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1. Introduction.

Lie group methods have proven to play a vital role in modern research in computer vi-
sion and engineering. Indeed, certain visually-based symmetry groups and their associated
differential invariants have, in recent years, assumed great significance in practical image
processing and object recognition. Recent surveys can be found in the papers appearing
in earlier volumes [36], [37], [45], and, in particular, the review papers [40], [53]. For
reasons of space, we shall not attempt to survey the multitudinous applications of differen-
tial invariants to object recognition and geometric diffusion-based multi-scale smoothing,
referring the interested reader to the preceding references.

Our approach to differential invariants in computer vision is governed by the follow-
ing philosophy. We begin with a finite-dimensional transformation group G acting on a
space E, representing the image space, whose subsets are the objects of interest. In visual
applications, the group G is typically either the Euclidean, affine, similarity, or projective
group. We are particularly interested in how the geometry, in the sense of Klein, induced
by the transformation group G applies to (smooth) submanifolds contained in the space E.
A differential invariant I of G is a real-valued function, depending on the submanifold and
its derivatives at a point, which is unaffected by the action of G. In general, a transforma-
tion group admits a finite number of fundamental differential invariants, I1, . . . , IN , and a
system of invariant differential operators D1, . . . ,Dn, equal in number to the dimension of
the submanifold, and such that every other differential invariant is a function of the funda-
mental differential invariants and their successive derivatives with respect to the invariant
differential operators. This result dates back to the original work of S. Lie, [32]; see [38]
for further historical remarks and a modern exposition. For example, in the Euclidean
geometry of curves in the plane, the group action is provided by the Euclidean group con-
sisting of translations and rotations, and every differential invariant is a function of the
Euclidean curvature and its derivatives with respect to Euclidean arc length. Similarly,
for affine planar geometry, the underlying group is the equi-affine group of area-preserving
affine transformations, and every differential invariant of a curve is a function of the affine
curvature and its various derivatives with respect to affine arc length.

The fact that, for transitive group actions, an object can be fully reconstructed, mod-
ulo group transformations, from a prescribed (and finite) collection of differential invari-
ants, is a consequence of a powerful general theorem due to É. Cartan, [11], [25]. For
example, a curve in the Euclidean plane is uniquely determined, modulo translation and
rotation, from its curvature invariant κ and its first derivative with respect to arc length
κs. Thus, the curve is uniquely prescribed by its Euclidean signature curve, parametrized
by the two functions (κ, κs). Similarly, a curve in the affine plane is uniquely determined,
modulo an affine transformation, by its affine signature curve which is the planar curve
parametrized by the affine curvature and its derivative with respect to affine arc length.
This definition of signature offers significant advantages over the traditional approach, [7],
[18], [44], [48], which is based on the analysis of curvature as a function of arc length,
in that a) it avoids an ambiguity in the choice of initial point on the curve, b) it obviates
the computational difficulty of reparametrizing the curve in terms of its arc length, and
c) it readily extends, via Cartan’s general theorem, to surfaces and higher-dimensional
submanifolds. A variety of signature curves, both Euclidean and affine, can be found in
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the figures at the end of this paper.

In practical applications of invariant theory to computer vision, one is forced to com-
pute a differential invariant, such as the curvature of a curve, by a discrete numerical ap-
proximation. A robust and efficient numerical implementation is crucial, but is a nontrivial
problem in that the more important differential invariants depend on high order derivatives
and are thus particularly sensitive to noise and round-off error. Although the differential
invariants reflect the invariance of the image under a transformation group, most standard
numerical approximation schemes fail to incorporate this symmetry. Consequently, two ob-
jects which are equivalent under a group transformation, while having the same differential
invariants, may have unequal numerical versions, thereby complicating the implementation
of their invariant characterization by differential invariant signatures. In our approach, the
problem of invariance of the numerical approximation is solved through the introduction
of an explicitly group-invariant numerical scheme, based on suitable combinations of joint
invariants based on the mesh points used to approximate the object in question. Thus,
our schemes are automatically invariant under the prescribed transformation group.

Motivations for this approach come from a variety of sources. In modern numeri-
cal analysis, the introduction of numerical schemes that incorporate additional structure
enjoyed by the problem being approximated have become quite popular in recent years.
The first instances of such schemes are the symplectic integrators arising in Hamiltonian
mechanics, and the closely allied energy conserving methods; see [14], [33], [54]. Closer in
spirit are the invariant numerical schemes for solving partial differential equations studied
by Shokin, [50], and Dorodnitsyn, [16].

More specifically, any discrete approximation scheme ultimately relies on introducing
a mesh, or discrete number of points, in the submanifold, and then constructing certain
appropriate combinations of the coordinates of the mesh points which will approximate
the differential invariant quantity of interest. The approximation will be invariant under
the underlying transformation group G, and hence its numerical values will not be affected
by the group transformations, provided it depends on the various “joint invariants” of the
mesh points. In general, if G is any group acting on a space E, then a joint (or algebraic)
invariant is a function J(x(1), . . . , x(k)) depending on several points x(i) ∈ E having the
property that its value is unchanged under simultaneous action of the group elements
g ∈ G on the point configuration, so that J(g · x(1), . . . , g · x(k)) = J(x(1), . . . , x(k)). For
example, in the case of the Euclidean group, every joint invariant is given as a function of
the Euclidean distances d(P, Q) between pairs of points P , Q, which are the fundamental
joint invariants in this case. Similarly, in the case of the equi-affine group, the simplest joint
invariant is the area A(P, Q, R) of the triangle whose vertices are the three points P , Q,
R, and, again, every other joint invariant is a function of these triangular area invariants.
Results of M. Green [21], generalized in [38], relate the number of differential invariants
of curves to the number of joint invariants of the group action, serving as an additional
motivation for establishing a more practical connection between the two quantities — a
bridge between the discrete and continuous invariant theory.

Consequently, to construct a numerical approximation to a differential invariant I,
we employ a finite difference approach, so that the approximation will be computed using
appropriate combinations of the coordinates of the mesh points. The approximation will
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be invariant under the underlying group G, and hence its numerical values will not depend
on the group transformations, provided it depends only on the joint invariants of the mesh
points. Thus, any G-invariant numerical approximation to a differential invariant must be
governed by a function of the joint invariants of G. For instance, any Euclidean invariant
approximation to the curvature of a plane curve must be based on the distances between
the mesh points. The crucial computational issue, then, is to practically determine the
appropriate joint invariant which, in the limit as the mesh size goes to zero, recovers the de-
sired differential invariant. In our approach, one interpolates the mesh points with a curve
that has a constant value for the differential invariant, using this as the relevant approxi-
mation. Practically applicable formulae for Euclidean and affine curvature approximations
based on this idea are described below.

An intermediary role is played by the “semi-differential invariants” (or, as we would
prefer they be known, “joint differential invariants”) introduced into vision by Van Gool
et. al., [34], [44]. Related work appears in the theory of “noise resistant” differential
invariants developed by Weiss, [55], as well as the local invariant signatures of Bruckstein
et. al., [6], [7], [8]. In such an approach, one approximates a higher order differential
invariants by a joint differential invariant depending on lower order derivatives evaluated
at several points on the curve. In our view, this is only a partial resolution of the difficulty,
since to compute any such semi-differential invariant, one must still evaluate each derivative
that appears in it by a discrete approximation, and hence the original high order differential
invariant is itself approximated in the end by a fully discrete finite difference version. In
particular, to maintain invariance of the approximation, one must use a finite difference
approximation to the semi-differential invariant by joint invariants, and so one always
ends up analyzing the approximation of differential invariants by joint invariants anyway.
(On the other hand, one can certainly motivate the construction of useful joint invariant
approximations via semi-differential invariants.)

In this paper, we discuss the cases of planar curves under the Euclidean and affine
groups in detail, and conclude with an outline of the general theory. A more detailed
version of some of these results, including a new approach to the affine geometry of convex
curves, appears in the authors’ recent paper [10].

2. Euclidean Curves in the Plane.

As our first example, we describe the geometry of curves in the Euclidean plane
E ≃ R

2. The underlying group is the proper Euclidean group SE(2) = SO(2) ⋉ R
2

consisting of rotations, and translations. (One can also readily include reflections, leading
to the full Euclidean group E(2) = O(2) ⋉ R

2, but the exposition is slightly simpler
if we restrict to orientation-preserving Euclidean transformations.) According to Weyl,
[57], every joint invariant of the Euclidean group is a function of the Euclidean distances
d(P, Q) = |P − Q| between points and the cross-products (P − Q) ∧ (R − S) between
displacement vectors. (For the full Euclidean group, only the distances are required since
the absolute value of a cross ratio can be expressed in terms of distances.)

Consider a regular, smooth plane curve C ⊂ E of class C2. The simplest differential
invariant of the Euclidean group is the Euclidean curvature κ of C, whose value at a point
P ∈ C is defined as ± the reciprocal of the radius of the osculating circle to C at P . The
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sign is chosen depending on the relative orientation of the circle to the curve — consistent
with the condition that convex curves have positive curvature. In terms of a coordinate
system such that the part of C near P is represented by the graph of a function y = u(x),
we then have

κ = ± uxx

(1 + u2
x)3/2

. (2.1)

The Euclidean arc length parameter is defined as ds =
√

1 + u2
x dx, the right hand side

representing the simplest invariant one-form for the Euclidean group.

