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Abstract. The BBM or Regularized Long Wave Equation is shown to possess only
three non-trivial independent conservation laws. In order to prove this result, a new
theory of Euler-type operators in the formal calculus of variations will be developed in
detail.

1. Introduction. The nonlinear partial differential equation to be studied in this
paper was derived for the description of the unidirectional propagation of long waves
in certain nonlinear dispersive systems. In their pioneering work on this problem (8),
Korteweg and de Vries were led to the equation

ut + ux + uux + uxxx = 0 (1-1)

as an approximation to the behaviour of long waves in shallow water. Much recent
research has been concerned with the many strange and intriguing properties of the
KdV equation (1-1); see, for instance, (11) and (12) for an introduction to this subject.
From the viewpoint of the present paper the most important of these properties are
the existence of an infinite series of independent conservation laws, which was first
proved in (13), and the 'soliton' solutions, whose properties are rigorously derived in
(10). It has generally been supposed that these two properties are complementary, in
the sense that either one implies the other one. However, this intuitive guess has yet
to be rigorously formulated, much less proved.

In 1972, Benjamin, Bona and Mahony (2) proposed that, given the same approxima-
tions and assumptions that originally led Korteweg and de Vries to their equation, the
partial differential equation

ut + ux + uux-uxxt = 0 (1-2)

could equally well be justified as a model of the same phenomena. Equation (1-2) is
called the BBM equation or regularized long wave (RLW) equation. The word 'regular-
ized ' refers to the fact that from the standpoint of existence, uniqueness and stability
theory, Equation (1-2) offers considerable technical advantages over (1 • 1), as is demon-
strated in the aforementioned reference. However, many of the more sophisticated
mathematical properties of (1*1) are not known or fail to hold for (l-2). In this paper
it will be proved that (1-2) possesses only three independent conservation laws, in
contrast with (1-1). Perhaps before stating a theorem to this effect, the notion of a
conservation law should be defined.

Definition 1 • 1. Given a partial differential equation

A(x,t,u,ux,ut,...) = 0



144 PETER J. OLVER

involving two independent variables x, t and one dependent variable u, a conservation
law is an equation of the form

Tt + Xx = 0 (1-3)

(the subscripts denoting derivatives), which is satisfied for all solutions of the equation
A = 0. Here T is called the conserved density and X is called the conserved flux. Note
that for any conservation law, the quantity

=
J - t

Tdx,

for solutions such that the integral converges, is a constant of motion, i.e. independent
of time.

Note first that if T = Px and X = -Pt for some P, then the conservation law (1-3)
is trivially satisfied. In general, we shall be interested in non-trivial conservation laws.
If Tlt •••,Tn are the densities of n different conservation laws, then these laws are called
dependent if there exist constants cx, •••,cn such that

for some P; otherwise the laws are called independent. In this paper we shall restrict
the notion of conservation law somewhat by requiring the density T to depend only on
x,u,ux,uxx

If u is replaced by — u — 1 in Equation (1-2), we are led to the somewhat simpler
equation

ut-uxxt = uux. (1-4)

We will find it easier to work with Equation (1-4) in lieu of (1-3). Note that the conser-
vation laws of these two equations are in one-to-one correspondence under the above
transformation. The main result of this paper is:

THEOREM 1-2. The only non-trivial, independent conservation laws of (1-4) in which
T(x, u, ux, uxx,...) depends smoothly on x, u and the various spatial derivatives of u are

I t is routine to check that (1-5, 1-6, 1-7) are indeed conservation laws for equation
(1-4); these were already discovered in (2). The only new information is that these are
the only non-trivial conservation laws. Note that the conserved density T is not
restricted to be of polynomial form for the theorem to hold.

The methods developed here to prove Theorem 1-2 constitute the beginnings of a
comprehensive algebraic machinery for use in the investigation of conservation laws
of partial differential equations. (See (14) for some preliminary applications to other
equations.) These techniques were inspired by the recent work of Gel'fand and Dikii
on the formal calculus of variations (6,7), and also by that of Kruskal, Miura, Gardner
and Zabusky on the KdV equation (9).
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In Section 2 we generalize the notion of an Euler operator or variational derivative,
cf. (15). The goal of this section is to solve equations of the form

where E is the ordinary Euler operator and 3l is a constant coefficient linear differen-
tial operator. A recursive procedure is developed for this purpose. The main results
from this section are the notion of a substitution map, given in Definition 2-10; and
Theorem 2-19, which solves (1*8) in the special case 3) = 1 —d2/dx2. These techniques
have more widespread application than just to the BBM equation; this will be reported
in subsequent publications.

