∈ R2.

(5) Calculate

Aj =

{
min

z̃∈Ẽ∆(z,gfit ,K1)
‖ z̃ − gj · z ‖

∣∣∣∣∣ z ∈ E∆(gfit , K1)

}
,

davj = mean Aj,

dmedj = median Aj.
(5.10)

If davj > dj and dmedj ≥ K3d?, then the fit is poor and getting worse, and hence we
terminate the algorithm by going to step (8), decrementing j 7→ j − 1.

(6) Let hj ∈ SE(2) be the Euclidean motion

hj · z =

(
cos θj − sin θj
sin θj cos θj

)
(z − wj) + wj + cj, θj =

δj
r2

τ totj , cj =
δj
n1

f totj , (5.11)

where

δj =
ρ dmedj

max

{ ‖ f totj ‖
n1

,
r∞
r2

| τ totj |
}

(5.12)

controls how far the transformation hj ∈ SE(2) is allowed to stray from the identity,
ensuring that the point-wise movements due to force and torque are at most a fraction
ρ of the median interpoint distance dmed. This helps prevent the incremental motion hj
from “overshooting” the best fit.

(7) Update the key quantities by setting gj+1 = hj · gj, wj+1 = hj · wj, dj+1 = davj , and then
increment j 7→ j + 1. If j ≥ jmax, or if θjθj−1 < 0 and cj and cj−1 have opposite signs in
each component, terminate the loop by going to step (8), otherwise go back to step (4).

(8) The algorithm terminates with the proposed locking transformation glock = gj. To mea-

sure the quality of the lock, for K3 > 0, the sets E∆(glock, K3) and Ẽ∆(glock, K3), as

defined in (5.4), contain the points in C∆ and C̃∆ respectively that are considered to be-
long to well matched arcs. Let L be the sum of the lengths of the arcs of E∆(glock, K3),
and let Lav and nav be the average perimeter and mesh size respectively amongst all
inputed pieces. The quality of the lock is reflected in three scores:

q1 =
#Ẽ∆(glock, K3)

#Ẽ∆(glock, K2)
, q2 =

L

Lav
, and q3 =

1

navdκ

∑
{i:zi∈E∆(glock,K3)}

|κi| . (5.13)

13

Here q1 measures the fraction of those points in C∆ that became well matched, as mea-
sured by K3 < K1, relative to those that came within K2d? of C̃∆. q2 gives a relative
measure of the arc length that became well matched, and q3 gives a relative measure of
the significance (in terms of curvature) of the well matched portion. The lock will be
deemed to be good when(

q1η1 + q3η2 > Q1, or q2 > Q∗2 ,
)

and q2 > Q2, and q3 > Q3, (5.14)

for some weight vector ~η = (η1, η2) and quality criterion ~Q = (Q1, Q2, Q
∗
2 , Q3).

5.3 Fitting a Piece to a Subpuzzle.

In order to improve computational speed, we fit pieces to a subpuzzle in a series of rounds.
Starting a round with a subpuzzle Qk ⊂ P and the set of remaining pieces R∗k , we use
piece fitting and locking to try to fit a new piece Pi ∈ R∗k . To do so, we apply steps (1–3)
of the Piece Fitting Algorithm of Subsection 5.1 to all possible pairs of pieces Pi,Pj with
Pi ∈ R∗k and Pj ∈ Q∗k (computations that were performed previously should be saved for
this purpose), requiring for computational speed that Pj or a piece it borders to border a
piece that was placed in the current or previous round.5 The resulting pairs of sequences of
bivertex arcs are ordered according to their lengths, namely the value of m+1 in the language
of Subsection 5.1, with pairs with equal values sorted according to their appearance.