Theorem 2.1. Every differential invariant of curves in the Euclidean plane is a

function of the Euclidean curvature and its derivatives with respect to Euclidean arc length:
I = F (κ, κs, κss, . . .).

Remark : The 180◦ rotation (x, u) 7→ (−x,−u) changes the sign of (2.1), so one cannot
do away with the sign ambiguity in the formula. On the other hand, the square κ2 of the
curvature is invariant under the full Euclidean group, including reflections; it and its
derivatives with respect to arc length, κ2, (κ2)s, . . ., provide the complete list of Euclidean
differential invariants.

Although the successive derivatives of curvature with respect to arc length lead to
an infinite hierarchy of higher and higher order differential invariants, as far as the char-
acterization of the curve goes, one only needs to consider the first two: κ and κs. This
fact motivates the following definition of the signature curve in the Euclidean case, and is
formalized in the subsequent theorem, the proof of which follows from the more general
results discussed below — see Theorem 5.2.

Definition 2.2. The Euclidean signature curve associated with a parametrized plane
curve C = {(x(t), y(t))} ⊂ E is the curve S ⊂ Z ≃ R

2 parametrized by the curvature and
its first derivative with respect to arc length: S = {(κ(t), κs(t))} ⊂ Z.

Theorem 2.3. Two smooth (C3) curves C and C can be mapped to each other by a

proper Euclidean transformation, C = g · C, g ∈ SE(2), if and only if their signature curves

are identical: S = S.

For example, Figure 4 shows a roughly circular curve, and its Euclidean signature
curve, parametrized by (κ, κs), immediately below. Note particularly the scale on the
signature plot. Indeed, the original curve is described, in polar coordinates, by r = 3 +
1
10 cos θ. Its near circularity is reflected by the fact that its signature curve is very small,
concentrated near the point

(
0, 1

3

)
, which is the signature “curve” for a circle of radius

3. The more a curve deviates from circularity, the less concentrated its signature curve
becomes — see Figures 6 and 7. Note particularly the increase in complexity and size
of the signature curve with the deviation of the original curve from circularity. Angular
Fourier modes are characterized by the signature curve’s winding around the circular point(
0, 1

3

)
.

Euclidean symmetries of a curve are associated with the retracing of the associated
signature curve. For example, the three-fold rotational symmetry of the curve in Figure 6
implies that its signature curve is not a simple closed curve, but rather is covered three

5



A

B

C

a
b

c

Figure 1. Euclidean Curvature Approximation.

times (i.e., has winding number 3) as the original curve is traversed. On the other hand, the
curves in Figures 8 and 9 do not admit any Euclidean symmetries and hence their signature
curves are only traced once, although they still have winding number 3 with respect to
a central point, indicating the existence of an approximate three-fold symmetry. The
Euclidean signature curve of the bilaterally symmetric ellipse in Figure 5 is actually traced
over twice, owing to the 180◦ rotational symmetry in the original curve. The reflectional
symmetries through the two coordinate axes (which reverse orientation) are manifested by
by the reflectional symmetry of the signature curve about the κ axis; this is because the
sign of κ has been fixed by the requirement that it be positive for convex curves, whereas κs

changes sign under such reflections. Alternatively, one could translate this into a retracing
by graphing the absolute value of κs instead. The most extreme case of retracing occurs
for the circles, whose signatures degenerate to a single point, retraced infinitely often; here
continual retracing reflects the existence of a one-parameter group of rotational symmetries
of the original circle. We conclude that the Euclidean signature curve provides an efficient
mechanism for recognizing both exact and approximate Euclidean symmetries of objects.

As a first illustration of our general philosophy of approximating differential invariants
by joint invariants, we describe how to use standard geometrical constructions to obtain a
numerical approximation to the Euclidean curvature that is unaffected by rigid motions,
so that any translated or rotated version of the curve will provide precisely the same
numerical approximation for its curvature. We first approximate the parametrized curve
by a sequence of mesh points Pi ∈ C, not necessarily equally spaced. Our goal is to
approximate the Euclidean curvature of C in a Euclidean invariant manner, and, in view
of the characterization of Euclidean joint invariants, this requires the approximation to
depend only on the distances d(Pi, Pj) between mesh points. Because the curvature is
a second order differential function, the simplest approximation will require three mesh
points. With this in mind, we now derive the basic approximation formula for the Euclidean
curvature.

Let A, B, C be three successive points on the curve C such that the Euclidean distances
are a = d(A, B), b = d(B, C), c = d(A, C), which are assumed to be small; see Figure 1.
The key idea is to use the circle passing through the points A, B, C as our approximation to
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the osculating circle to the curve at B. Therefore, the reciprocal of its radius r = r(A, B, C)
will serve as an approximation to the curvature of the curve at B. Let ∆ denote the signed
area of the triangle whose vertices are A, B, C, and let s = 1

2 (a + b + c) denote its semi-

perimeter, so that ∆ = ±
√

s(s − a)(s − b)(s − c). We apply Heron’s formula to compute
the radius of the circle passing through the points A, B, C, leading to the exact formula

κ̃(A, B, C) = 4
∆

abc
= ±4

√
s(s − a)(s − b)(s − c)

abc
(2.2)

for its curvature. Since formula (2.2) only depends on the Euclidean distances between the
three points, it provides us with a completely Euclidean invariant numerical approximation
to the curvature of C at the middle point B. In other words, the approximation for two
curves related by a Euclidean motion will be identical .

We now need to analyze how closely the numerical approximation κ̃(A, B, C) is to the
true curvature κ(B) at the point B. Our analysis is based on a Taylor series expansion —
see [10] for a detailed argument.

Theorem 2.4. Let A, B, C be three successive points on the curve C, and let a, b,
c be their Euclidean distances. Let κ = κ(B) denote the Euclidean curvature at B. Let

κ̃ = κ̃(A, B, C) denote the curvature of the circle passing through the three points. Then

the following expansion is valid:

κ̃ = κ +
1

3
(b − a)

dκ

ds
+

1

12
(b2 − ab + a2)

d2κ

ds2
+

+
1

60
(b3 − ab2 + a2b − a3)

d3κ

ds3
+

1

120
(b − a)(3b2 + 5ab + 3a2)κ2 dκ

ds
+ · · · .

(2.3)

In particular, if we choose the points to be equal distance apart, meaning that a = b
then the first error term in the approximation (2.3) is of second order. Choosing the
three points in the proper order assures us that the sign of the curvature is properly
approximated. A proof of the expansion (2.3) appears in the Appendix.

Remark : Since a and b are Euclidean invariants, every coefficient of the powers ambn

in the series expansion (2.3) must be a Euclidean differential invariant, and hence a function
of κ and its arc length derivatives.

The same general method can also be used to find Euclidean-invariant numerical
approximations for computing the higher order differential invariants κs = dκ/ds, etc. For
example, to determine a fully Euclidean invariant finite difference approximation to κs,
we approximate the Euclidean distance along the curve by the Euclidean distance between
the individual mesh points. The elementary finite difference quotient

κ̃s(Pi−2, Pi−1, Pi, Pi+1) =
κ̃(Pi−1, Pi, Pi+1) − κ̃(Pi−2, Pi−1, Pi)

d(Pi, Pi−1)
, (2.4)

could be used to approximate κs(Pi), but suffers from a numerical bias owing to the
asymmetry of points chosen to represent the curve near Pi. Therefore, we use the centered
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difference formula

κ̃s(Pi−2, Pi−1, Pi, Pi+1, Pi+2) =
κ̃(Pi, Pi+1, Pi+2) − κ̃(Pi−2, Pi−1, Pi)

d(Pi+1, Pi−1)
. (2.5)

as the Euclidean invariant approximation to the derivative κs. In this manner, we obtain a
fully Euclidean invariant discrete approximation to the Euclidean signature curve by using

(
κ̃(Pi−1, Pi, Pi+1), κ̃s(Pi−2, Pi−1, Pi, Pi+1, Pi+2)

)
(2.6)

as our approximating points. In the lower two pictures in Figure 4, the original curve
has been discretized by choosing 25 points (equally spaced in the angular variable, but
not equal Euclidean distance apart). The bottom left figure gives the discrete Euclidean
signature curve based on equation (2.4). Note the bias in the vertical direction of the
signature points, in contrast with the exact signature curve, which is symmetric about
the κ axis. The bottom right picture gives the corresponding unbiased discrete Euclidean
signature curve based on the Euclidean invariant approximation (2.6). Further examples
of signature curves and their discrete approximations are displayed in Figures 5–9 at the
end of the paper. The discrete approximations, based (2.6) with 50 and 100 points in
the original curve, are in uniformly excellent agreement with the true signature curve. Of
particular note is the non-uniform mesh spacing on the ellipse in Figure 5. The double
retracing of the continuous signature curve is more obvious in the discrete versions, where
the more widely spaced mesh points produce a slight contraction in the associated discrete
signature. The denser discretization provides a much closer approximation, and clearly
shows that symmetries in the original curve can still be detected in the signature curve,
even when the corresponding discretizations are not uniformly symmetric.

