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Abstract

In this note, we apply the very general active contour evolution equations
formulated in [30, 31] in order to derive new algorithms for 3D segmenta-
tion. The algorithm is based on defining feature-based Riemannian metrics
in which the feature of interest may be considered to lie at the bottom of a
potential well. The segmentation is then carried out relative to a gradient
flow equation which generalizes ordinary mean curvature flow.
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1 Introduction

This purpose of this note is to apply the conformal Euclidean curvature
flows derived in [30, 31] in order to derive a new algorithm for segmentation
and contour finding in volumetric images. Of course, there are already a
number of interesting methods devoted to snakes or active contours both
in two and three dimensions described in the literature. The underlying
principle is based upon the utilization of deformable contours which conform
to various object shapes and motions. Snakes have been used for edge and
curve detection, segmentation, shape modelling, and visual tracking. The
recent book by Blake and Yuille [9] contains a collection of papers about
deformable contours together with a large list of references to which which
we refer the interested reader.

In the classical frameworks, one considers energy minization methods
where controlled continuity splines are allowed to move under the influence
of external image dependent forces, internal forces, and certain contraints set
by the user. See [29, 59, 9, 16]. As is well-known there may be a number of
problems associated with this approach such as initializations, existence of
multiple minima, and the selection of the elasticity parameters.

The present paper uses the theory of conformal Euclidean curvature flows,
whose mathematical theory has been extensively developed in [31]. In the
three dimensional case considered here, the idea is to multiply the Euclidean
area by an image dependent stopping function tailored to the features (e.g.,
maximum of the norm of the gradient) which we wish to capture in the
segmentation. We then compute the corresponding gradient flow which nat-
urally turns out to be a generalization of the classical mean curvature flow
in differential geometry used in minimal surface theory. This gives us new
3D active contour models which efficiently attract the initial snake to the
features of interest (which basically lie at the bottom of a potential well).

We should add that independently in [12, 13, 54] a very similar approach
has been implemented. Moreover, there are important surface evolution ap-
proaches in [11, 38] which initially motivated this work. There are also related
flows in [58, 61].

Finally, the full justification of the evolution equations used in this paper
from a viscosity point of view has been carried out in [31].



2 Remarks on Classical Snakes

In this section, we very briefly sketch the energy based optimization approach
to deformable contours as discussed in [29, 59, 9]. Our treatment will of
course be very incomplete, and once again we refer the interested reader to
the collection of papers in [9], especially [60]. For simplicity, we treat the 2D
case.

Let C(p) = (z(p),y(p))’ be a closed contour in R* where 0 < p < 1.
(Note that the superscript 7' denotes transpose.) We now define an energy
functional on the set of such contours (“snakes”), £(C). Following standard
practice, we take £(C) to be of the form

E(C) = &Em(C) +P(C),

where &;,; is the internal deformation energy and P is an external potential
energy which depends on the image. (Other external constraint forces may be
added.) A common choice for the internal energy is the quadratic functional

1
En(C) = [ wrIICI* + walp)|Cl*d.

where w; and w, control the “tension” and “rigidity” of the snake, respec-
tively. (Note that the subscripts denote derivatives with respect to p in the
latter expression, and || - || denotes the standard Euclidean norm.)

Let I : R? — R be the given grey-scale image. Then the external potential
energy depends on the image I(x,y). It can be defined by

PC) = [ PCR)p.

where P(z,y) is a scalar potential function defined on the image plane. The
local minima of P attract the snake. For example, we may choose P to be

P(z,y) = ¢|VG, x I(z,y)],

for a suitably chosen constant ¢, in which case the snake will be attracted
to intensity edges. Here G, denotes a Gaussian smoothing filter of standard
deviation o.

One also typically considers dynamic time-varying models in which C(p)
becomes a function of time as well; see [60]. In this case, one defines a kinetic
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energy and the corresponding Lagrangian (the difference between the kinetic
energy and the energy € defined above). Applying the principle of least
action, one derives the corresponding Lagrange equation which one tries to
solve numerically employing various approximations.

In the approach to be given below, we will also use an energy method.
However, in contrast to more ad hoc approaches, we believe that our energy
is intrinsic to the given geometry of the problem, as is the correspondent
gradient flow. Moreover, as we will see, kinetic energy is not needed for a
successful snake algorithm, and indeed potential energy suffices if chosen in
the “proper” manner.

3 3-D Active Contour Models

In this section, we will formulate our geometric 3-D contour models based on
surface evolution ideas. This model is derived by modifying the Euclidean
area by a function which depends on the salient image features which we wish
to capture. In order to do this, we will need to set up some notation. (For
all the relevant concepts on the differential geometry of surfaces, we refer the
reader to [19].)

Let S : [0,1]x[0,1] — R? denote a compact embedded surface with (local)
coordinates (u,v). Let H denote the mean curvature and N the inward unit
normal. (Recall that H is the arithmetic mean of the principal curvatures
[19].) We set

Sy = a—S, S, = 8_5

Ju Jv

Then the infinitesimal area on S is given by
dS = (|| Sull* 1Sl = (Su, S0)*)" *dudv.