Going through the ordered list of pairs of sequences of bivertex arcs, we apply step (4)
of the piece fitting algorithm to each in turn. If, in the result, µ < µ0 for some preselected
criterion µ0, we disregard the pair, but add to our list (if they are not already there) the
two pairs of bivertex arc sequences obtained by deleting, respectively, the first and the last
pairs of bivertex arcs from the discarded pair of sequences. On the other hand, if µ ≥ µ0,
we perform piece locking as described in Subsection 5.2, regarding the unplaced piece Pi as
mobile and the active boundary points of the subpuzzle Qk (i.e. those that have not been
deemed inactive as below) as the fixed piece.

If the quality of the resulting locking rigid motion is good, as measured by (5.14), then
Pi is considered to be properly placed and is assigned the transformation gi = glock generated
by fit finding and improved by piece locking. Any point or bivertex arc that has non-empty
intersection with E∆(glock, K2) or Ẽ∆(glock, K2), as in (5.4), is deemed to be inactive. The
next pair of bivertex arc sequences is then analyzed, ignoring pairs that contain inactive arcs
or that fit an already placed piece to the subpuzzle. If the list of pairs has been exhausted,
the next round begins, provided a piece was placed during the current round; if not, the
algorithm terminates as described earlier.

6 Applications.

To apply our algorithm to a physical jigsaw puzzle, we begin with individual photographs of
puzzle pieces. The quality and accuracy of the photos is very important, since small errors
may propagate as a large puzzle is gradually assembled, and the accumulating error may

5This requirement is removed for a round when the parameter sequence (see Subsection 6.3) increments.

14

cause the piece fitting algorithm to break down. When photographed, pieces were assigned
random orientations, and then arranged in pseudo-random order.

The next step is to segment the photos in order to obtain the puzzle piece boundaries.
Following segmentation, we then smooth out the noise that occurs in the segmented curves.
To save time, the segmentation and smoothing operations on the individual pieces were run
in parallel on different machines with various processing speeds. Once this preliminary step
is completed, we are ready to run the piece fitting and locking algorithms.

6.1 Segmentation.

The segmentation process we employ is based on the method of active contours or snakes.
The underlying idea is to evolve a curve on a digital image until it meets a boundary. This
allows for segmentation of part of an image without concern for the content of other parts.
Moreover, the result is automatically a connected boundary curve, thus avoiding the “connect
the dots” problem that plagues alternative segmentation procedures. The details of the
segmentation algorithm are not explored further here, and we direct the reader to [6, 7, 17]
for more information. For our purposes it suffices to know that segmentation by active
contours can be used to obtain reasonably accurate, discretely represented boundary curves
from photographs of puzzle pieces. Our implementation of the segmentation method is based
on code written by S. Lankton, [19].

6.2 Smoothing.

To reduce the computational intensity, the number of pixels in the high definition photographs
must be reduced in order to perform the required segmentation in a reasonable time frame.
For example, the photographs of the Baffler Nonagon used for this paper had an initial
resolution of approximately 238 pixels per centimeter. Reducing the resolution by a factor of
3 enabled each piece to be segmented in around 13 minutes on the 2.4 GHz laptop. However,
the reduced resolution meant that the resulting discrete segmented boundary curves were
not sufficiently smooth to be able to compute meaningful values for the curvature invariants
κ and κs using the numerical approximation methods outlined in [1, 4]. Thus, to construct
usable discrete signatures and then successfully apply the methods of sections 4 and 5, we
needed to subject the piece boundaries to a preliminary smoothing operation. We ended up
investigating two methods of smoothing discrete curves.

The first method to be tried was smoothing by application of the curve shortening flow,
[9, 11, 14], which moves a curve in its normal direction in proportion to its curvature. Curve
shortening acts like a nonlinear diffusion equation, smoothing out noise and small-scale fea-
tures, and eventually contracting a closed curve to a “round point”. While this method of
smoothing has many nice properties, and is extensively used in applications, we discovered
one significant disadvantage. Namely, since curve shortening contracts the curve at all points
of non-zero curvature, it proved difficult to preserve distinguishing features until such time
as the boundary curve was sufficiently smooth to be able to compute a meaningful Euclidean
signature. While, as observed in [4], the smoothed signatures continue to encode remnants
of these features, this causes major difficulties with puzzle assembly. Additionally, iden-
tical boundary curves may well become noticeably non-congruent if smoothed by different