In Section 3 the general results of the preceding section are specialized to study the
BBM equation and ultimately prove Theorem 1-2. The main step is to show that if any
conservation laws other than those listed in Theorem 1-2 exist, the conserved density
T must be equivalent to a density of the form

2" = T'(x,u-uxx,ux-uxxx,...).

This can be inferred from the arguments immediately after Lemma 3-1, and is a direct
consequence of Theorem 2-19. T' must also satisfy fairly stringent requirements, and
the remainder of Section 3 proves that these requirements can never be satisfied.

In view of Theorem 1-2, it is of interest to investigate whether or not the BBM
equation possesses soliton solutions. I t is quite easy to verify that solitary wave
solutions of (1-2) have the form

(*• 0 = 3 jz^sechz \ {cx ~ T^d>+s)'
(cf. (5)). Preliminary numerical evidence on the interaction of these solutions was
contradictory, with some studies indicating that the waves were indeed solitons
(4, 5), whereas others claimed that a small rarefaction wave appeared after interaction
(l). More recent numerical studies of J. Bona, W. Pritchard and R. Scott(3) have
shown conclusively that the two solitary waves do not emerge from the interaction
unscathed, and are therefore not solitons. Combining this result with Theorem 1-2
lends additional credence to the general connexion between solitons and conservation
laws alluded to above. What is clearly lacking is a general procedure for relating these
two concepts. Although it was remarked by Lax (10) that the eigenspeeds of solitons do
provide constants of motion, it is not altogether clear how these are related to conser-
vation laws of the form (1-3). I hope that the future will provide insight into this
intriguing question.

2. A calculus of Euler operators. The Euler operator arises in the calculus of varia-
tions as the operator which to each Lagrangian of a variational problem assigns the
Euler equation associated with that problem. Gel'fand and Dikii's work in the formal
calculus of variations (6, 7) demonstrates the importance of this operator in the alge-
braic theory of differential equations. In this section a parametrized family of Euler-
type operators is introduced, and some impoitant properties of this family are derived.
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First we need to make our notation precise. Let I c R be an open subinterval, and
let A = A7{w, x} denote the algebra of all C00 complex-valued functions of the form
L(x,u,ult ...,un), where xel, u,ult...,uneU, and n is arbitrary (but finite). The
algebra A represents the collection of' smooth' differential equations on / , where x is
viewed as the independent variable, u the dependent variable, and wf represents the
derivative dhi/dx*. For convenience, the derivative 8/duit acting on A, will be denoted
by dt. (Also d0 = 8/du.) The (total) derivative operator for A is

d d ">

The Euler operator on A is
oo

hi = 2J \~-D)loi.

(Note that in the expressions for D and E, for any fixed LeA only finitely many terms
in the sums are needed.) The key property of E is:

THEOREM 2-1. Given LeA,L = DP for some PeAif and only if E(L) = 0.

Proof. The proof that ED = 0 is left to the reader.
Let <fi:I->M,(fieCm. Then for any closed subinterval [a, b] <= / , integration by parts

shows that

^ej
b
aL(x,e4>,e<}>',..., e0<»>) dx = J " E[L(x, e<j>,..., e^)]</>(x) dx + B^x)

for some function B^ depending on L and (/>. Therefore
a

f L(x,0,...,<j>W
J a

b

+ca,b

for some constant Cab depending only on a, b. Hence

L(x, <j>,..., 0<">) -L(x, 0,..., 0) = dB^

for any (f>. Given x,v,,ux, ...,un, choose § with <j>{x) = u, <p'(x) = uv ..., <p<n)(x) = un,

and let „, . „ . .
P(x,u,...,un) =B^,(x).

This is the required PeA.
Definition 2-2. Given AeC, define the operators

£ (2-1)
t = 0

8(A) = £ X%. (2-2)
t = 0

(Note that E(0) = E, 2(0) = d0.)

THEOREM 2 1 ' . Given AeC, LeA, then L = (D - A) P for some P e A if and only if

E{A)P = 0.
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Proof. It suffices to notice that

D-X = eXxDe~Xx,

hence E(A) = e^E tr**.

This reduces Theorem 2-1' to Theorem 2 1 .