3. Affine Curves in the Plane.

In our second example, we derive a fully affine-invariant finite difference approxi-
mation to the affine curvature and arc length of a convex curve in the plane E ≃ R

2.
The underlying transformation group is the special affine (or equi-affine) group, denoted
SA(2) = SL(2) ⋉ R

2 consisting of all area-preserving affine transformations: x → Ax + b,
det A = 1. Thus, the simplest joint affine invariant is the area of a triangle whose vertices
are three given points. Given a configuration of points Pi = (xi, yi) ∈ E, we define

[ijk] = [Pi, Pj, Pk] = (Pi − Pj) ∧ (Pi − Pk) = det

∣∣∣∣∣∣

xi yi 1
xj yj 1
xk yk 1

∣∣∣∣∣∣
, (3.1)

so that [ijk] equals the signed area of the parallelogram whose sides are Pi−Pj and Pi−Pk,
which is twice the signed area of the triangle whose vertices are Pi, Pj , Pk. (The area is
positive if the triangle is traversed in a clockwise direction.) According to Weyl, [57],
every joint affine invariant I(P1, . . . , Pn) depending on the points Pi is a function of these
triangular areas [ijk]. A simple example is the useful four-point invariant

[ijkl] = [Pi, Pj, Pk, Pl] = (Pi − Pj) ∧ (Pk − Pl) = [ijl] − [ijk], (3.2)
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Figure 2. The Affine Pentagram.

which is a sum of two basic areas (3.1). Like Euclidean distances, the joint affine area
invariants are not functionally independent, but are subject to certain relations or “syzy-
gies”, which are all consequences of the following:

[ijl] + [jkl] = [ijk] + [ikl],

[ijk][ilm] − [ijl][ikm] + [ijm][ikl] = 0.
(3.3)

For example, in a configuration of five points P0, . . . , P5, there are 10 possible triangular
areas, but only five independent ones; see Figure 2.

Consider a regular, smooth convex† plane curve C ⊂ E of class C4. The simplest
differential invariant of the equi-affine group is its affine curvature. If we represent the
curve as a graph, y = u(x) then the affine curvature is the fourth order differential invariant

κ =
3uxxuxxxx − 5u2

xxx

9u
8/3
xx

. (3.4)

Note that κ is undefined at inflection points, where uxx = 0, corroborating our restriction
to convex curves. The affine arc length element

ds = 3
√

uxx dx (3.5)

is the simplest invariant one-form. Thus, the next simplest differential invariant is the
derivative

κs =
dκ

ds
=

9u2
xxuxxxxx − 45uxxuxxxuxxxx + 40u3

xxx

27u4
xx

. (3.6)

† Affine geometry requires the (unfortunate) restriction to convex curves, although many ap-
plications to computer vision can dispense with this restriction. For example, the affine-invariant
curvature flow can be extended to arbitrary curves by omitting the tangential component; see
[47], [40], for details. At the end of this section, we discuss how our approach can be extended
to affine-invariant recognition of non-convex curves.
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of affine curvature with respect to affine arc length.

Theorem 3.1. Every equi-affine differential invariant for a curve in the plane is a

function of the successive derivatives of affine curvature with respect to affine arc length:
I = F (κ, κs, κss, . . .).

As with Euclidean curves, the first two differential invariants (3.4), (3.6) suffice to
determine a curve uniquely up to an affine transformation.

Definition 3.2. The affine signature curve associated with a parametrized convex
plane curve C = {(x(t), y(t))} ⊂ E is the curve S ⊂ Z ≃ R

2 parametrized by the affine
curvature and its first derivative with respect to affine arc length: S = {(κ(t), κs(t))} ⊂ Z.

Theorem 3.3. Two smooth (C5) convex curves C and C can be mapped to each

other by an affine transformation, C = g · C, g ∈ SA(2), if and only if their signature curves

are identical: S = S.

Theorem 3.3 and Theorem 2.3 are both special cases of Theorem 5.2 below. The
Figures at the end of the paper provide a number of illustrations of affine signature curves
for convex planar curves. Note particularly the two curves in Figures 8 and 9 are related
by the equi-affine transformation (x, y) 7→ (x, 1

2x + y). Their Euclidean signature curves
are quite different, whereas their affine signature curves are, of course, identical. As with
the Euclidean signatures, affine symmetries of the original curve are indicated by retracing
of their affine signature curves.

We now discuss how to construct affine-invariant numerical approximations to affine
differential invariants. Note first that, since the affine curvature of a convex curve is a
fourth order differential invariant, two smooth, convex curves passing through a common
point P have the same equi-affine curvature at P if and only if they have fourth order
contact at P . In particular, the affine curvature of a curve C at P equals the (constant)
affine curvature of its osculating conic to C at P , which, by definition, is the unique conic
section having fourth order contact to C at P . We thus need to determine the formula for
the affine curvature of a conic section.

Theorem 3.4. The affine curvature of a nondegenerate conic C defined by the quad-

ratic equation

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 (3.7)

is given by

κ =
S

T 2/3
, (3.8)

where

S = AC − B2 = det

∣∣∣∣
A B
B C

∣∣∣∣ , T = det

∣∣∣∣∣∣

A B D
B C E
D E F

∣∣∣∣∣∣
. (3.9)

Remark : Both S and T are equi-affine invariants of the conic. The invariant S vanishes
if and only if the five points lie on a parabola. The invariant T vanishes if and only if the
conic degenerates to a pair of lines, and hence fails our convexity hypothesis.
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In particular, the equi-affine curvature of an ellipse in the plane is given by

κ =
( π

A

)2/3

, where A =
π

κ3/2
= −π

T

S3/2
(3.10)

is the area of the ellipse.

As with the osculating circle in the Euclidean case, we now approximate the oscu-
lating conic by an interpolating conic passing through five nearby points, and thereby
approximate the affine curvature at a point of a plane curve by the affine curvature of
the interpolating conic. We will explicitly show how this may be used to produce an
affine-invariant finite difference approximation to the affine curvature.

First, we note that five points in general position in the plane determine a unique
conic section that passes through them. The explicit formula for the interpolating conic is
not difficult to establish; see [51] for a proof of the following classical result.

Theorem 3.5. Let P0, . . . , P4 be five points in general position in the plane. There

is then a unique conic section C passing through them, whose quadratic equation has the

affine-invariant form

[013][024][x12][x34] = [012][034][x13][x24], (3.11)

where x = (x, y) is an arbitrary point on C.

Combining Theorems 3.4 and 3.5, we deduce an explicit formula for the affine cur-
vature of the conic passing through five given points. According to the general result
characterizing joint affine invariants, the resulting formula can be written in terms of the
10 triangular areas determined by the points taken three at a time; see Figure 2. Substitut-
ing the formulas for the coefficients, we find a particularly nice affine-invariant expression
for our first affine invariant

4T =
∏

0≤i<j<k≤4

[ijk]; (3.12)

in other words, to compute 4T , multiply together all 10 triangular areas in the pentagram
described by the 5 points. The fact that T has such a form is not so surprising, since T
vanishes if and only if the conic degenerates to a pair of lines, which requires that three
of the five points lie on a line, and hence [ijk] = 0 for some i < j < k. The simplest
affine-invariant formula† for S that we know is

4S = [013]2[024]2[1234]2 + [012]2[034]2[1324]2 −
− 2[012][034][013][024]

(
[123][234] + [124][134]

)
,

(3.13)

† Both formula (3.12) and (3.13) were established by direct computation with the aid of Math-

ematica. The computation is not entirely straightforward, since the intermediate expressions
are very long, and are not initially given in terms of the brackets [ijk]. Moreover, their reformu-
lation in brackets is not unique, owing to the bracket syzygies (3.3), and thus one must use some
ingenuity to arrive at a reasonably simple bracket expression. As far as we know, formulae (3.12)
and (3.13) have not appeared in the literature.
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cf. (3.2). Formula (3.13) is not nearly as pleasant as (3.12), particularly because the right
hand side appears to be asymmetrical with respect to permutations of the five points,
whereas S must clearly be symmetrical with respect to such permutations. Of course, the
explanation lies in the syzygies (3.3) among the triangular areas, a judicious application
of which suffices to demonstrate that (3.13) is symmetrical under permutation. A com-
pletely symmetrical formula for S can, of course, be obtained by symmetrizing (3.13), i.e.,
summing over all possible permutations of the set {0, 1, 2, 3, 4} and dividing by 5! = 120,
although the result is much more complicated than (3.13). We have been unable to find a
simple yet symmetrical version of the formula for S.

As in the Euclidean case, we are interested in finite difference numerical approxima-
tions to the affine curvature of a strongly convex plane curve C which are invariant under
the special affine group. We thus approximate the parametrized curve x(t) by a sequence
of mesh points Pi = x(ti). Any affine-invariant numerical approximation to the affine
curvature κ (as well as any other affine differential invariant dnκ/dsn) must be a function
of the joint affine invariants of the mesh points, which means that it must be a function of
the areas [ijk] of the parallelograms (or triangles) described by the mesh points. Because
the affine curvature is a fourth order differential function, the simplest approximation will
require five mesh points, so that the approximation will depend on the ten triangular areas
(or, more basically, the five independent areas) in the pentagram whose vertices are the
five mesh points, as illustrated in Figure 2.