15

amounts.
To overcome the observed difficulties with curve shortening, we sought a method of

smoothing that led to a meaningful Euclidean signature while still preserving the distin-
guishing features. We ended up employing a rather simple spline-based smoothing method.
A periodic spline of the points of the curve is calculated. The points are then redistributed
evenly by arc-length along the spline in a way that is offset from the original mesh. We
will refer to this method as the spline-and-respace method of smoothing. In applications,
spline-and-respace is carried out a number of times; in our examples 1500 iterations seemed
optimal. We did not try to conduct a rigorous analysis of this method, and we have only em-
pirical evidence to support its use. More sophisticated methods based on smoothing splines,
e.g., [28], could well be faster and more accurate, but this remains for future investigation.
In all of our applications, spline-and-respace smoothing led to a meaningful signature while
retaining all the relevant curve features, and so became our method of choice to smooth the
segmentations of puzzle pieces.

6.3 Generating Solutions.

By applying the segmentation and smoothing algorithms discussed in the preceding subsec-
tions, we are able to straightforwardly generate discrete representations of puzzle pieces from
photographs. We can then apply the puzzle solving algorithm described in section 4. The
performance of the algorithm depends upon the choice of the following parameters

α, β, γ, C1, C2, p0, m0, µ0, K1, K2, K3, K4, λ0, λ1, ν, ε, ρ, jmax, ~η, ~Q, (6.1)

some of which are introduced in [16]. (The parameter l in that paper only applies to closed
curves, and so does not play a role here.) Of these, p0,m0, and µ0 will be called depth
parameters (since for example, decreasing the value of µ0 may increase the number of fits

that are checked by piece locking), while the constants K2, K3, and ~Q will be called quality
parameters since they determine how well pieces must fit to be considered correctly placed.
Thus the choice of parameters affects the speed of the algorithm as well as its accuracy.

We observed significant gains in processing speed by allowing the depth parameters to
vary during the computation. We search first at a low depth, where correct matches tend to
occur most frequently. But, if the algorithm is unable to place any additional pieces, we then
allow it to search at greater depths. To this end, we introduce a finite sequence of parameters
(p0,j,m0,j, µ0,j, K3,j) for 1 ≤ j ≤ j?. The algorithm is first applied with j = 1, but, whenever
it dead-ends, we increment j, terminating the algorithm once j > j?. After a round in which
a piece is successfully placed, we return to j = 1. This allows the algorithm to run at shallow
depths whenever possible and only search deeply in order to get “unstuck.”

We applied the puzzle solution algorithm to the pieces of the Baffler Nonagon with pa-
rameters

α = 2, β = 5, γ = 5, C1 = 1000, C2 = 2, K1 = 15, K2 = 4, K4 = 1
2
, λ0 = 20,

λ1 = 10, ν = 3, ε = 10−4, ρ = 1
3
, jmax = 50, ~η = (1, 1.5), ~Q = (.9, .2, .3, 0),

(6.2)
and parameter sequence

{ (p0,j,m0,j, µ0,j, K3,j) | j = 1, 2 } =
{

(.94, 3, .6, 1.118), (.9, 2, .6, 2)
}
, (6.3)

16

so j? = 2. Following segmentation and smoothing, the puzzle was correctly solved in 31
minutes. We remark that the solution time should be judged relative to the complexity of
the pieces. Puzzles that obey the assumptions (1–4) in section 1 allow for simpler solving
algorithms, which are inherently faster, since the assumptions largely restrict the possible
relative positions pieces can take (e.g. the rectangular nature of pieces reduces the the number
of (relative) rotations to be checked to the four that align the piece’s straight edges with those
of the other pieces). Figure 2 displays the pieces as inputed and the solved puzzle.