COROLLARY 2-3. Suppose Ax,..., Xn are distinct complex numbers. Let

Then L = S P for some P if and only ifE(Aj)L = Oforj = 1, ...,n.

Proof. Suppose A + fi and E{\) L = 0 = E(ji) L. Then L = (D - A) Q for some Q e A.
Moreover,

0 = £(/*)£ = #(/*) (D - A) Q

Therefore Q = (D—/i)P for some PeA. The general case follows by induction.
For the sake of completeness, we now describe the analogue of Corollary 2-3 in the

case some of the factors in the constant coefficient differential operator 3) might be
repeated.

Definition 2-4. For each non-negative integer k and each A eC, define the operators

= S (J.) (A - D)*-*dt, (2-3)

- * ^ . (2-4)

(The operators E(k) = E{k)(0) were originally denned in (9).)
Using the formula

diD = Ddi + di-1, (2-5)
we conclude that

E<-k\X) (D - A) = ^»-«(A). (2-6)
Suppose

p(z) = zN + aN_1z
N-1 + ...+alz + a0

= ft (z-A}.)"V
J = I

is a complex coefficient polynomial, so a0, ...,aN_1,Av ..., AneC, the Ay's are distinct,
and mv ...,mn are positive integers. Associated with p there is a constant coefficient
differential operator:

S, = p(D) = DN+a v_! Z)^-1 +. . . + <»! Z> + a0

= ft (2>-A,)"V. (2-7)

Corollary 2-3 and formula (2-6) prove:
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THEOREM 2-5. Let 2i be as in (2-7). Then L = 3>P for some P e A if and only if

PROPOSITION 2-6. For P,QeA,wehave

E{PQ)=

ivhere E™ =

Proof. We compute, using Leibnitz' formula:

i = 0

S {-D)i
i = 0

J o iQ [(*ft) ( -D)* - *^P. ( - D f Q + Q ( -Df -% Q.(-D)*PJ

This proves the lemma. (There are generalizations of this formula for E^k)(A), but these
will not be used.)

In the sequel, we shall be interested in solving equations of the form

(2-8)

for P,QeA, where 3) is as in (2-7). The reason for using complex valued coefficients for
the polynomials in A now becomes clear, since Si can then be factored into a product of
first order differential operators, D — A3-.

LEMMA 2-7. Suppose A, /ieC. Then

E{\)E(ji) = d(/j,-A)E{/i) = E{X)d{/i-X). (2-9)

Furthermore, if k is a non-negative integer, then

E^(X)E{/i) = (-l)kdk(/i-A)E(ft). (2-10)
Proof. To show (2-9),

Moreover, (2-5) implies
8(fi-A){D-/i) = (D-A)8(/i-A). (2-11)

This yields the second equation of (2-9).
To prove (2-10), we need the following lemma.

LEMMA 2-8. Let A, /i, k be as in Lemma 2-6, then

(2-12)
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Proof.

| Q [(A-it) + (fc-D)]*-*dt

i=k+i

from which (2-12) follows. Note that we are justified in interchanging the order of
summation since to apply either sum to any fixed PeA only finitely many terms are
necessary.

Next note that
min{t,j}

(2-13)

which may be proved by induction using (2-5). Therefore,
« min{i,j}

— 2 J 2 J \ — •

} °° ii

= s s ( - i r

Hence, by Lemma 2-8, (2-6) and (2-14),

3 = k i = 0

= s

(A-/

Using Theorem 2-5 and Lemma 2-7, we immediately prove

THEOREM 2-9. Suppose 2> is a constant coefficient differential operator, which factors as
in (2-7). If P, Q, Re A satisfy the equation

E(fi)P = 3)Q = R

then di(n-\j)R = 0 (j=l,...,n, i = 1, ...,ra,-).

Definition 2-10. Suppose KeA. The substitution map associated with K is the map
yK: A -> A such that
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Note that S?K is a differential algebra morphism, i.e.

. (2-15)

Given AeC, let Sfx be the substitution map associated with ux — Au = (D — A) w.

LEMMA 2-11. Let AeC. Given PeA, 8{A)P = 0 if and only if P e l m ^ . In other
words, 8{A) P = 0 if and only if P can be written as a polynomial in ux — Au, u2 — Ault

u3 — Au2,....