With this in mind, consider the five successive mesh points Pi−2, Pi−1, Pi, Pi+1, Pi+2

on the convex curve C. By convexity, the mesh points are in general position, and we let
Ci = C(Pi−2, Pi−1, Pi, Pi+1, Pi+2) be the unique conic passing through them. Let κ̃i =
κ̃(Pi−2, Pi−1, Pi, Pi+1, Pi+2) denote the affine curvature of the conic Ci, which we evaluate
via the previously established formula

κ̃i =
Si

T
2/3
i

, (3.14)

where the invariants Si, Ti are computed in terms of the triangular areas according to
equations (3.13) and (3.12), where we replace P0, . . . , P4 by Pi−2, . . . , Pi+2. We now need
to analyze how closely the numerical approximation κ̃i is to the true curvature κi = κ(Pi) at
the middle point Pi. Assuming the points are close together, an extensive Mathematica

computation produces the desired Taylor series expansion; the Appendix indicates how
this is accomplished.

Theorem 3.6. Let Pi−2, Pi−1, Pi, Pi+1, Pi+2 be five successive points on the convex

curve C. Let κ be the affine curvature of C at Pi, and let κ̃ = κ̃(Pi−2, Pi−1, Pi, Pi+1, Pi+2)
be the affine curvature of the interpolating conic section Ci = C(Pi−2, Pi−1, Pi, Pi+1, Pi+2)
passing through the five points. Let

Lj = L(Pi, Pj; Pi−2, Pi−1, Pi, Pi+1, Pi+2) =

∫ Pi

Pj

ds, j = i − 2, . . . , i + 2, (3.15)

denote the signed affine arc length of the conic from Pi to Pj ; in particular Li = 0.
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Figure 3. Elliptical Sector and its Triangular Approximation.

Assuming that each Lj is small, then the following series expansion is valid:

κ̃ = κ +
1

5




i+2∑

j=i−2

Lj



 dκ

ds
+

1

30




∑

i−2≤j≤k≤i+2

LjLk



 d2κ

ds2
+ · · · . (3.16)

The higher order terms are cubic in the distances Lj .

Remark : The property of “being close” is therefore expressed in an affine-invariant
manner as the statement that all the affine arc lengths Lj between mesh points are small.
In this way, we are able to introduce a fully affine-invariant notion of “distance,” albeit
one that requires knowledge of five, rather than two, mesh points.

As in the Euclidean case, we can similarly determine affine-invariant numerical ap-
proximations for computing the higher order differential invariants given by the successive
derivatives of affine curvature with respect to affine arc length. The starting point is an
affine-invariant approximation to the affine arc length measured along the given curve C
between the two mesh points. The obvious candidate for this is to measure distance along
the interpolating conic section passing through five successive mesh points. Thus we re-
quire an explicit formula for the affine arc length along a conic section. If the conic is
an ellipse, then there is a remarkable generalization of the classical formula A = 1

2rL, or
L = 2κA relating the area A of a circular sector to the (Euclidean) arc length L of the
circular part of the boundary.

Theorem 3.7. Let C be an ellipse. Given points P, Q ∈ C, let L = L(P, Q) =
∫ Q

P
ds

denote the affine arc length of the arc of the ellipse from P to Q. Then

L = 2κA, (3.17)

where κ is the affine curvature of C and A is the area of the elliptical sector obtained by

connecting P and Q to the center of the ellipse by straight line segments — see Figure 3.
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Proof : Starting with the general conic equation (3.7), we first invoke the equi-affine
change of coordinates

x̃ = x +
CD − BE

AC − B2
, ỹ = y +

B

C
x +

E

C
, (3.18)

to place the ellipse in normal form

λ2x̃2 + ỹ2 = µ2, (3.19)

where, using (3.9),

λ2 =
S

C2
, µ2 = − T

SC
. (3.20)

According to (3.8), the affine curvature of either ellipse is given by

κ = 3

√
λ2

µ4
, (3.21)

cf. (3.8). Assume that both P̃ = (x̃0, ỹ0) and Q̃ = (x̃1, ỹ1) are on the upper half of the
normalized ellipse, so ỹ0, ỹ1 > 0. (The general case then easily follows.) The affine arc

length from P̃ to Q̃ can be directly calculated:

L(P̃ , Q̃) =

∫ Q̃

P̃

ds =

∫ x̃1

x̃0

3

√
d2ỹ

dx̃2
dx̃ = − µ2/3

λ1/3
arcsin

λ

µ
x̃

∣∣∣∣
x̃1

x=x̃0

. (3.22)

On the other hand, the scaling (non-equi-affine) transformation (x̃, ỹ) 7→ (x̃, ỹ/λ) maps

the original elliptical sector bounded by P̃ and Q̃ to a circular sector bounded by the two
points P̂ = (x̃0, λ

−1ỹ0), Q̂ = (x̃1, λ
−1ỹ1) lying on a circle of radius r = µ/λ. Moreover,

the arcsin difference term on the right hand side of (3.22) equals 2(λ2/µ2)Â, where Â

denotes the area of the circular sector, which is related to the area A of the elliptical sector
according to A = λÂ. Therefore,

L(P̃ , Q̃) = 2
λ5/3

µ4/3
Â = 2

λ2/3

µ4/3
A = 2κA,

proving the theorem. Q.E.D.

In particular, using (3.8), (3.10) we see that the total affine arc length L of an ellipse
equals a multiple of the cube root of its total area A,

L = 2κA = 3
√

8π2A =
2π√

κ
= −2π

T 1/3

S1/2
, (3.23)

a fact that follows immediately from the classical equi-affine isoperimetric inequality, cf. [5].
The explicit formula for the affine arc length along a general conic defined by the quadratic
equation (3.7) can be readily deduced from this proof. In the elliptical case, the affine arc
length from P = (x0, y0) to Q = (x1, y1) is given by

∫ Q

P

ds =
T 1/3

S1/2
arcsin

√
−CT

S2

(
x +

CD − BE

S

)∣∣∣∣∣

x1

x=x0

. (3.24)
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A similar formula can be established in the hyperbolic case.

Remark : It is a curious fact that, in equi-affine geometry, the arc length of an ellipse
is given by elementary functions, while in Euclidean geometry, it must be computed via
an elliptic integral!

In order to approximate the affine arc length along an arbitrary curve, we use the
formula (3.11) to determine the interpolating conic section, and then (3.24) to compute
the approximation to the arc length between two successive mesh points. Although the
resulting formula is affine invariant by construction, (which is not so obvious from the
explicit formula (3.24)), it is not so easy to re-express it directly in terms of the triangular
areas (3.1). Indeed, we strongly suspect that the actual formula (guaranteed by the general
theory) is a highly complicated transcendental function, and not amenable to explicit
computation in this form, although of course, one can readily use (3.24) in conjunction
with (3.11) to directly compute the approximate affine arc length in an affine-invariant
manner.

An alternative approach is, in the elliptical case, to replace the area of the elliptical
sector indicated in Theorem 3.7 by the area of an approximating triangle† whose vertices
are the two mesh points and the center of the interpolating ellipse — see Figure 3. This
does have an explicit formula in terms of the ten triangular areas of the affine pentagram.
A direct computation, again with the aid of Mathematica, using (3.11) to compute the
quadratic coefficients in (3.7) and (3.18) to determine the coordinates of the center of the
ellipse, produces the following formula.

Theorem 3.8. Let P0, . . . , P4 be five points lying on an ellipse. Let O denote the

center of the ellipse. Then the area of the triangle with vertices O, P1, P3 is given by the

affine-invariant formula

Ã(P1, P3) = 1
2 [O, P1, P3] =

N

2S
, (3.25)

where S is given by (3.13), and

4N = −[123][134]
{
[023]2[014]2[1234] + [012]2[034]2[2314] +

+ [012][023][014][034]
(
[134] − [123]

)}
.

(3.26)

Note the remarkable similarity between (3.13) and (3.26)! Equation (3.26) is not fully
symmetrical with respect to arbitrary permutations of the five points, but is symmetrical
under permutations of P0, P2, P4 and anti-symmetric under interchange of P1 and P3. The
latter is evident, whereas the former requires use of the syzygies (3.3).

Thus, we obtain an affine-invariant approximation to the arc length along a curve
based on a sequence of mesh points by first approximating the curve by an interpolating
conic based on five consecutive points; the arc length along the conic is then given by (3.17),

† Indeed, we are employing a similar device in the Euclidean case, since we should be approxi-
mating the Euclidean arc length of the curve by the arc length along the interpolating circle, but,
at least to the order of approximation of interest, this can be more simply computed by just using
the Euclidean distance between the two mesh points.
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and we approximate the elliptical area by the associated triangular area given explicitly in
(3.25). The resulting affine arc length approximation can then be used to establish fully
affine-invariant approximations to higher order affine differential invariants obtained by
differentiating the affine curvature with respect to the affine arc length.