Let ¢ : @ — R be a positive differentiable function defined on some open
subset of R*. The function ¢(z,y,z) will play the role of a “stopping” func-
tion. Thus the function ¢(x,y, z) will depend on the given grey-level image.
For example, the term ¢(z,y, z) may chosen to be small near a 3D edge, and
so acts to stop the evolution when the 3D contour reaches the edge. In this
paper, we will choose

6= e
L VG, I

(1)



where [ = I(z,y, z) is the (grey-scale) volumetric image and G, is a Gaussian
(smoothing) filter.

It is a beautiful classical fact that the gradient flow associated to the area
functional for surfaces (i.e., the direction in which area is shrinking most
rapidly) is given by

08
ot

(See [10, 24, 39, 42, 62] and the references therein.) What we propose to do
is to replace the Euclidean area by a modified area depending on ¢ namely,

— HN. (2)

S, := ¢dS.

For a family of surfaces (with parameter ), consider the ¢-area functional

e

Then a simple integration by parts argument gives that

% = —// JOHN — V¢ + tangential components)dsS.

Since the tangential part only affects the parametrization, it may be dropped,
leading to the model
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= ¢HN — V. (3)

Asin [11, 38], a constant inflation term v may be added to give the mdoel
as

=, = O(H + )N = V6. (4)

This inflationary constant may be taken to be either positive (inward evolu-
tion) or negative in which case it would have an outward or expanding effect.
For sufficiently large v, this would cause the evolution to act as an expanding
“balloon” or “bubble” [16, 58].

The level set version of (3) [43, 44, 50, 51, 52] is given in terms of the
evolving level set function ¥(z,y, z,t) by

ov
ot

VU
= ¢[|V¥||div(

HW’H) + V- VU (5)



Here again one may add a constant inflation term to the mean curvature to
derive the level set version of (4)

.. VvV
U, = ¢|| V|| (div(

) Ve T (6)

(As usual we take W to be negative in the interior and positive in the exterior
of the zero level set.)

The 2D versions of (4) and (6) were implemented in [30, 31, 64]. Despite
their apparent similarities, there are also some important differences between
the 2D and 3D models discussed here. Indeed, the geometric heat equation
will shrink a simple closed curve to a round point without developing sin-
gularities, even if the initial curve is nonconvez [26]. The geometric model
for active 2D contours from [30, 31] is based on this flow. For surfaces, it
is well-known that singularities may develop in the mean curvature flow (2)
non-convex smooth surfaces [25]. (The classical example is the dumbbell.)
We should note however that the mean curvature flow does indeed shrink
smooth compact convex surfaces to round “spherical” points; see [28].

We should add that because of these problems, several researchers have
proposed replacing mean curvature flow by flows which depend on the Gaus-
sian curvature k. Indeed, define

k4 := max{k,0}.
Then Caselles and Sbert [14] have proven that the affine invariant surface
flow
as
ot
will (smoothly) shrink rotationally symmetric compact surfaces to ellipsoidal
shaped points. (This has been proven in [7] in the convex case. See also

= sign(H)/f},_M./\? (7)

[3, 6].) Thus one could replace the mean curvature part by sign(H)ﬁ:}I_/4 in
(6). Another possibility would be to use /4;1/2 as has been proposed in [40].
See also [58]. (Note that Chow [15] has demonstrated that convex surfaces
flowing under x'/? shrink to spherical points.) All these possible evolutions
for 3D contours are now being explored and will be reported in a future
publication.



4 Numerical Implemenations

We will now describe a numerical experiment to illustrate our methods. One
of the most successful implementations of curvature flow equations is that
based on the Osher-Sethian level set formulations of the evolutions in [43,
44, 50, 51, 52, 38]. This formulation is global, and so effectively increases the
problem dimension by one. (More local implementations may be found in the
recent work [1].) Since we have been working with volumetric data, we have
found it advantageous to use methods that do not increase the dimensionality
but still keep the advantages of the Osher-Sethian level set algorithm (i.e.,
the ability to handle singularities and topological changes such as breaking,
merging, and extinction). This means that we have not implemented the
level set version (6) of the generalized mean curvature flow (4), but instead
have chosen another numerical strategy.

The numerics we have implemented are reported in [63]. One possible
method is based on combining a singular perturbed reaction-diffusion equa-
tion (an Allen-Cahn type equation) with a dynamic mesh algorithm as in
[41]. The modified mean surface evolution equation can then be directly im-
plemented without paying the price of going up in dimension which may be
very expensive for volumetric data sets.

The simulations which we give below make use of such a methodology
and will be reported in full in [63]. All of our runs were done on an Silicon
Graphics single processor Indigo machine. The segmentation was accom-
plished in 60 iterations which ran for less than 10 seconds on the computer.
The volumetric image itself was 128 x 128 x 60. Figure 1 shows a slice of the
original MRI brain image together with an initial spherical bubble which was
placed in the ventricles, and Figure 2 indicates the resulting segmentation.
No noise filtering was performed on the image.

5 Conclusions

In this note, we have considered a natural differential geometric approach
based on image-dependent Riemannian metrics and the associated gradient
flows for active 3D contour models. This approach yields evolution equations
which are the natural generalization of the classical mean curvature flow to
minimal surfaces defined relative to a conformal Fuclidean metric.
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