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Abstract. The dynamic evolution of linearly dispersive waves on periodic domains
with discontinuous initial profiles is shown to depend dramatically upon the asymptotics of
the dispersion relation at large wave number. Asymptotically linear or sublinear dispersion
relations produce slowly changing waves, while those with polynomial growth exhibit dis-
persive quantization, a.k.a. the Talbot effect, being (approximately) quantized at rational
times, but a non-differentiable fractal at irrational times. Numerical experiments suggest
that such effects persist into the nonlinear regime, for both integrable and non-integrable
systems. Implications for the successful modeling of wave phenomena on bounded domains
and numerical challenges are discussed.
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1. Introduction.

The most common device used to model physical wave phenomena is to approximate
the fully nonlinear fluid mechanics problem in a targeted physical regime by first suitably
rescaling the original variables and then expanding the rescaled system in powers of an
appropriate small parameter. Truncation at low (typically first) order produces a mathe-
matically simpler system, whose solutions, one hopes, closely track the originals, at least
over an initial time span.

At the linear level (at least in the homogeneous, isotropic regime), conservative wave
dynamics is entirely determined by the dispersion relation, which relates the temporal
frequency of an oscillatory complex exponential solution to its wave number (spatial fre-
quency). The standard modeling paradigm can thus, at the linear level, be viewed as
replacing the full dispersion relation by a suitable approximation. However, in most per-
turbative models, while the approximate dispersion relation is designed to fit its physical
counterpart well at small wave numbers, e.g., they have the same Taylor polynomial at the
origin, they often have little in common at the high frequency range. For example, the free
boundary problem governing water waves has a dispersion relation that is asymptotically
proportional to a square root of the wave number. On the other hand, in the shallow
water regime, the unidirectional Korteweg—deVries model’s dispersion relation is cubic,
and of the wrong sign, the competing Regularized Long Wave (RLW) or Benjamin—-Bona—
Mahony (BBM) model’s is asymptotically zero, while that of some standard bidirectional
Boussinesq systems is asymptotically constant. Provided one restricts attention to smooth
solutions, or to unbounded domains, the discrepancies in the dispersion of high frequency
modes do not seem to play a very noticeable role. However, on bounded domains, rougher
solutions, which have more substantial high frequency components, are affected in a signifi-
cant manner owing to subtle and as yet poorly understood resonances among the varyingly
propagating Fourier modes.

In, [38], the second author observed that, for integral polynomial dispersion rela-
tions, i.e., those whose coefficients are integer multiples of a common real number A, the
solution in question has the remarkable behavior that, at irrational times (relative to the
ratio B = £/ between the length ¢ of the interval and the dispersion constant \), it is a
continuous, but fractal, non-differentiable function, whereas at rational times, the solution
is piecewise constant! While previously unnoticed! by experts in dispersive wave theory,
the phenomenon of dispersive quantization had, in fact, been first discovered in the early
1990’s, in the contexts of optics and quantum mechanics, by Michael Berry and various
collaborators, [2, 3,4, 6,23], who named it the Talbot effect in honor of a striking 1836
optical experiment by the photographic pioneer William Henry Fox Talbot, [46]. Exper-
imental confirmations of the Talbot effect in optics and in quantum revival are described
in [6]. Rigorous analytical results and estimates justifying the Talbot effect can be found
in the work of Kapitanski and Rodnianski, [27,43], Oskolkov, [40,41], and Taylor, [47].

T The work of Oskolkov, [41], which analyzes both the linear Schrodinger equation and the
linearized Korteweg—deVries equation on periodic domains, is a notable exception.