For example, to determine a fully equi-affine invariant finite difference approximation
to the derivative κs of affine curvature with respect to affine arc length at a mesh point
Pi, we use the seven point centered finite difference quotient

κ̃s,i =
κ̃i+1 − κ̃i−1

Li

. (3.27)

Here κ̃i = κ̃(Pi−2, Pi−1, Pi, Pi+1, Pi+2) denotes the affine curvature of the conic passing
through the points Pi−2, Pi−1, Pi, Pi+1, Pi+2, as given by (3.14). The denominator Li is

the triangular area approximation† (3.25) to the affine arc length

L(Pi−1, Pi+1; Pi−2, Pi−1, Pi, Pi+1, Pi+2) =

∫ Pi+1

Pi−1

ds (3.28)

from Pi−1 to Pi+1 measured along the same conic, cf. (3.24), and hence is given by

Li =
κ̃iNi

Si

=
Ni

T
2/3
i

, (3.29)

where Si and Ti are given by (3.13), (3.12), and Ni by (3.26), where we replace the points
P0, P1, P2, P3, P4 by Pi−2, Pi−1, Pi, Pi+1, Pi+2 respectively. Again, we can use these
formulae to provide a fully equi-affine invariant numerical approximation to the equi-affine
signature curve associated with an arbitrary curve in the plane, and thus perform a fully
equi-affine invariant object recognition.

Remark : The affine arc length of the curve between successive mesh points Pi−1 and
Pi can be similarly approximated in a fully affine-invariant manner. Summing over all
mesh points thereby produces an affine-invariant approximation to the affine arc length of
the complete curve.

Some illustrative figures appear at the end of the paper. Note that for the ellipse
in Figure 5, the Euclidean signature is not a point, whereas its affine signature curve
degenerates to a single point, as does its numerical approximation. Again, the discrete
approximations, are in uniformly excellent agreement with the true equi-affine signature
curves. The figures were computed in Mathematica; one noticeable effect is the relative
speed of computation — the discrete signatures are much faster to compute than the direct
continuous version, based on exact symbolic differentiation and substitution to compute the

† Numerical experiments confirm that the replacement of the more complicated exact formula
(3.24) by its triangular approximation makes no significant difference in the accuracy of the
approximation, reconfirming that the difference between the two is a higher order term in the
error formula.
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differential invariants. This clearly indicates that, even for regular curves, the numerical
implementation offers significant advantages.

Finally, we note on how one might extend the affine signature curve and its discrete
approximation to non-convex planar curves. Formulae (3.4), (3.6), reconfirm the fact
that the affine curvature κ and its arc-length derivative κs are well-defined along any
section of the curve that does not contain an inflection point, but both blow up as we
approach an inflection point. To understand the behavior, suppose the smooth curve
u = f(x) has an inflection point at the origin x = u = 0. Substituting the Taylor
expansion u = axm + bxm+1 + · · ·, where m ≥ 3, a 6= 0, into (3.4), (3.6), we find that

κ = − (m − 2)(2m− 1)

9m2/3(m − 1)2/3a2/3
x−2(m+1)/3 + · · · ,

κs =
(m − 2)(2m− 1)(2m + 2)

27m(m − 1)a
x−(m+1) + · · · ,

(3.30)

give the leading order asymptotics of the signature invariants. Thus as we approach the
inflection point, x → 0 and the signature curve tends to ∞ along the asymptotic curve

κs = ±Cm|κ|3/2 + · · · , where Cm =
2m + 2√

(m − 2)(2m − 1)
. (3.31)

Thus, the existence as well as the order of the inflection point is precisely governed by the
asymptotics of the associated singularity of the signature curve. For a generic† inflection
point, m = 3, and there is a single asymptotic formula for the blow-up of the signature
curve. The detailed behavior of the curve near the inflection point is determined by the
higher order terms (in powers of 1/κ) in the asymptotic expansion (3.31).

As for the discrete signature curve, the only way that it can blow up at a mesh point
Pi is if the denominator Ti in (3.14) is zero, which means that all five mesh points Pi−2,
Pi−1, Pi, Pi+1, Pi+2, lie on a straight line. Of course, if this occurs, then there is at
least one inflection point lying on that part of the curve lying between Pi−2 and Pi+2,
and hence the discrete signature has detected an inflection point. (If the Ti vanish over
a range of consecutive mesh points, then they all lie on a single straight line, and hence
our method will automatically detect straight line components of boundaries of objects.)
Barring this unlikely coincidence, the discrete signature curve will continue to consist of
computable points, which, as the mesh size gets small, will converge to the continuous
affine signature curve on each convex component. On the other hand, if the five points
converge to an inflection point, the discrete approximation will go to infinity. Thus, as the
mesh size approaches zero, one will detect the asymptotic singularity of the continuous
signature curve by a more and more pronounced blow-up of the discrete version; in this
manner, the discrete signature curve also distinguishes inflection points in the original
curve. The detection of inflection points of non-convex contours in real images is an
important ingredient in several proposed object recognition procedures, cf. [46], and their

† These are the only inflection points surviving a perturbation, and hence the only ones to
appear in real images.
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explicit appearance in the signature curve singularity structure, as well as that of its
discrete counterpart, lends additional weight to the potential of signature curves to play a
significant role in a practical object recognition system.

4. Application to a Medical Image.

The preceding theoretical discussion has demonstrated the feasibility of differential
invariant signature curves for recognition of “ideal” boundary curves that could arise in a
computer vision image. However, the crucial test of their suitability for genuine applica-
tions to object recognition is their robustness in the analysis of real images. Technically
speaking, the objects in a real image do not have precisely defined edges, since some
amount of blurring or graininess is inherent in the digitalization process. Thus one might
be tempted to dismiss the wide variety of object recognition methods based on differential
invariants of boundary curves that have been proposed in the literature. Nevertheless,
recent successes in invariant segmentation programs based on nonlinear geometric diffu-
sion procedures have shown that, even in very noisy images, one can effectively extract
reasonably smooth closed planar curves forming the boundary contours of an objects in
the image.

A particularly successful method for edge detection and segmentation in real images
has been the method of snakes or active contours, introduced originally by Kass, Witkin
and Terzopolous, [26]. (See also the collection of papers in [4].) A new Euclidean-invariant
snake paradigm was recently proposed in [27] and successfully applied to a wide variety of
2D and 3D medical imagery, including MRI, ultrasound and CT data in [59], [60]. (Similar
approaches were independently given in [12] and [49].) A generalization to affine-invariant
segmentation was formulated and implemented in [42]. We intend to use these Euclidean
or affine-invariant segmentation procedures, in conjunction with the associated nonlinear
Euclidean or affine-invariant image smoothing processes, [3], [28], [47], [40], to extract
well-defined contours from a noisy image, from which the associated Euclidean or affine
signature curve can be computed. In this section, we describe how this procedure has been
applied to a particular medical image, demonstrating the robustness of the procedure and
its promise for practical invariant object recognition.

Concentrating on the Euclidean case for specificity, the mathematical foundation of
the smoothing and segmentation processes is the theory of Euclidean curve shortening,
[19], [20], where an initial contour evolves according to the geometric diffusion equation

∂C

∂t
= κN. (4.1)

Here N is the inward Euclidean unit normal to the curve C(·, t), and κ is the Euclidean
curvature. Under this flow, an initially non-convex curve evolves by smoothing into a
convex curve, and then becomes asymptotically circular as it shrinks to a point. The
associated level set flow, [43], provides a Euclidean-invariant multi-scale smoothing process
that has been applied in a wide variety of practical image processing procedures.

Under the curve shortening flow (4.1), the Euclidean perimeter of the evolving curve
shrinks as fast as possible, and hence (4.1) can be interpreted as the gradient descent for
the Euclidean length functional L(C) =

∫
C

ds, cf. [27]. Our new active contour method
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multiplies the Euclidean arc length element ds by a conformal factor φ(x, y), and computes
the associated gradient flow for the modified functional Lφ(C) =

∫
C

φ ds. The conformal
factor, which depends on the initial image, represents a “stopping term”, that is chosen to
be small near potential edges, such as regions of high gradient in the image grey level, or
regions of contrasting textures. The resulting flow,

∂C

∂t
= φκN − (∇φ · N)N, (4.2)

can be rigorously justified via the method of viscosity solutions, [27]. Since the flow is a
gradient descent, it will automatically stop when it reaches a boundary in the image, with-
out imposing any artificial thresholds or stopping criteria. This flow has been successfully
employed to segment even rather noisy medical images; see [59] and [60].

The starting point for the current application was a 70 × 70, 8-bit gray-scale image
of the cross section of a canine heart, obtained from an MRI scan, shown in Figure 10.
We applied the Euclidean snake flow (4.2) to the original (unsmoothed) MRI image to
extract an approximation to the boundary of the left ventricle. The discrete approximation
(2.6) was applied to the resulting boundary points Pi in order to construct a numerical
approximation to the Euclidean signature curve for the boundary of the left ventricle. In
addition, the initial boundary curve was smoothed through a successive application of the
Euclidean curve shortening procedure (4.1), after which the associated signature curves
for the smoothed boundary were also computed. In our numerical experiment, after the
initial boundary was extracted, the curve shortening procedure produced a sequence of 60
images through which the boundary curve evolved from its initial shape to a nearly circular
contour. As the boundary was shortened from image to image, the number of boundary
points dropped from 139 to 89 by the 60th image.