THEOREM 2-12. Suppose 3> is a constant coefficient differential operator, as given by
(2-7). Let Sf be the substitution map associated with K = 3>{u). Then P e \mSf if and only
if 8i{Xj)P = 0 (j=l,...,n, i = l,...,mf).

Combining Theorems 2-9 and 212 yields:

THEOREM2-13. Suppose p(z) is a complex polynomial with @ = p(D) the corresponding
constant coefficient differential operator. Let S? be the substitution map associated with
K = p{/i-D)u. IfP,Q,ReA satisfy

E(/i)P = 2)Q = R

then RelmS?.

This theorem partially resolves our problem. It would be nicer if we could assert
that P and Q were both in Im^" and could find some way to relate S?-XP to Sf-^-Q.
In general this is not true, but this is only because of the presence of extraneous linear
differential polynomials, as we will soon see.

LEMMA 2-14. Suppose A, /ieC. Then

E{n)SrK = STx(n-A-D)E(ii). (2-16)

(As above, Sfx is the substitution map associated with ux — AM.)

Proof. First note that

Ado). (2-17)

Therefore E(ji) Sfx = 9>x \ - A90 + 2 (/* - Df ( 3 W - Aa4)l

which proves (2-16).
Next we choose for once and all a right inverse to the operator d(A), which means an

operator d'^A): A -+ A such that 8{A) a->(A) P = P for all P e A. For instance, if we let
vx = ut — Au, ...,vn = un — Aun_x, then any P e A can be uniquely written as

P = P{x,u,v1,...,vn),
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and one candidate for the right inverse is

= \P(x,u,v1,...,vn)du. (2-18)
Jo

LEMMA 2-15. Given PeA, ive have E(fi) P e Im Sfx if and only if there exists P' e Im SfK

with E(/i) P' = E(fi) P.

Proof. The hypothesis is equivalent to d(A) E(/i) P = 0, so by Lemma 2-7 and Theo-
r e m 2 ' 1 / j 8(A)P = (D-fi + A) R,
forsometfeA.Let P'= P-^-^d-^R,

so E{/i)P' = E(/i)P. Then (2-11) shows that

8(A)P' = 8(A)P-(D-fi + A)R = 0,

which proves the result.

COROLLARY 2-16. IfP, Q eA and d(A)P =Q,thenQ = d-1(A)P + RforsomeReIm^'x.
We now return to the problem of finding the general solution to Equation (2-8). For

reasons that will become apparent later, we generalize this problem and try to find the
general solution of m

E{fi)P = S £ + 2 a,(x) up (2-19)
io

where Si = p{D) for some complex polynomial p and a,j{x) are C00 complex-valued
functions of x. The solution to this problem seems to be too complicated to write down
explicitly. Instead, we shall devise a reasonably straightforward recursive procedure
for reducing the solution of (2-19) to that of finding the general solution to a 'reduced'
equation of the same type involving 3) = q(D) and a,(x), but where 3) has degree n — 1.
Iteration of this procedure n— 1 times reduces (2-19) to an equation of the form

E(JM) P = aQ+2 djix) up (2-20)
i=0

where a is a constant, hence P is now an arbitrary element of A. The reason for the
introduction of the a's is that even when the original a/s are all zero, the recursive
procedure may introduce non-zero a;-'s in the reduced equation. After deriving the
recursive procedure, we will illustrate its application to two concrete examples, which
will prove to be of use in the subsequent section.

First suppose that A is a root of the polynomial ̂ >. Let q(z) = p{z)/(z — A). If we define
the functions y = /?0, filt..., f$n by the equations

A — ' s V - D ) ^ , (2-21)
i = 0

then P(D)Q+ £ atuf = (D-A) ^(-D)Q + "sVj+i«>1 +7«- (2-22)
j=o L j=o J

Substituting (2-22) into (2-19) yields

£y«2) = (D - A) [q(D) Q + S/?,-+1«,].
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Theorem 2-13 along with Lemma 2-15 now imply

P-fru* = S^xP + {D-/i)R (2-23)

for some P,ReA. Since P is determined only up to addition of elements of Im (D—/i)
anyway, we will always identify P — \yu2 and S^_XP. Lemma 2-14 shows that

- ^ _ A EP = q(D) Q + n% fii+1«,. + c e**, (2-24)

for some ceC. Without loss of generality we may take c = 0, since this will not affect
the final form of P and Q. Applying d(/i — A) to (2-24), and using the identity

d(ii-\)q(D) =
we find that . .... n

1(fi-Ay = 0.
Therefore 8(fi — A)Q = —<p{x) where 0 is an arbitrary solution of the inhomogeneous
linear ordinary differential equation

q(D +ii - A) [<f>] = i:/Ji+1{ji - A)K (2-25)