The initial aim of the present paper is to extend these studies to basic linear differ-
ential and integro-differential equations, depending on a single spatial variable, that have
non-polynomial dispersion relations. Our main conclusion is that the large wave number
asymptotics of the dispersion relation plays the dominant role governing the qualitative
features exhibited by their rough solutions on periodic domains. In analogy with the basic
Riemann problem of gas dynamics, [53], we focus on the specific initial data provided by
a step function. The resulting Fourier series solution is easily constructed, and of inde-
pendent interest. For example, when the dispersion relation is polynomial, the solution
at rational times has the form of a Gauss or Weyl exponential sum, of fundamental im-
portance in analytic number theory since the work of Hardy, Littlewood, and Vinogradov,
[24,51]. Indeed, as explained in [22], since the behavior of such exponential sums has
implications for the size of the zero-free region of the Riemann zeta function in the critical
strip, further refinement of known estimates could provide a route to proving the Riemann
hypothesis!

We will also initiate the investigation of such effects in the nonlinear regime. The
revolutionary discovery of the soliton was sparked by the original movie of Zabusky and
Kruskal, [55], that displayed a numerical simulation of the solution to a particular periodic
initial-boundary value problem for the Korteweg—deVries equation with small nonlinearity.
(In contrast, the celebrated studies of Lax, Levermore, and Venakides, [31, 32, 49, 50], are
concerned with the small dispersion regime and convergence to shock wave solutions of the
limiting nonlinear transport equation.) Because Zabusky and Kruskal’s selected initial data
was a smoothly varying cosine, the Talbot fractalization effect was (perhaps fortunately!)
not observed. (And, technically, the elastically interacting waves that emerge from the
initial cosine profile are not true solitons, in that these only exist for the full line problem,
but, rather, cnoidal waves embedded in a hyperelliptic finite gap solution, [30, 34].) Our
numerical experiments with step function initial data strongly indicate that the dispersive
quantization/fractalization effect is present in the periodic boundary value problems for
both the integrable nonlinear Korteweg—deVries and Schrodinger equations, as well as
non-integrable models of a similar nature, and extends well beyond the weakly nonlinear
regime.

One consequence of these studies is that, contrary to the conventional wisdom, when
dealing with nonlinear wave models on bounded intervals, the principal source of analytic
difficulty may be, counterintuitively, not the nonlinear terms, but rather the poorly under-
stood behavior of linearly dispersive partial differential equations. Our investigations im-
ply that the qualitative behavior of the solution to the periodic problem depends crucially
on the asymptotic behavior of the dispersion relation at large wave number, reinforcing
Benjamin et. al.’s critique, [1], that the Korteweg—deVries equation, say, is an unsatisfac-
tory model for surface waves because its cubic dispersion relation effectively transmits the
high frequency modes in the wrong direction, with unboundedly negative phase velocity
and group velocity, inciting unphysical interactions with other solution components. And
indeed, in the periodic problem, this shortcoming is observed as the apparently number-
theoretic resonant interaction of high frequency modes spawned by the initial data serve
to produce a-physical fractalization and quantization effects in the engendered solution.



2. Dispersion Relations and Wave Models.

Consider a linear, scalar, constant coefficient partial differential equation for a function
u(t, ) of time t and a single spatial variable x. Recall, [53], that the dispersion relation
w(k) relates temporal frequency w to wave number (spatial frequency) k of an oscillatory
complex exponential solution of the form

u(t,z) = et Fz=wt), (2.1)

The differential equation will be called purely dispersive if the resulting function w(k) is
real. (Complex dispersion relations indicate the presence of dissipative or viscous effects
that damp out solutions, or, alternatively, ill-posedness, depending on the sign of their
imaginary part.) Given a real dispersion relation, the phase velocity ¢, = w(k)/k prescribes
the speed of an individual oscillatory wave, while, as a consequence of the method of
stationary phase, wave packets and energy move with the group velocity ¢, = dw/dk,
[53]. These differ when the dispersion relation is nonlinear, causing initially localized
disturbances to spread out in a dispersive fashion — a physical effect that can be seen,
for example, by throwing a rock into a pond and observing that the individual waves
move at a different speed, namely the phase velocity, than the overall disturbance, which
moves at the group velocity. The dispersion relation of nonlinear equations is that of their
linearization.
For example, the basic transport equation

u, +cu, =0 (2.2)
has linear dispersion relation w(k) = ck, while the one-dimensional wave equation
Uy, = cu,, (2.3)