In the computation of the associated differential invariant signatures, two simple Eu-
clidean invariant measures were then taken to compensate for the discreteness of the input
data. The first was a process which replaced each point Pi with a weighted average of
neighboring points 1

10

[
Pi−2 +2Pi−1 +4Pi +2Pi+1 +Pi+2

]
. This process was applied twice

to the data, and had the effect of smoothing out the “jaggedness” of the boundary. The
particular weighting used reflects the idea that points which are farther away should be
given less weight than near-by points. In addition, the large weight on the point Pi ensured
that the general shape of the curve was not significantly altered. The second measure was
taken in the calculation of the curvature approximation κ̃(Pi). Instead of using three suc-
cessive points in formula (2.2), the values A = Pi−5, B = Pi and C = Pi+5 were used. The
final step in the process was the calculation of the derivative approximation κ̃s(Pi) using
the centered difference formula (2.5). The resulting set of points (κ̃(Pi), κ̃s(Pi)) provides
the desired approximation to the Euclidean signature curve.

A few of the evolving curves and their corresponding signatures are shown in the fig-
ures. In Figure 10, the last two pictures show the discrete set of signature points which
were calculated for each point on the original contour, and a smooth approximation to the
complete signature curve obtained by cubic spline interpolation. In Figure 11 successively
smoothed curves, at 10, 20 and 40 time steps in the entire image sequence, are displayed
along with their spline-interpolated signature curves. As the evolving curves approach cir-
cularity the signature curves exhibit less variation in curvature and appear to be winding
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more and more tightly around a single point. At any given time this point is the signature
“curve” of a circle of area equal to the area inside the evolving curve. Despite the rather
extensive smoothing involved, except for an overall shrinking as the contour approaches
circularity, the basic qualitative features of the different signature curves, and particu-
larly their winding behavior, appear to be remarkably robust under the curve shortening
flow. As in the mathematical examples given above, the windings indicate approximate
Euclidean symmetries of the associated contours. These results lead one to speculate that
such features can be rather effectively utilized in a practical Euclidean-invariant multi-scale
object recognition procedure. A full testing of the robustness of our methods, as well as
their affine-invariant counterparts, on a variety of real-world images, under different light-
ing and noise conditions, including temporal sequences of moving images, will be reported
on in a subsequent publication.

5. General Symmetry Groups.

In the preceding sections, we have concentrated on developing the basic methods for
just two symmetry groups — the Euclidean and affine groups for planar curves, a restric-
tion motivated by their particular importance in computer vision and image processing.
However, the basic method of constructing the signature curve and its invariant numerical
approximation can, in fact, be applied to any planar group of transformations, including
the projective group, so that the Euclidean and equi-affine groups are merely particular
cases of a very general methodology. For simplicity of exposition we restrict our attention
to the case of planar curves, although generalizations to surfaces in volumetric images are
also covered by the general mathematical theory.

We are interested in the differential invariant signatures associated with a planar curve
under a finite-dimensional symmetry group G, acting transitively on the plane. Let us first
recall, cf. [38], the basic theorem characterizing its differential invariants.

Theorem 5.1. Let G be an ordinary† r-dimensional transformation group acting on

E ≃ R
2. Then G admits a unique (up to functions thereof ) differential invariant of lowest

order, κ(x, u(r−1)), having order exactly r − 1, called the G-invariant curvature, and a

unique (up to constant multiple) G-invariant one-form of lowest order, ds = P (x, u(n)) dx,

called the G-invariant arc length element, whose order is at most n ≤ r − 2. Moreover,

every other differential invariant of G is a function I = I(κ, κs, κss, . . .) of the G-invariant

curvature and its derivatives with respect to the G-invariant arc length.

Remark : Lie, [31], completely classified all possible finite-dimensional transforma-
tion groups on the plane, up to change of coordinates, and their associated differential
invariants; see [38] for details.

† The technical definition of “ordinary” is that G acts transitively on an open subset of each
jet space Jn for 0 ≤ n ≤ r − 1. Almost all transformation groups are ordinary. Indeed, the only
“non-ordinary” planar group actions are the elementary similarity group (x, u) 7→ (λx+ c, λu+ d)
and some minor variants thereof. (The fact that x and u scale in exactly the same way is crucial
— all other similarity groups (x, u) 7→ (λx + c, λαu + d), α 6= 1, are ordinary.) Non-ordinary
groups can also be analyzed, cf. [38], but the results are slightly different.
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We define the G-invariant signature curve associated with the parametrized plane
curve C = {(x(t), y(t))} to be the curve S = {(κ(t), κs(t))} parametrized by the G-invariant
curvature and its first derivative with respect to the G-invariant arc length. The impor-
tance of the signature curve lies in the fact that it uniquely characterizes the original curve
up to a group transformation. The general result includes the Euclidean and equi-affine
cases, Theorems 2.3 and 3.3, as particular cases.

Theorem 5.2. Let G be an ordinary transformation group acting on E ≃ R
2. Two

smooth (Cr) curves C and C are equivalent up to a group transformation, C = g · C, if and

only if their signature curves are identical: S = S.

Since we believe the proof of Theorem 5.2 is very intuitive and natural, we include it
here for the interested reader.

Proof : First note that since κ has order r − 1, κs has order r = dim G, and so the
signature curve requires the computation of rth order derivatives of the parametrizing
functions. Generically, the signature curve is given by specifying κs as a function of κ, so
that κs = H(κ). Therefore, a curve parametrized by a graph y = u(x) will be a solution
to the rth order ordinary differential equation

κs(x, u(r)) = H(κ(x, u(r−1))) (5.1)

determined by its signature curve. Thus, the curve will be uniquely recovered from the
signature curve and the initial conditions

u(x0) = y0, ux(x0) = y1, . . . ur−1(x0) = yr−1. (5.2)

The proof of Theorem 5.2 can now be completed by using the uniqueness theorem for
ordinary differential equations. Indeed, since κ and κs are differential invariants, their
values are identical for two curves related by a group transformation. Conversely, if the
signature curves are identical, the two curves are solutions to the signature equation (5.1)
corresponding to two different sets of initial conditions (5.2). Transitivity of G(r−1) on

Jr−1 implies that it acts transitively on the set of possible initial conditions (x0, u
(r−1)
0 ).

Let g ∈ G map the initial conditions for C to those of C. Uniqueness of solutions to the
differential equation (5.1) implies that g maps C to C, completing the proof. Q.E.D.

Remark : A fundamental open question is to characterize those signature curves which
correspond to closed curves.

Of particular importance are the curves whose G-invariant curvature is a constant,
and hence the associated signature curve degenerates to a single point. Such curves play
the same role for general transformation groups that the circles and straight lines play for
the Euclidean group, and the conic sections play for the equi-affine group. For example, the
projective group in the plane, the curves of constant projective curvature are the so-called
“W -curves” which were investigated in detail by Klein and Lie, [29], [58; §III.8].

Theorem 5.3. Let G be an ordinary transformation group acting on R
2. A curve

C ⊂ M has constant G-invariant curvature if and only if it is an orbit of a one-parameter

subgroup of G, i.e., C = {exp(tv)P0} for some infinitesimal generator v of the group action.
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Like Theorem 5.2, Theorem 5.3 can be proved via standard symmetry group methods
for ordinary differential equations. In higher dimensions, there are corresponding, deeper
results due to Cartan, that characterize the submanifolds of a homogeneous space up
to group transformations via an associated “signature manifold”, which is parametrized
by the fundamental differential invariants appearing in the invariant Frenet frame on the
submanifold. For example, for surfaces in three-dimensional space, the Euclidean signature
manifolds are is a surface in a six-dimensional space parametrized by the mean curvature,
the Gaussian curvature, and their derivatives with respect to the Euclidean invariant Frenet
frame on the surface. A similar construction can be made for the equi-affine geometry of
surfaces. See [11], [23], [25], for precise statements and a variety of geometric examples.

Next we discuss how to generalize our construction of invariant numerical approxima-
tions to differential invariant signatures. Let κ(P1) be the G-invariant curvature for the
plane curve C at a given point P1 ∈ C. Let r be the dimension of G, and choose r − 1
nearby points P2, . . . , Pr ∈ C. Since the G-invariant curvature κ(x, u(r)) depends on rth or-
der derivatives, “generically” there exists a unique constant curvature curve C0(P1, . . . , Pr)
passing through them. We let κ̃(P1, . . . , Pr) denote its curvature, which is, by construction,
a joint invariant of the chosen points, and forms a G-invariant finite difference approxima-
tion

κ̃ = κ̃(P1, . . . , Pr) ≈ κ(P1) (5.3)

to κ(P1). In fact, we conjecture that the following series expansion holds:

κ̃ = κ +
1

r




r∑

j=1

Lj


 dκ

ds
+

1

r(r + 1)




∑

1≤j≤k≤r

LjLk


 d2κ

ds2
+ · · · , (5.4)

where κ, dκ/ds, etc. are evaluated at P1, and Lj =
∫ Pj

P1
ds denotes the (small) G-

invariant “distance” from the point P1 to Pj , measured as the G-invariant arc length along
the constant curvature curve C0.

Example 5.4. Consider the translation group (x, u) 7→ (x + c, u + d). In this case,
κ = du/dx, and the constant curvature curves are the straight lines. Then κ̃(P1, P2) =
(u2 − u1)/(x2 − x1). Therefore, the expansion (5.4) is merely the Taylor series, and so
is valid to general order! (Note that since dx is the translation-invariant arc length, the

“length” of a straight line segment is
∫ P2

P1
dx = x2 − x1.)