From Corollary 2-16 we find
Q= - ^

for some Q e A. Moreover, we now have

q(D) Q + SA3.+1 u, = - ^ _ A [q(D) Q + Ea;. u,] (2-26)

for suitable functions &j(x). Combining equations (2-21-2-26), we are led to the follow-
ing recursive procedure for solving (2-19):

(1) Let A be a root of p(z) and let q(z) = p(z)/(z — A).
(2) Find y = /?„, &,...,/?„ from Equations (2-21).
(3) Let

n
l ( x ) , (2-27)

and let </>(x) be an arbitrary solution of the differential equation

q(D+/j,-A)(/)(x) = d(x) (2-28)
(4) Solve the equation

m Ti—1

S &i K-+i + C» - A) uf] = q(D) [jm] + 2 pj+1 ut (2-29)
^=0 ; = 0

for the functions a0,..., a~. (This is always possible.)
( 5 ) S e t P = ^ _ A £ + iyW

2, (2-30)

Then P and Q are solutions of

^C») (P) = gr(D) 0 + Say tei. (2~9)

Iteration of this procedure » — 1 times will yield the general solution of (2-19).
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As a first application, consider the equation

In this case a,-, ftp y, 8, <f>, dij are all zero, so we have the following theorem:

THEOREM 2-17. Suppose A, /ieC Then P, Qe A satisfy

if and only if there exist P,Q,ReA such that

and E{P) = Q

Example 2-18. Consider the case A = fi = 0. Then Theorem 2-17 implies that if P is
the Lagrangian of some variational problem, then E(P) = DQ for some Q if and only if
Q = Q'(x,ultU2,..., un) and there is an equivalent Lagrangian P' = P'(x, ultu2, ...,un)
to P, such that

'(x,u,...,un_1)) = -Q\x,u,...,un_j).

For instance if P = uu2 — 2uux u%, then

EP = 2M2 - 6uxu2 = D{2u1 - Zu\).

Then Q' = 2u- 3%2 and P'(u) = - u2 + us. These satisfy EP' = - Q'. Moreover,

P'K)= -u\

as was guaranteed by the theorem.
As a second application of the recursive procedure, we consider the equation

E(P) = (Z)2-A2)Q. (2-31)

Here p(z) = z2~A2 and, taking +A as the root, q(z) = z + A. Since <xy = 0, we get
fij = 0 for all j , soS = 0. Step three implies that </>(x) solves the equation Dcj> = 0, hence
0 = c for some constant c. Equation (2-29) shows that a0 = c. Step five now shows that

(2-32)

This example shows the necessity of allowing a/s to appear in the general formulation
of the problem. To solve (2-32), we again use the recursive procedure. Now /?0 = 0,
y = c and we find § = <j> = 0. Therefore

P =

Combining these results, we have proved:
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THEOREM 2-19. Suppose A e C. Let Zf be the substitution map associated with u2 — \2u.

Then for P,QeA, E(P) = (D*-A*)Q

if and only if there exist P,Q,BeA with

Q=SpQ-cu

and EP = Q.

Notice that in this theorem an extraneous term not in the image of the substitution
appears. Indeed

It can be seen that in general, except for the appearance of some of these extraneous
quadratic terms, we could write P =SfP, Q = {-l)nS?Q, EP= Q, where Sf is the
substitution map associated with p(/i — D) u.

3. Non-existence of conservation laws. In this section the methods developed in the
preceding section will be applied to study the conservation laws of the BBM equation

ut - uxxt = uux. (3-1)

The ultimate goal is to prove Theorem 1-2, which states that there are only three
independent conservation laws. We shall use the notation A = Aj{u, x} as in Section 2,
and the notation *A = A*XJ{u;x, t} to denote the differential algebra consisting of
all C00 functions of x, t, zc and the various derivatives of u with respect to both x and t,
defined for xel and teJ. Note that A <= A*. We have two total derivative operators
on A*: D, the total derivative with respect to x, and Dt, the total derivative with
respect to t. Using this notation, Theorem 1-2 states that the only conservation laws,
DtT + DX = 0, with Te A are those given by (1-5, 1-6, 1-7). Note first that integration
by parts shows that DtT = E(T) u -

for some Se A*. Therefore we can replace (1-3) by the equivalent condition

E(T)ut = DX, (3-2)

for some (different) XeA*. This has the effect of eliminating the trivial conservation
laws when T = DP for some PeA. Let us abbreviate

V = Ut, W = Uxt.