has bidirectional dispersion relation w(k) = tck. Linearity of these dispersion relations
has the consequence that all Fourier modes travel with a common speed, thereby producing
traveling waves of unchanging form. The simplest quadratic dispersion relation, w(k) = k2,
appears in the free space Schrodinger equation

iu, =u,,, (2.4)
which is fundamental to quantum mechanics, [48]. The linear beam equation
Uyt + Uppze = O? (25)

which models small vibrations of a thin elastic beam, has bidirectional quadratic dispersion:
w(k) = £k%. The third order linear wave model

uy + Uy, =0, (2.6)

which is sometimes known as the Airy partial differential equation, since it admits solutions
in terms of Airy functions, [39], or, alternatively, the linear Korteweg—deVries equation,
has cubic dispersion relation w(k) = k3.

A fertile source of interesting wave models is the free boundary problem for water
waves, meaning the dynamics of an incompressible, irrotational fluid under gravity. Let
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Figure 1.  Water Waves.

us review, following [7,37,53], the derivation of models in the shallow water regime.
For simplicity, we restrict our attention to two-dimensional flow, with x indicating the
horizontal coordinate and y the vertical. (See [54] for the deep water regime, and [7, 36]
for extensions to three-dimensional models.)

Suppose that the water sits on a flat, impermeable horizontal bottom, which we take
as y = 0, and has undisturbed depth h. We assume further that the surface elevation at
time t is the graph of a single-valued function

y=h+n(t ), (2.7)

i.e., there is no wave overturning. The periodic problem of interest here takes n to be a
periodic function of x with mean 0, while, in contrast, solitary waves require n(t,x) — 0
as |x| — oo. The motion of the fluid is prescribed by the velocity potential ¢(¢,z,y),
which is defined within the domain occupied by the fluid D, = {0 <y <h+n(t z)};
see Figure 1. In the absence of surface tension, the free boundary problem governing the
dynamical evolution of the water is then given by

¢+ 3507+ 350, +9n=0,

P2 y = h+n(t,z),
Py + Dy = 0, 0<y<h+n(tz),
¢y:O7 y:O7

in which g is the gravitional constant. As shown in Whitham, [53; §13.4], the dispersion
relation for the linearized water wave system, obtained by omitting the nonlinear terms
from the free surface conditions, is

w(k)? = gk tanh(hk). (2.9)
In the shallow water regime, one introduces the rescaling
l l
x — Lz, y — hy, t — —t, n — an, ¢ —> gar . (2.10)
c c
in which /¢ represents a typical wave length, A the undisturbed depth,

c=+/gh (2.11)
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the leading order wave speed, and a the wave amplitude. Substituting (2.10) into the free
boundary value problem (2.8), one formally solves the resulting rescaled Laplace equation
for the potential ¢(t,z,y), as a power series in the vertical coordinate y, in terms of the
horizontal velocity u(t,z) = ¢, (¢, x,0) at a fraction 0 < 6 < 1 of the undisturbed depth h.
Substituting the result into the free boundary conditions results in a system of equations
of Boussinesq type, which, is then truncated to, say, first order in the small parameters

a h?
= _ = __ 2.12
o h b /B 62 ) ( )
representing the ratio of undisturbed depth to height of the wave, and the square of the
ratio of height to wave length. We are interested in the regime of long waves in shallow
water, in which both « and /8 are small, but of comparable magnitudes. As in [7,11, 37],

the resulting Boussinesq systems are all of the general form

yr +u1’ —l—oz(nu)x +5(auxxx _bnxxt) = 07

2.13
ut—i_nx—i—auux—i—ﬁ(cnxxx_duxxt)207 ( )

where the parameters a, b, ¢, d, depend on the depth, and are subject to the physical con-
straints

a+b=1(36-1), c+d=1(1-6%, a+btctd=1L (2.14)

The particular system

u, +1n, +auu, =0, nt—l—ux—i—a(nu)x—f—%ﬁumxzo, (2.15)

valid for # = 1, i.e., on the free surface, was derived by Whitham, [52], and Broer,
[14], and shown to be completely integrable (in fact, tri-Hamiltonian) by Kaup, [28], and
Kupershmidt, [29]. Bona, Chen, and Saut, [8], subsequently found that this system is, in
fact, linearly ill-posed — although the question of nonlinear ill-posedness is, apparently,
still open. The corresponding second order models can found in [7, 37].