Example 5.5. The series expansion (2.3) for the Euclidean curvature is not quite of
the form (5.4), since the small parameters should be measured in terms of the Euclidean arc
length along the interpolating circle, and not in terms of the direct straight line distance.
Thus, we should replace a = d(A, B) by the circular chord length La = rθa, where θa is
the angle measured from the center of the circle between the points A and B. By the Law
of Cosines, if r = 1/κ̃ denotes the radius of the circle, we have a2 = 2r2(1− cos θ), leading
to the series expansions

La = a +
1

24
κ̃2a3 +

3

640
κ̃4a5 + · · · , a = La − κ̃2

24
L3

a +
κ̃4

1920
L5

a + · · · , (5.5)
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connecting the circular and straight line distances. Substituting (5.5) into (2.3) produces
the revised series expansion

κ̃ = κ +
1

3
(Lb − La)

dκ

ds
+

1

12
(L2

b − LaLb + L2
a)

d2κ

ds2
+

+
L3

b − LaL2
b + L2

aLb − L3
a

60

d2κ

ds2
+

(Lb − La)(2L2
b + 5LaLb + 2L2

a)

180
κ2 dκ

ds
+ · · · ,

(5.6)
which is the proper Euclidean version of the general series expansion (5.4).

Thus, the conjectured series expansion (5.4) is valid up to order 2 for the translation
group, the Euclidean group, and the special affine group. Direct verification for other pla-
nar groups appears to be problematic because the explicit formulas for the finite difference
approximation κ̃ are not as easy to come by. Moreover, the Euclidean series (5.6) shows
that the natural generalization of (5.4) is not valid to order 3. The proof of the second
order expansion (5.4), and the determination of higher order terms, remains an important
but difficult open problem.

Approximations to the G-invariant arc length from P1 to P2, say, are determined by

computing the arc length L(P1, P2) =
∫ P2

P1
ds from P1 to P2 along the constant curva-

ture curve C0(P1, . . . , Pr) passing through them. Thus, one obtains a G-invariant finite
difference approximation to the derivative κs at a point P1 by choosing r nearby points
P2, . . . , Pr+1 and using the G-invariant difference quotient

κ̃s =
κ̃(P1, . . . , Pr−1, Pr) − κ̃(P1, . . . , Pr−1, Pr+1)

L(P1, P2)
≈ κs(P1), (5.7)

where L(P1, P2) is computed along one of the two possible constant coefficient curves
C0(P1, . . . , Pr−1, Pr) or C0(P1, . . . , Pr−1, Pr+1), or, more symmetrically, their average. As
in the Euclidean and affine cases, a centered difference approach should be more accurate.
The details and practical implementation of this construction remain to be fully explored.

Formulae (5.3), (5.7) thus provide a completely G-invariant finite difference approx-
imation to the signature curve S associated with a curve C ⊂ E, guaranteeing that two
curves related by a group transformation have identical discrete signatures. Thus our ap-
proach provides a fully group-invariant method for numerically approximating the differen-
tial invariant signature curves of arbitrary transformation groups. Extensions to surfaces
are straightforward in principle, although the precise numerical implementation remains
to be fully explored.

6. Conclusions and Future Applications.

In this paper, we have proposed a new paradigm for the group invariant recognition
of visual objects. For objects whose boundaries are described by plane curves, the group-
invariant signature curve, which is parametrized by the group-invariant curvature function
and its first derivative with respect to the group-invariant arc length element, provides a
complete representation of the equivalence class of objects under group transformations,
with two curves being mapped into each other if and only if they have identical signature
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curves. Our experiments with a real medical image strongly indicate that the procedure
is not solely of theoretical interest, but has the potential to be practically applied to real
image recognition. Therefore, these differential invariant signature curves hold a consid-
erable promise for resolution of a number of key processes in low-level visual recognition
systems. The following points indicate some potential (perhaps speculative) applications
and extensions.

1. Recognition and symmetry : Shape invariants are essential in object recognition
since they are independent of the viewpoint in which the given object is observed. Thus
an important feature of visual recognition of complex objects is the ability of the detector
to find symmetries of objects, or between two similar objects. In the traditional approach,
[24], [44], or the method based invariant indexing functions and frame invariants, [46], this
requires the identification of distinguished landmark points. Methods that avoid the use of
landmarks include the geometric saliency approach of Sato and Cipolla, [13], and a method
based on matching of moments of Gross and Boult, [22]. In the context of signature curves,
recognition under group transformations would reduce to the determination of whether
the two signature curves (or the appropriate portions thereof) are the same. Similarly, the
symmetries of an object are revealed by the fact that the signature curve is retraced, as
many times as the number of symmetries. Thus, recognition of objects and symmetries
reduces to the problem of determining when parts of two signature curves are identical. In
fact, some standard landmark points are automatically represented in the signature curve,
e.g., corners produce singularities in both the Euclidean and affine signature curves (with
the curve going off to infinity), while inflection points also produce singularities in the
affine signature curve.

2. Tracking : When objects or cameras move, the continued recognition and tracking
of the image is a problem of key importance in vision. The signature curve appears par-
ticularly well adapted to this problem, since the signature curve remains unchanged even
while the object and or camera is in motion, provided the motions belong to the symmetry
group in question, e.g., remain equi-affine. Inclusion of additional transformations, includ-
ing scaling and projective maps, would cause no additional problem at the theoretical level
— one merely uses the corresponding signature curve for the similarity, the full affine, or
even the projective group. See [15] for further discussion and applications to the problem
of collision avoidance in moving cameras based on image divergence.

3. Occlusions: When an object is partially occluded, one can still analyze the unob-
structed portion to recognize and reconstruct those parts which lie behind the occlusion.
Since the signature curve is purely local, the part of the signature curve corresponding
to the unoccluded part remains fixed, and so by comparison with the corresponding por-
tions of known signature curves, one can reasonably expect to continue to recognize and
thus reconstruct the object in question. This would be particularly useful in motion and
tracking applications, where the temporary occlusion of an object does not affect the sig-
nature curve itself, even while the object and or camera is in motion, and thus subject to
Euclidean or affine transformations, during the occlusion process.

4. Real images and noise: Any method based on the use of differential invariants suf-
fers from the possible high degree of noise caused by the presence of high order derivatives
in them. At first glance, the signature curve would appear to compound the problem by
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incorporating the derivative κs into the picture, thereby increasing the order of differen-
tiation by one further degree. Although we still must apply this approach to real image
data, there are several avenues that should be cause for optimism. First, segmentation of
the curve can be done after some degree of smoothing is performed on the original noisy
image. In order to maintain the group invariance, even under denoising, we would advo-
cate a suitably group-invariant geometric diffusion-based smoothing, [40], which, in the
Euclidean case, means the Euclidean curve shortening flow, [43], and, in the affine case,
means affine curve shortening, [47]. See [17], [39], [40], for generalizations of these flows
to other subgroups of the projective group, and [41] for further generalizations to arbitrary
transformation groups in arbitrary dimensions. Noisy data would produce high rates of
change of curvature, and hence spurious outlying portions of the signature curve. One can
use various statistical approaches to replace a noisy discrete signature curve by a smooth
approximant, including least squares spline fitting, with outlying points either ignored,
or having very low weight. An alternative approach would be to smooth the signature
curve itself directly before using it to perform recognition of the object. An interesting
question is whether a geometric curve shortening flow on the signature curve itself can be
constructed in such a manner as to reflect some form of smoothing on the original object.

5. Discrete invariants: Every joint invariant based on the discrete mesh points used
to approximate a smooth curve provides a discrete invariant signature function. Here, we
advocate using those joint invariants that reduce, in the limit as the mesh size goes to 0,
to known differential invariants. But any of these discrete invariants could be of use in
recognition and tracking problems. The recent preprint of Bruckstein, Rivlin, and Weiss,
[9], describes related ideas; the crucial (and, in our opinion, tremendously important)
distinction is that our approach allows arbitrary discretizations of the curve, whereas in
their approach, the distances (or other joint invariant measures) between mesh points
is required to be the same, making the actual discretization quite tricky to implement.
By allowing arbitrary discretizations, we achieve a far broader range of discrete invariant
signatures. The work of Cooper et. al., [30], and Rothwell et. al., [46], is concerned
with a more algebraic use of joint invariants in computer vision; a direct comparison
with our approach would be of great interest. Finally, the preprint of Sato and Cipolla,
[48], describes an interesting use of integrals of differential invariants and semi-differential
invariants in the tracking of curves under motion and occlusion. They use a variant of the
signature curve, based on plotting two of these integral invariants, to keep track of the
object. The use of such integral invariants provides yet another mechanism for reducing
noise in real images.

6. Comparison of signature curves: The recognition problem includes a comparison
principle that would be able to tell whether two signature curves are close in some sense.
Thus, we effectively reduce the group-invariant recognition problem to the problem of
imposing a “metric” on the space of shapes, but now by “shape” we mean the signature
curve, not the original object. Since the symmetry of an object is manifested by the
retracing of its signature curve, one should impose a metric on the space of weighted
curves An enlightening discussion of possible metrics on shape shape, including Hausdorff,
Monge, and variants, appears in [35]. Practical issues require that the appropriate metric
be noise-resistant; for instance, one might weight outlying parts of the signature curve very
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low. We are now studying this important issue.