While the unusual shapes of the pieces in the Baffler Nonagon make its solution more
challenging, the fact that they are so different makes errors in piece placement less likely.
In order to show that the method is also effective on puzzles with many similar pieces, we
applied it to the simpler (at least to a human) Rain Forest Puzzle [23], with parameters

α = 2, β = 5, γ = 5, C1 = 1000, C2 = 2, K1 = 15, K2 = 4, K4 = 1
2
, λ0 = 30,

λ1 = 10, ν = 3, ε = 10−4, ρ = 1
3
, jmax = 50, ~η = (1, 1.5), ~Q = (.9, .2, .3, 0),

(6.4)
and parameter sequence

{ (p0,j,m0,j, µ0,j, K3,j) | j = 1, 2 } =
{

(.94, 2, .6, .707), (.9, 2, .6, 2)
}
. (6.5)

Note that the only difference with the Baffler parameters (6.2), (6.3) is an increase in λ0 and
decrease in m0,1 and K3,1. This is done in order to maintain a better quality control of the
process, given that the Rain Forest pieces are both significantly larger, and hence of higher
resolution, as well as more alike, and so requiring a better quality of fit to ensure proper
placement. Following segmentation and smoothing, the puzzle was correctly solved in 58
minutes. Figure 3 shows the pieces as inputed and the solved puzzle. Again, we emphasize
that our method makes no a priori assumptions on the shape of the puzzle boundary.

The software used to compute these examples is available for downloading from the second
author’s web page: http://math.umn.edu/∼olver/matlab.html

7 Scalability.

In order to test the scalability of our algorithm, we experimented on portions of the 1000
piece Cathedral jigsaw puzzle [29]. This puzzle is non-standard, yet contains many standard
“indents” and “outdents.” This combination makes it particularly difficult to solve by com-
puter, since there are many “local” near-matches, and yet simplified algorithms cannot be
applied because of the unusual structure.

When addressing larger numbers of puzzles pieces that contained many near-matches, we
found that additional precision is required of the input data. Toward this end, we scanned
the backside of 111 pieces of the Cathedral against a black background on a flatbed scanner
at 600 dpi. As above, the images were segmented using active contours. However, in order to
minimize the effects of fringes on the pieces, we then applied the following refinement to the
segmentation: First, we fill in (turn to foreground) any patches of background pixels whose
boundary contour is comprised of fewer than 1000 pixels. Then we form the 7-by-7 square
pixel grid centered at each foreground pixel, and change that pixel to background if it lies

17

halfway between any two background pixels in the grid. This step is applied recursively; after
it terminates, the contours are extracted.

Using the resulting data, and parameters

α = 2, β = 5, γ = 5, C1 = 1000, C2 = 2, K1 = 15, K2 = 4, K4 = 1
2
, λ0 = 20,

λ1 = 8, ν = 3, ε = 10−4, ρ = 1
3
, jmax = 50, ~η = (1, 1.5), ~Q = (.976, .24, .3, .029),

(7.1)
with (length one) parameter sequence

{ (p0,j,m0,j, µ0,j, K3,j) | j = 1 } =
{

(.94, 2, .6, .707)
}
. (7.2)

the algorithm assembled 103 of the 111 pieces before terminating. Following segmentation
and smoothing, the puzzle was solved to this extent in approximately 36 hours. Figure 4
shows the pieces as inputed and the partially solved puzzle.

The combination of many near-matches and error in the image processing made high-
confidence matching (i.e. the use of high values for Q1, Q2, and Q3) necessary for accuracy
in this computation. Hence correct matches may be not be accepted the first time they are
tried, but are later once more neighboring pieces have been placed (resulting in higher q1, q2,
and q3). This extra care notably increases the computation time, but this effect could be
reduced with higher fidelity data. It is also likely that this puzzle fragment would be solved
completely if lower values of Q1, Q2 and Q3 were employed after the algorithm “dead-ends”
as part of a modified parameter sequence.