The second stage is to restrict the bidirectional Boussinesq system (2.14) to a sub-
manifold of approximately unidirectional solutions, building on the usual factorization of
the second order wave equation (2.3) into right- and left-moving waves. Substituting the
right-moving ansatz

n=u+ziauv’+ (16 -4HBu,, + - (2.16)

and truncating to first order reduces the Boussinesq system to the Korteweg—de Vries equa-
tion

U 4 u, + Sauu, + 2 Buy,, =0, (2.17)
for unidirectional propagation of long waves in shallow water. In the long wave regime,
B < 1, the nonlinear effect is negligible, and the equation reduces to the linear equation

which in turn can be mapped to the third order Airy equation (2.6) by passing to a moving

coordinate frame and then rescaling. Alternatively, since to leading order u, ~ —u,, one
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can replace the third derivative term, u,,, ~ —u,,;, leading to the RLW/BBM model,
[1,42],
uy+u, + Sauuy, — §Buy,, =0. (2.19)

Observe that both first order models (2.17,19) are independent of the depth parameter
0, which only appears in the second and higher order terms in «, 5. Inverting the unidi-
rectional constraint (2.16) leads to the same Korteweg—deVries equation and RLW/BBM
equations for the surface elevation 7. Again, this is only true up to first order, and the
higher order terms are slightly different, [37]. Since the preceding unidirectional models
do not admit the exact water wave dispersion relation (2.9), Whitham, [52], proposed the
alternative model

u, + Llu] 4+ 3 auu, =0, (2.20)

xT

in which the Fourier integral operator

Llu] = %/_OO /_OO w(k) e *E@E=Oy(t, ) d¢ dk

exactly reproduces the rescaled water wave dispersion relation given by (2.9) when g =
h = 1. However, Benjamin et. al.,[1], argue that the linear dispersion in Whitham’s model
is insufficiently strong to counteract the tendency to shock formation.

Let us also list a few important integrable nonlinear evolution equations, from a variety
of physical sources. The nonlinear Schrédinger equation

fu, =u,, +|ulu (2.21)

arises in nonlinear optics as well as in the modulation theory for water waves, [54, 56].
Its linearization has quadratic dispersion relation w(k) = k2. Integrability was established
by Zakharov and Shabat, [57], and the fact that it admits localized soliton solutions that
preserve their shape under collision plays an important role in transmission of signals
through optical fibers, [25]. The integrable Benjamin—Ono equation

u, +uuy, + Hlu,,] =0, (2.22)

in which H is the Hilbert transform, given by the Cauchy principal value integral

Hu] = ][ T ule)de (2.23)

—00 5—113

arises as a model for internal waves, [16]. Its linearization has quadratic dispersion relation
w(k) = k? sign k, which is the odd counterpart of the quadratic Schrodinger dispersion.

Another integrable model is the Boussinesq equation
U’tt = uxm + %Oé <u2)1’x :l: %Buxxxx7 (224)

also derived by Boussinesq from the water wave problem. While the Boussinesq equation
admits waves propagating in both directions, it is not, in fact, equivalent to any of the
bidirectional Boussinesq systems (2.13), and, indeed, its derivation from the water wave
problem relies on the unidirectional hypothesis. The plus sign is the “bad Boussinesq”,
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which is unstable, whereas the minus sign is the stable “good Boussinesq”. However, both
versions admit solutions that blow up in finite time; see [33] for a detailed analysis of
solutions to the periodic problem, and also [10, 44] for further results on stability and
blow-up of solutions. An alternative, regularized version

utt = umm + %O& (u2)xm j: %ﬂumxtt (225)

was subsequently investigated by Whitham, [53]. The integrable Boussinesq equation
(2.24) and its regularization (2.25) were proposed as model for DNA dynamics by Scott
and Muto, [35,45]. The associated periodic boundary value problems can thus be viewed
as a model for the dynamics of DNA loops, while individual DNA strands require suitably
adapted boundary conditions at each end.