7. Other symmetry groups: We have presented explicit formulas for the differential
invariant signature curves associated with the Euclidean and equi-affine groups, but the
final section indicates how the theory can be readily extended to general continuous trans-
formation groups. The practical implementation, though, requires the introduction of a
suitable invariant numerical approximation based on the joint invariants of the group.
Even when a classification of these joint invariants is available (e.g., the similarity and
projective groups) there is still an important issue that remains as a barrier to the im-
plementation — namely the determination of the formula for the interpolating constant
curvature curve through a suitable collection of points. Preliminary computations indicate
that, in contrast to the area-preserving cases discussed here, the interpolation equations in
general are transcendentally nonlinear and do not admit a readily explicit solution. We are
currently at work on means of bypassing this practical complication, with the goal being a
suitable group invariant linearization of the interpolation formulae. This will be reported
on in a subsequent publication.

8. Higher dimensional vision: Although we have concentrated on the use of dif-
ferential invariants for plane curves, the methods as stated all have higher dimensional
analogues, with the key cases being space curves and surfaces. All such variants are
handled by Cartan’s general theorems, [11], which apply to the differential invariants of
arbitrary submanifolds under arbitrary transitive transformation groups. For space curves,
the corresponding signature curve will be parametrized by the group invariant curvature
and torsion, and their derivatives with respect to the group-invariant arc length, and so
will be a curve in a four-dimensional signature space. In the case of surfaces under the
Euclidean or affine group, there are two fundamental differential invariants (the Gaussian
and mean curvatures and their affine analogues, [23], [25]) that appear in a Frenet frame,
and each of them has two invariant derivatives, leading to six fundamental differential
invariants in all. Thus, the signature surface will be a two-dimensional submanifold of
a six-dimensional signature space. Furthermore, the invariant numerical computation of
these differential invariants requires a solution to the interpolation problem, which remains
to be investigated.

Appendix. Derivation of Curvature Series Expansions.

In this appendix, we outline how the curvature series expansions (2.3) and (3.16) are
derived. Essentially, they are the direct result of a sequence of straightforward, albeit
algebraically involved, Taylor series manipulations.

For the Euclidean case, we consider three successive points on the curve A, B, C, as
in Figure 1. We can apply a Euclidean transformation so as to arrange B = (0, 0), and
that the tangent line to the curve to horizontal; for A, C sufficiently close to B we can
represent our curve as the graph of a function y = u(x) with u(0) = 0, ux(0) = 0, while
A = (h, u(h)), C = (k, u(k)), with h < 0 < k small. We expand in a Taylor series

u(h) = 1
2u2h

2 + 1
6u3h

3 + · · · , u(k) = 1
2u2k

2 + 1
6u3k

3 + · · · , (A.1)

where u2 = uxx(0), u3 = uxxx(0), etc. (For simplicity we shall just indicate the terms
of lowest order, since higher order terms can be readily and systematically generated
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with sufficient computational stamina (or the aid of a computer algebra system). Since
h < 0 < k, the two triangular distances have the expansions

a =
√

h2 + u(h)2 = −h − 1
8
u2

2h
3 − 1

12
u2u3h

4 −
(

1
48

u2u4 + 1
72

u2
3 − 1

128
u4

2

)
h5 + · · · ,

b =
√

k2 + u(k)2 = k + 1
8u2

2k
3 + 1

12u2u3k
4 +

(
1
48u2u4 + 1

72u2
3 − 1

128u4
2

)
k5 + · · · .

We can invert these series to determine expansions for h and k in terms of the triangular
distances:

h = −a + 1
8u2

2a
3 − 1

12u2u3a
4 +

(
1
48u2u4 + 1

72u2
3 − 7

128u4
2

)
a5 + · · · ,

k = b − 1
8u2

2b
3 − 1

12u2u3b
4 −

(
1
48u2u4 + 1

72u2
3 − 7

128u4
2

)
b5 − · · · .

Therefore, the third leg of the triangle can be directly expanded in powers of the other
two:

c =
√

(k − h)2 + [u(k) − u(h)]2

= (k − h)
[
1 + 1

8u2
2(h + k)2 + 1

12u2u3(h + k)(h2 + hk + k2) + · · ·
]

= (a + b)
[
1 − 1

8κ2ab + 1
12κκsab(a − b)

−
(

1
48κκss + 1

128κ4
)
ab(a2 − ab + b2) − 1

72κ2
sab(a − b)2 + · · ·

]
.

(A.2)

In the final expression, we utilized the reduced formulae for the values of the curvature
and its arc length derivatives at x = 0,

κ(0) = u2, κs(0) = u3, κss(0) = u4 − 3u3
2,

which are based on our simplification ux(0) = 0. The fact that a, b, c are all Euclidean
joint invariants implies that each term in the series (A.2) must be a differential invariant,
and hence expressible in terms of κ and its arc length derivatives. Similarly, the area of
the triangle in Figure 1 has the expansion

∆ = 1
2

[
hu(k) − ku(h)

]

= hk(h − k)
[
1
4u2 + 1

12u3(h + k) + 1
48u4(h

2 + hk + k2) + · · ·
]

= ab(a + b)
[
1
4
κ + 1

12
κs(b − a) + 1

48
κss(a

2 − ab + b2) + · · ·
]
.

(A.3)

Substituting (A.2), (A.3) (and their higher order terms) into Heron’s formula (2.2) com-
pletes the proof of (2.3).

The proof of the affine version (3.16) is similar. One uses an affine transformation to
place the central point Pi in the affine pentagram at the origin, so that the remaining points
have the form Pi−2 = (h, u(h)), Pi−1 = (k, u(k)), Pi+1 = (l, u(l)), Pi+2 = (m, u(m)), for
h, k, l, m sufficiently small. The triangular areas are then expanded in Taylor series, as in
(A.3), and the result is plugged into the formulae (3.10), (3.13), (3.12), for the affine curva-
ture of the ellipse passing through the mesh points. the resulting Taylor series expansion,
after extensive algebraic computation, reduces to (3.16). Owing to the complexity of the
calculation, as yet we have not tried to compute any of the higher order terms in the affine
expansion.
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Figure 4. The Polar Curve r = 3 + 1
10 cos θ.

32



-3 -2.5 -2 -1.5 -1 -0.5 0.5

-1

-0.5

0.5

1

The Original Ellipse

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

Euclidean Signature Curve

-3 -2.5 -2 -1.5 -1 -0.5 0.5

-1

-0.5

0.5

1

Discretization with 50 Points

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

Discrete Euclidean Signature

-3 -2.5 -2 -1.5 -1 -0.5 0.5

-1

-0.5

0.5

1

Discretization with 250 Points

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

Discrete Euclidean Signature

Figure 5. The Ellipse r
(
1 + 2

3 sin θ
)

= 1.

33



-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

The Original Curve

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Euclidean Signature Curve

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Discrete Euclidean Signature

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Affine Signature Curve

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Discrete Affine Signature

Figure 6. The Polar Curve r = 3 + 1
10 cos 3θ.

34



-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

The Original Curve

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Euclidean Signature Curve

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Discrete Euclidean Signature

-5 5 10 15 20

-200

-100

100

200

Affine Signature Curve

-5 5 10 15 20

-200

-100

100

200

Discrete Affine Signature

Figure 7. The Polar Curve r = 3 + 1
10 cos 3θ + 1

40 cos 7θ.

35



-0.5 0.5 1

-0.5

0.5

1

The Original Curve

0.25 0.5 0.75 1 1.25 1.5 1.75 2

-2

-1

0

1

2

Euclidean Signature Curve

0.25 0.5 0.75 1 1.25 1.5 1.75 2

-2

-1

0

1

2

Discrete Euclidean Signature

0.5 1 1.5 2 2.5

-6

-4

-2

2

4

Affine Signature Curve

0.5 1 1.5 2

-4

-2

2

4

Discrete Affine Signature

Figure 8. The Curve x = cos t + 1
5 cos2 t, y = sin t + 1

10 sin2 t.

36



-0.5 0.5 1

-1

-0.5

0.5

1

The Original Curve

0.5 1 1.5 2 2.5 3 3.5 4

-7.5

-5

-2.5

0

2.5

5

7.5

Euclidean Signature Curve

0.5 1 1.5 2 2.5 3 3.5 4

-7.5

-5

-2.5

0

2.5

5

7.5

Discrete Euclidean Signature

0.5 1 1.5 2 2.5

-6

-4

-2

2

4

Affine Signature Curve

0.5 1 1.5 2

-4

-2

2

4

Discrete Affine Signature

Figure 9. The Curve x = cos t + 1
5 cos2 t, y = 1

2x + sin t + 1
10 sin2 t.

37



Original Canine Heart
MRI Image

Blow Up of the Left Ventricle

Boundary of Left Ventricle

10 20 30 40 50 60

20

30

40

50

60

Original Contour

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

Discrete Euclidean Signature

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.06

-0.04

-0.02

0.02

0.04

0.06

Smoothly Connected
Euclidean Signature
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