Note that the only ^-derivatives of u which can occur in X are of the form

&n+1u/dxndt;

moreover, since (3-2) holds only when u is a solution of (3-1), we can replace these
derivatives for n ^ 2 by an expression only involving u, uv u2,. •., un, v, w; for example
uxxxt — uuxx + ux-uxt- Therefore we can assume that X only depends on x, u,uv ...,

E(T)v = D*X (3-3)
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holds identically, where
D* = w8v + {v- uux) 8W + Du,

Du = 8x + u180 + u281+.... (3-4)
(Here 3V = d/dv, etc.)

LEMMA 3 1 . If X and T satisfy (3-3), then

X = c[v2 -w2- u2w - \u*\ + Pv + Qw + R, (3-5)

and T = -C-v? + S,

where c e C, P,Q,R,Ss A, and satisfy

E(8) = (1-B*)Q, (3-6)

DR = Quux. (3-7)

Proof. Applying the operators d\, dv dw and d% to (3-3) (and using subscripts to denote
partial derivatives), results in the equations

wXvvv + (v- uux) Xvvw + 2XVW + Du Xvv = 0,

Xn + wXmw + (v- uux) Xvww + XWW + DUXVW = O, (3-8)

2XVU, + wXvww + (v- uux) X^^, + Du X^ = 0.

Now if the highest derivative of u occurring in Xww were un for some n ^ 1, the third
equation would imply that Xvw must depend on un+1, otherwise the term un+18n X^
would not cancel. Similar reasoning applied to the second equation shows that Xm

must depend on un+2, but the first equation shows that this is absurd. Similar argu-
ments allow us to conclude that Xvv, Xvw and X^ can only depend on x, u, v, w.

Next, define the vector fields
n=-u8w + 8 w ^ ( 3 9 )

If the terms involving ux and the terms not involving ux in (3-8) are separated, we find

82TTX = 8v8wnX = 82
wnX = 0,

8\pX = 8v8wPX = 8\pX = 0.

Therefore nX = A'v + B'w + C, (3-10)

where A', B', C, A", B", C" do not depend on v or w. Since [p, n] = udv, we have

8VX = A*v + B*w + C*, (3-10')

where A*, B*, C* do not depend on v or w. A similar application of the formula
[8v,p] = 8W shows 8^x = A**v + B**w + C**_ ( 3 . 1 ( r )

Integrating (3-10') and (3-10") yields

X = Av2 + Bvw + Cw2 + Pv + Qiu + R, (3*11)
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where A, B, C depend only on x and u, andP, Q,ReA. Substituting (3-11) in (3-3) and
equating the coefficients of the various powers of v and w, yields

DB + 2A + 2C = 0,i (3-12)
DC + B = 0.)

and DP + Q-uuxB = E(T),\
DQ + P-2uuxC = 0, I (3-13)

DR-uuxQ = 0. J
The solution of (3-12) is

A =c1e-2x + c2e
2x + c

B = 2cle~2x-2c2e
2x, ' (3-14)

C = c1e~

for constants c0, cv c2eC. Elimination of P from (3-13) gives

ET = (l-
DR = Quux. j (3>15)

Finally, to eliminate the exponential terms in A, B and C, we apply E(l) and E( — 1) to
the first equation of (3-15), and use (2-9) and Theorem 2-1'. This yields

8(-l)ET = (3DB-3B + 2D2C-4:DC + 2C)u,

8( + 1) ET = {3DB + BB + 2D2C + 4DC + 2C) u.

Applying 8( +1) to the first and d( — 1) to the second on these, and equating the results
shows that 6B + 8DC = 0.

Comparing this with (3-14) demonstrates that c2 = 0 = c2, which completes the proof
of the lemma.

Note that the leading terms of X and T in (3-5) correspond to the conservation law
(1-7). Thus we can without loss of generality take c = 0, and concentrate on deter-
mining all P, Q, R and S which satisfy (3-6) and (3-7). The purpose behind the extensive
investigations of Section 2 is now revealed. Let Sf denote the substitution map asso-
ciated with a) =u — u2. From Theorem 2-19 we conclude that

(3-16)8 = ST&' + \c'(ux - u)2 + DZ

and ES' = Q'.