Let us summarize dispersion relations arising from water waves (in units so that
g = h = 1) and some of the more important shallow water models, rescaled so that
a = [ = 1. In the first three cases, taking the positive square root corresponds to right
moving waves. The final column lists their leading order asymptotics (omitting constant
multiples) at large wave number.

Shallow Water Dispersion Relations

Water waves Vk tanh k signk |k |*/? sign k
Boussinesq system, k
sign k

Regularized Boussinesq equation /1+ % k2

Boussinesq equation kA/1+ % k2 k% sign k

Korteweg-deVries k — %k:)’ k3
RLW/BBM k k1
1+ gk?

3. Linear Dispersion in Periodic Domains.
In general, let L be a scalar, constant coefficient (integro-)differential operator with

purely imaginary Fourier transform L(k) = i (k). The associated scalar evolution equa-

tion 5
u
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has real dispersion relation

We subject (3.1) to periodic boundary conditions on the interval —7m < z < 7, (or,
equivalently, work on the unit circle: x € S') with initial conditions

u(0,z) = f(z). (3.2)
To construct the solution, we expand the initial condition in a Fourier series:
o) . 1 T .
ikz —ikx
~ h = — dx. 3.3
f(z) k_g_oo ce'" ", where Cr =5 /_7T flx)e x (3.3)

The solution to the periodic initial-boundary value problem then has time-dependent

Fourier series
oo

u(t,x) ~ Z ¢, ellFe—wk)t] (3.4)

k=—0c0

In particular, the fundamental solution uw = F(t,x) takes a delta function as its initial
data, u(0,x) = é(x), and hence has the following Fourier expansion

oo

1 ilkrx—w
F(t,z) ~ o > eflkbemetr, (3.5)

=—00

The solution (3.4) to the general periodic initial-boundary value problem (3.1-2) can then
be rewritten as a convolution integral with the fundamental solution:

o) = [ " Flta—€) f(€)de. (3.6)

—T

The following result underlies the dispersive quantization effect for equations with
“integral polynomial” dispersion relations.

Definition 3.1. A polynomial P(k) = -+ ¢k + ¢, will be called integral
J

Crn
if all its coefficients are integers: ¢; € L, O

Theorem 3.2. Suppose that the dispersion relation of the evolution equation (3.1)
is a multiple of an integral polynomial:

w(k) = AP(k), for some 0#AXeR.

Let f = 2mw/X. Then at every rational time ¢t = Bp/q, with p and 0 # q € Z, the
fundamental solution (3.5) is a linear combination of q periodically extended delta functions
concentrated at the rational nodes x; = 2mwj/q for j € Z.

As in [38], this result is an immediate consequence of the following well-known lemma:

9



Lemma 3.3. Let 0 < g € Z. The coefficients of a complex Fourier series (3.3) are q—
periodic in their indices, S0 ¢, = ¢, for all k, if and only if the series represents a linear
combination of the q periodically extended delta functions concentrated at the rational
nodes x; = 2w j/q for j € Z:

= ¥ ad(a-27),

1.1
—54<i<34¢
for certain ay, ...,a, 1 € C.

Applying Theorem 3.2 to the superposition formula (3.6) produces the following in-
triguing corollary:

Corollary 3.4. Under the assumptions of Theorem 3.2, at a rational timet = 5p/q,
the solution profile to the periodic initial-boundary value problem is a linear combination
of < q translates of its initial data u(0,x) = f(x), i.e.,

(- 2 ()

—-54<i<354¢

In the case of the “Riemann problem”, the initial data is the unit step function:

0.0) = flm) =0y =] " TEIED (3.7
W= ) = o) = 1, O<z<m. ’
Under the assumption that the dispersion relation is odd, w(—k) = —w(k), the Fourier
expansion of the resulting solution is
1 2 & sin[(2j+ 1)z —w(2j+1)t]
*(t ~ = 4+ = .
w(tw) ~ g W; T ! (3:8)

whose spatial derivative is the difference of two translates of the fundamental solution,
namely, Ou*/0xr = F(t,z) — F(t,x — m). Non-odd dispersion relations produce complex
solutions, whose real part is given by the more complicated expression

(3.9)

1 & osin[(2j4+ Dz —w@j+1)t] +sin[ (2j+ 1)z +w(—25 —1)t]
?Z 27+ 1 '

N[ —

At the end of the paper, we display graphs of the solution (3.8) at some representative
times, for various odd dispersion relations, most of which are associated with water waves
models. The figures are ordered by their asymptotic order « at large wave number: w(k) =
O(| k|*) as | k| — oo. We did not use numerical integration to obtain these plots; rather,
they were produced in MATHEMATICA by summing the first 150 terms in the Fourier series
(3.8), which was adequate to capture the essential detail. (In all the cases we looked at,
summing the first 1000 terms does not appreciably change the solution graphs.) In some
plots, a tiny residual Gibbs effect can be seen at the jump discontinuities. By comparing
the various profiles, we conclude that the qualitative behavior of the solution (3.8) depends
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crucially on the asymptotic behavior of the dispersion relation w(k) for large wave number.
However, a full understanding of the various qualitative behaviors cannot be gleaned from
these few static solution profiles, and so the reader is strongly encouraged to watch the
corresponding movies that have been posted at

http://www.math.umn.edu/~olver/mvdql.html

Each movie shows the dynamical behavior of the solutions (3.8) for various dispersion
relations over a range of times; the associated figures at the end of the paper are selected
frames extracted from the corresponding movie. In some cases, the solution evolves at
a glacially slow pace, so a representative collection of sub-movies are posted. Again, we
emphasize that all dispersion relations used in the figures and movies are odd functions of
k. More general dispersion relations, which produce complex oscillatory solutions whose
real part is given by the more complicated formula (3.9), exhibit additional qualitative
features that we will investigate more thoroughly elsewhere.

Here is an attempt to convey in words the behaviors that can observed in the movies,
but are sometimes less evident in the plots appearing at the end of the paper. In all cases
considered, the large wave number asymptotics is fixed by a certain power of the wave
number:

w(k) ~ |[k|* as | k| — oo. (3.10)

In our experiments, the overall qualitative behavior seems to be entirely determined by
the asymptotic exponent «, although the intricate details of the solution profile do depend
upon the particularities of the dispersion relation. As « varies, there is a continual change
from one type of qualitative behavior to the next. Over the range —oo < a < oo, there
appear to be five main regions which are roughly demarcated as follows.

e o < 0. Large scale oscillations: The two initial discontinuities, at 0 and 7, remain
stationary and begin to produce oscillating waves moving to the left. After this
initial phase, the solution settles into what is essentially a stationary up and down
motion, with very gradually accumulating waviness superimposed. Two examples
are the dispersion relations associated with the RLW/BBM equation (2.19), with
a = —1, shown in Figure 2, and the regularized Boussinesq equation (2.25) as
well as some versions of the Boussinesq system (2.13), for which o = 0, shown in
Figure 3. Interestingly, the former becomes wavier sooner, whereas in the latter,
even after time ¢ = 1000, the smaller scale oscillations are still rather coarse, and
numerical limitations prevented us from following it far enough to see very high
frequency oscillations appear.

e 0 < a < 1. Dispersive oscillations: Each of the two initial discontinuities changes into
a slowly moving “seed” that continually spawns a right-moving oscillatory wave
train. After a while, the wave train emanating from one seed interacts with the
other, and the seeds follow along these increasingly rapid oscillations. Much later,
the solution has assumed a slightly fractal wave form superimposed over a slowly
oscillating ocean, similar to ripples on a swelling sea that moves up and down while
gradually changing form. Examples include the full water wave dispersion relation,
plotted in Figure 4, and the square root dispersion graphed in Figure 5. Observe
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that both have the same large wave number asymptotics, and the corresponding
solutions have very similar qualitative behavior, while differing in their fine details.