Another factor that entered into play with the larger puzzle was accumulation of errors. In
particular, we noted some differences in long-term performance on machines running different
operating systems. Although at this time we have not explored it fully, we believe this is
largely due to the repeated composition of Euclidean transformations stored in different forms
(compare (2.1) and (5.11)) using sine and cosine functions compiled to varying accuracies.

8 Further Directions.

Our results indicate a number of different directions that are worth pursuing. The first are
concerned with improving the puzzle solving algorithms as developed so far. One immediate
issue worth further investigation is the specification of the various parameters (6.1). While
some work was already done in this direction, particularly our realization that the depth
parameters could be profitably adjusted during the course of the assembly algorithms, we
did not conduct a systematic investigation into fine tuning the parameter values for optimal
performance, which may well depend upon the nature of the puzzle, the accuracy of the
photographs of the pieces and their segmented/smoothed boundaries, and the desired speed
of computation. A future research project will be to better understand the optimal parameter
values, perhaps through automatic learning on a larger training set. It would be interesting
to see our program compete with human puzzle solvers, particularly in challenging cases like
the Baffler Nonagon, or puzzles that allow overlapping pieces, if such can be devised.

We were pleasantly surprised by the algorithm’s ability to accurately place pieces, and
then completely solve the challenging large-scale puzzles we tried it on. We had initially
expected to require it to do a fair amount of backtracking in the event that a piece is

18

wrongly placed, and allowed for that possibility to be incorporated in our code. If more
challenging examples require revisiting this part of the algorithm, a careful analysis of the
relevant backtracking and branching rules would be worth doing. This would be particularly
useful for dealing with puzzles whose pieces fit together in multiple ways, not all of which
are compatible with the final assembly. We had also envisioned having to readjust the earlier
piece placements if their accumulated errors prevented completing the puzzle, even when
correctly placed. One idea, motivated by the numerical algorithm of simulated annealing,
[21], would be to employ random perturbations to “jiggle” all the pieces in a subpuzzle in
order to improve its overall fit quality.

Provided the photographs of the individual pieces are sufficiently accurate, the segmenta-
tion algorithm does a fine job of locating a decent approximation to their boundaries. On the
other hand, the simple spline-and-respace smoothing method could certainly be improved,
perhaps by using the more sophisticated approaches developed in [28]. Spline smoothing
might also be enhanced by linking it to the approximate bivertex decomposition of the piece
boundaries, e.g., by respacing the nodes in a non-uniform manner. For instance, we found
that weighting the mesh density by κs gives some intriguing results, but this requires further
investigation before being useful.

One question that might occur to the reader is why use two steps to place the pieces: piece
fitting based on the bivertex arcs followed by piece locking. We did contemplate bypassing
the signature matching step, and using piece-locking alone, but the latter algorithm is much
slower than signature comparison, and hence, as it stands, would not produce the desired
matching results as efficiently. Moreover, in order to characterize the bivertex arcs, we have
effectively already computed their signatures, and so by this stage signature matching is
extremely efficient.

It would certainly be worthwhile extending our algorithms, both for fitting and smoothing,
to be more attuned to corners, but this was not pursued as it turned out to be unnecessary
to successfully solve the puzzles we considered. Furthermore, developing a way to universally
treat subpuzzles as single pieces, while unnecessary in the examples treated here, could
make the algorithm more robust. Building on this, a more sophisticated approach would
be to allow several distinct subpuzzles to be assembled concurrently, and then deal with
the problem of fitting them together. Finally, methods that incorporate overall designs or
pictures on the puzzle with our shape matching algorithms will be left to future research.
In a practical direction, it would be very revealing to test our algorithms on other types
of assembly problems, such as broken archaeological artifacts, e.g., ceramics or pottery, or
shredded documents.