The terms involving c' £ C in the expressions for Q and S can be seen to form the second
conservation law, (1-6). We now leave these aside, and assume that Q = SfQ', 8 =
Note that from the assumption on S, we have proved that aside from the conservation
laws (1-6) and (1-7), all nontrivial conserved densities must be equivalent to one of the
form T = T(x>u — u^ul — uz, ...,un — un+2). Let Ao = l m ^ <= A. Define the operator
d'k: Ao-> A ,̂, for h a nonnegative integer, from the equation
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Note that on Ao
[fe/2]

8'k = 2 dk_2i. (3-17)
0

3-2. Define the operator

<r = S -Dfc(MMx)^:A0^A. (3-18)
A: = 0

, £ eA 0 saiis/i/ (3-6-3-7),

o-.(l-D2)Q = uDQ. (3-19)

Proof. Apply the Euler operator 2? to (3-7) and use Proposition 2-6. This shows

S E™Q( - D)k(uux) = uDQ.
fc = 0

Therefore it suffices to show that

Applying SP to the last equation in (3 • 16) and using the definition of d\ shows that

Q= £
i=0

Therefore, Equations (2-6), (2-14), (3-6) and (3-17) imply

k

k [i/2]

[4/2] fc-2i

1 = 0 3=0

[km
*

This proves the lemma.

LEMMA 3-3. Suppose Pe Ao

o-P=f(x)ux (3-20)

/or some smooth/. Thenf = 0 awrf P is just a function ofx.

Proof. Assume that P depends on a;,«,«!,..., Mn. Given A e C, define the operators

i=0 i=0

CO 00

t = 0 l > i = 0
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Note that Pe Ao if and only if de(l)P = 0 = do(l)P. A short computation shows that
for any A + + 1, and any integer m,

m

t=0 i=0

m

i + 1
i=0 i=0

Choosing 2m > n shows that for any P e Ao,

(These also trivially hold for A = + 1.) Next define the operators

(If I »\

* t * ] ( J )
(For fc = 0, omit the term i = 0.) Define

(AeC). (3-22)

t = 0

Using the binomial theorem, we can show that

[de(A),d0(,i)] + [de(A),

[8e(X), 6e(/i)] + [30(A), eo(^)] = (A+/i) 8'0(A +/)
for any A,

Now given PeA0 satisfying (3-20), Equations (3-22) imply

Next, Equations (3-23) imply

But finally (3-21) shows that

By induction we can show that

de(m)P = O = do(m)P

for any positive integer m. However, this shows djP = 0 for j = 0,..., n, hence P is
just a function of x. This completes the proof of the lemma.

LEMMA 3-4. IfQeA0 and satisfies (3-19), then Q is a constant.

Proof. We abbreviate wn = un — un+2. Suppose Q depends on X,(J),O)V ..., wn with
d'nQ = Q'n =t= 0 for some TO ̂  1. The highest-order term in uDQ is <^«w.n+3. Similarly
the highest order term in (1— D2)Q is — Q'n(on+2, hence the highest order term in
<r(l — D2)Q is (r(Q'n)un+i. Therefore (x(Q'n) = 0, and Lemma 3-3 implies Q'n = q(x) for
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some nonzero function q. Now we have Q = q[x) a>n + Q, where d'n Q = 0. As before, the
highest-order terms in a(l - D2) Q are

" Wn-l/ "-n+3'

where Q,'n-\ = d'n-iQ- Comparison with (3-19), and again using Lemma 3-3, shows

where 8'nQ = 0 = d'n_x Q. Finally, the highest order terms in cr(l - Dz) Q are now

- ?««n+3 - (» + 2) tph. Mn+2 ~ (? + 2q') UUn+2 - (T(Q'n_2) Un+%.

We conclude that

A final application of Lemma 3-3 shows that q = 0, which is a contradiction. Therefore
Q only depends on x and w, but a short calculation shows that (3-19) is only satisfied
when Q is a constant. This completes the proof of Lemma 3-4.

If we take Q to be a constant, and solve for P, R, 8 in Lemma 3-1, we just rederive the
first conservation law (1-5) of the BBM equation. This completes the proof of the main
theorem.

The author would like to thank Prof. J. Bona for many valuable and helpful dis-
cussions on this paper.
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