e o = 1. Slowly varying traveling waves: As « approaches 1, the oscillatory waves
acquire an increasingly noticeable motion to the right. Indeed, if the dispersion
relation is exactly linear, w(k) = k, the solution is a pure traveling wave u(t, z) =
f(x —t), that moves unchanged with unit speed. Having asymptotically, but not
exactly linear, dispersion relation, superimposes slowly varying oscillations on top
of the traveling wave. An example appears in Figure 6, based on the asymptotically
linear dispersion relation w(k) = /| k (k + 1) | sign k associated with, for example,
the equation’

Uy = Uy, + 10,. (3.11)

o 1 <a<2. Oscillatory becoming fractal: In this range, each of the initial discontinu-
ities produces an oscillatory wave train propagating to the right. After the wave
train encounters the other discontinuity, the oscillations become increasingly rapid
over the entire interval, and, after a while, the entire solution acquires a fractal
profile, that displays an overall motion to the right while its small scale features
vary rapidly and seemingly chaotically. An example is provided in Figure 7, based
on the dispersion relation w(k) = | k|3/? sign k corresponding to the equation

Uy = — 11Uy, (3.12)

e « > 2. Fractal/quantized: Once o reaches 2, the solution exhibits the fractal-
ization/quantization phenomenon, which provably happens when the dispersion
relation is an integral polynomial, e.g., w(k) = k" where 2 < m € Z. In such
cases, Theorem 3.2 implies that the solution quantizes at rational times, mean-
ing that, when ¢t = Bp/q it is piecewise constant on intervals of length 27/q,
and, as proved by Oskolkov, [41], continuous but nowhere differentiable at irra-
tional times. For non-polynomial dispersion with integral asymptotic exponent
2 < a € Z, most frames in the movie show a fractal profile, but occasionally the
profile will abruptly quantize, with jump discontinuities punctuating noticeably
less fractal subgraphs. We presume that, as in the polynomial case, the times at
which the solution (approximately) quantizes are densely embedded in the times at
which it has a continuous, fractal profile. However, a rigorous proof of this obser-
vation appears to be quite difficult, requiring delicate Fourier estimates. Examples
include the linearized Korteweg—deVries equation (2.6), and linearized Benjamin—
Ono equation (2.22), both of which precisely quantize, as seen in Figures 8 and 11,
and the linearization of the integrable Boussinesq equation (2.24), which appears
to do so approximately, as in Figure 9. On the other hand, if 2 < o € Z is not
an integer (or at least not very close to an integer), only fractal solution profiles
are observed; see Figure 10 for the case w(k) = | k|°/? sign k corresponding to the

T The figure can be viewed as graphing the real part of the right-moving component of the
solution to the periodic Riemann initial value problem.
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equation
(3.13)

Uy = 1u

fo g s o o

Observe that, as an immediate consequence of Corollary 3.4, for integral polyno-
mial dispersion relations, and, presumably, more general relations in this region,
the quantization effect persists under the addition of noise to the initial data, al-
though the small jumps at rational numbers with large denominators would be
overwhelmed by the noise, whereas at irrational steps one ends up with a “noisy
fractal”.
Let us outline a justification of our observation that the quantization and fractalization
phenomena hold for dispersion relations that are asymptotically polynomial at large wave
number. Assume that

w(k) ~ AP(k)+O(k™h) as | k| — oo, (3.14)

where 0 # A € R, and P(k) is an integral polynomial. Let us rewrite the corresponding
complex Fourier series solution in the form

= b, < p 00 _
u(t,z) = by + Z Ekel[kx_w(k)t]:bOJr Z fel[kx—p(k)thr Z rkelkx,

k=— o0 k=— o0 k=— o0

We assume that the coefficients b, , which are prescribed by the initial data, are uniformly
bounded, |b, | < M, as is the case with the step function. With this assumption, r, =
O(k~2), and hence the final series represents a uniformly and absolutely convergent Fourier
series, whose sum is a continuous function. Thus, the discontinuities of u(¢,z) will be
determined by the initial series, which, by Theorem 3.2, exhibits jump discontinuities and
quantization at rational times. We conclude that solutions to linear equations with such
asymptotically integral polynomial dispersion relations will exhibit quantization at the
rational times t = S p/q, where = 27 /\. A rigorous proof of fractalization at irrational
times will require a more detailed analysis.