Since our extended signature methods are semi-local, based on subarcs of boundary curves,
they could also be readily adapted to the problems of recognizing and reconstructing objects
under partial occlusion, [2, 27]. Indeed, our piece locking refinement could be applied back to
the original problem of object recognition, [4, 16], with or without occlusion, to, we expect,
great effect. Finally, in a more speculative vein, one might try to extend these methods to
solving fully three-dimensional puzzles, e.g., broken statues. The underlying Cartan equiv-
alence method applies to general submanifolds, and the corresponding differential invariant
signatures that uniquely characterize (sufficiently regular) surfaces under rigid motions are
known, [20]. However, there are major practical, numerical, and computational issues that
need resolving before such an extension can be contemplated.

19

(a) Pieces of the Baffler Nonagon

(b) The Solved Baffler Nonagon

Figure 2: The pieces (a) and solution (b) of the Baffler Nonagon [33]. The pieces in (a)
are displayed in the orientations and pseudo-random order (left to right, top to bottom) as
inputed to the solving algorithm. The solution method produced (b) from the data in (a) in
31 minutes. 20

(a) Pieces of the Rain Forest Giant Floor Puzzle

(b) The Solved Rain Forest Giant Floor Puzzle

Figure 3: The pieces (a) and solution (b) of the Rain Forest Giant Floor Puzzle [23]. The
pieces in (a) are displayed in the orientations and pseudo-random order (left to right, top to
bottom) as inputed to the solving algorithm. The solution method produced (b) from the
data in (a) in 58 minutes.

21

(a) Pieces of the Cathedral Jigsaw Puzzle

Figure 4

22

(b) Partial Solution to the Cathedral Jigsaw Puzzle

Figure 4: The pieces (a) and 103 piece partial solution (b) of the Cathedral Jigsaw Puzzle
[29]. The pieces in (a) are displayed in the orientations and pseudo-random order (left to
right, top to bottom) as inputed to the solving algorithm. The solution method produced
(b) from the data in (a) in approximately 36 hours. We note that (b) has been rotated 90
degrees clockwise from the output in order to better fit the page.

23

References

[1] Boutin, M., Numerically invariant signature curves, Int. J. Computer Vision 40 (2000),
235–248.

[2] Bruckstein, A.M., Holt, R.J., Netravali, A.N., and Richardson, T.J., Invariant signatures
for planar shape recognition under partial occlusion, CVGIP: Image Understanding 58
(1993), 49–65.

[3] Burdea, G.C., and Wolfson, H.J., Solving jigsaw puzzles by a robot, IEEE Transactions
on Robotics and Automation 5 (1989), 752–764.

[4] Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., and Haker, S., Differential and
numerically invariant signature curves applied to object recognition, Int. J. Computer
Vision 26 (1998), 107–135.

[5] Cartan, É., Les problèmes d’équivalence, in: Oeuvres Complètes, part. II, vol. 2,
Gauthier–Villars, Paris, 1953, pp. 1311–1334.

[6] Caselles, V., Kimmel, R., and Sapiro, G., Geodesic active contours, Int. J. Computer
Vision 22 (1997), 61–79.

[7] Chan, T., and Vese, L., Active contours without edges, IEEE Transactions on Image
Processing 10 (2001), 266–277.

[8] The DARPA Shredder Challenge, http://www.shredderchallenge.com/, 2011.

[9] Deckelnick, K., Dziuk, G., and Elliott, C.M., Computation of geometric partial differ-
ential equations and mean curvature flow, Acta Numer. 14 (2005), 139–232.

[10] Freeman, H., and Carder, L., Apictorial jigsaw puzzles: the computer solution of a
problem in pattern recognition, IEEE Trans. Elec. Comp. 13 (1964), 118–127.

[11] Gage, M., and Hamilton, R.S., The heat equation shrinking convex plane curves, J. Diff.
Geom. 23 (1986), 69–96.

[12] Gallagher, A.C., Jigsaw puzzles with pieces of unknown orientation, in: 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Comp. Soc.
Press, Los Alamitos, CA, 2012, pp. 382–389.

[13] Goldberg, D., Malon, C., and Bern, M., A global approach to the automatic solution of
jigsaw puzzles, Computational Geometry 28 (2004), 165–174.

[14] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Diff.
Geom. 26 (1987), 285–314.

[15] Guggenheimer, H.W., Differential Geometry, McGraw–Hill, New York, 1963.

[16] Hoff, D., and Olver, P.J., Extensions of invariant signatures for object recognition, J.
Math. Imaging Vision 45 (2013), 176–185.

24

[17] Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A., Conformal
curvature flows: from phase transitions to active vision, Arch. Rat. Mech. Anal. 134
(1996), 275–301.

[18] Kong, W., and Kimia, B.B., On solving 2D and 3D puzzles using curve matching,
Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition 2 (2001), 583–590.

[19] Lankton, S., Active Contours, http://www.shawnlankton.com/2007/05/active

-contours/, 2007.

[20] Olver, P.J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cam-
bridge, 1995.

[21] Pham, D.T., and Karaboga, D., Intelligent Optimisation Techniques : Genetic Algo-
rithms, Tabu Search, Simulated Annealing and Neural Networks, Springer–Verlag, New
York, 2000.

[22] Radack, G.M., and Badler, N.I., Jigsaw puzzle matching using a boundary-centered
polar encoding, Comp. Graphics Image Proc. 19 (1982), 1–17.

[23] The Rain Forest Giant Floor Puzzle, Frank Schaffer Publications, Inc., Torrance, CA,
1992.

[24] Sağiroğlu, M.S., and Erçil, A., A texture based approach to reconstruction of archaeo-
logical finds, in: Proceedings of the 6th International conference on Virtual Reality, Ar-
chaeology and Intelligent Cultural Heritage, VAST05, Mudge, M., Ryan, N., Scopigno,
R., eds., Eurographics Assoc., Aire-la-Ville, Switzerland, 2005, pp. 137–142.

[25] Shakiban, C., and Lloyd, P., Signature curves statistics of DNA supercoils, in: Geometry,
Integrability and Quantization, vol. 5, I.M. Mladenov and A.C. Hirschfeld, eds., Softex,
Sofia, Bulgaria, 2004, pp. 203–210.

[26] Shakiban, C., and Lloyd, R., Classification of signature curves using latent semantic anal-
ysis, in: Computer Algebra and Geometric Algebra with Applications, H. Li, P.J. Olver,
and G. Sommer, eds., Lecture Notes in Computer Science, vol. 3519, Springer–Verlag,
New York, 2005, pp. 152–162.

[27] Turney, J.L., Mudge, T.N., and Volz, R.A., Recognizing partially occluded parts, IEEE
Trans. Pattern Anal. Machine Intel. 7 (1985), 410–421.

[28] Wang, Y., Smoothing Splines : Methods and Applications, Monographs Stat. Appl. Prob-
ability, vol. 121, CRC Press, Boca Raton, FL, 2011.

[29] Wesley, R., Cathedral, Product #51015, SunsOut, Inc., Costa Mesa, CA.

[30] Wolfson, H., Schonberg, E., Kalvin, A., and Lamdan, Y., Solving jigsaw puzzles by
computer, Annals of Operations Research 12 (1988), 51–64.

25

[31] Wu, K., and Levine, M.D., 3D part segmentation using simulated electrical charge dis-
tributions, IEEE Trans. Pattern Anal. Machine Intel. 19 (1997), 1223–1235.

[32] Feng-Hui Yao, F.–H., and Shao, G.–F., A shape and image merging technique to solve
jigsaw puzzles, Pattern Recognition Lett. 24 (2003), 1819–1835.

[33] Yates, C., The Baffler: the nonagon, Ceaco, Newton, MA, 2010.

[34] Zisserman, A., Forsyth, D.A., Mundy, J.L., and Rothwell, C.A., Recognizing general
curved objects efficiently, in: Geometric Invariance in Computer Vision, J.L. Mundy
and A. Zisserman, eds., MIT Press, Cambridge, Mass., 1992, pp. 228–251.

26