A similar argument explains why, when the asymptotic exponent o < 0, the discon-
tinuities in the solution remain (almost) stationary. Formally, suppose w(k) = | k|* u(k),
where a < 0 and p(k) = O(1). Then, the Fourier series solution has the form

S be iika—w Dy ika L
u(t,z) =by+ fel[’” W =py+ fe’f [1—it|k|*u(k)].
o’ gl

Again, assuming that the coefficients b, are uniformly bounded, the remainder terms are
of order k~!*% with a < 0, and hence represent an uniformly convergent series whose sum
is continuous. We conclude that the discontinuities of u(¢,x) are completely determined
by those of the leading term, which are stationary.

Finally, in Figure 12 we display graphs of the temporal evolution of the solution at
the origin, u(t,0), for a representative subset of the dispersion relations we’ve considered.
In the first two figures, for the RLW/BBM and water wave dispersion, we graph on the
long time interval 0 < ¢ < 100, while in the other plots, the time interval is 0 < ¢t < 2.
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When the asymptotic power (3.10) governing the high wave number dispersion satisfies
a < 1, the time plot appears smooth. Following the non-rigorous analysis presented in
[2; Section 2], for a > 1, the fractal dimension of the time plot should be 2 — 1/(2a).
This seems correct as stated when o > 2, as these plots become increasingly fractal with
increasing asymptotic dispersion power a. However, for a near 1, the plot appears to be
initially smooth for a short time, which is followed by the appearance of increasingly rapid
oscillations. After some further time has elapsed, the graph eventually assumes a fractal
form.

4. Fractalization and Quantization in Nonlinear Systems.

In this final section, we turn our attention to the nonlinear regime. Basic numerical
techniques will be employed to approximate the solutions to the Riemann initial value
problem on a periodic domain. While we do not have any rigorous theoretical results to
justify the resulting observations, our numerical studies strongly indicate that the variety of
qualitative solution features observed in the underlying linear problem persist, at the very
least, into the weakly nonlinear regime. In particular, the fractalization and quantization
of solutions to the Airy evolution equation are observed in the numerical solutions to the
both the integrable Korteweg-deVries equation and its non-integrable quartic counterpart.
Similar phenomena have been found in nonlinear Schrédinger equations, but these will be
reported on elsewhere.

Our numerical algorithms are based on a standard operator splitting method, [26].
Consider the initial value problem for an evolution equation

w=Klul,  ulty @) = uy(@), (4.1)

where K is a differential operator (linear or nonlinear) in the spatial variable. Here the
system is always supplemented by periodic boundary conditions, but the numerical scheme
is of complete generality. Assuming the basic existence and uniqueness of solutions to the
initial value problem, at least over a certain time interval 0 < ¢ < ¢,_, we denote the
resulting solution to (4.1), i.e., the induced flow, by

u(t, ) = P (t) ug.

Operator splitting relies on writing the spatial operator as a sum
Ku] = L[u]+ Nu] (4.2)

of two simpler operators, which can each be more readily solved numerically. In all cases
treated here, L[u] represents the linear part of the evolution equation (4.1), while the
nonlinear terms appear in N|[u]. For example, writing the Korteweg—deVries equation in
the reduced formf

u, = Klu] = —u,,, +uu (4.3)

T x?

t The model version (2.17) can be changed into the reduced form by applying a combination
of scaling and Galilean boost.
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we split the right hand side into the sum of the linear part L{u] = —u,,,, with cubic
dispersion, and the nonlinear part given by the inviscid Burgers’ operator N[u] = uu,.
For numerical purposes, we are interested in approximating the solution w, (x) =
u(t,,,z) at the mesh points 0 = ¢, < t; < t, < --- which, for simplicity, we assume
to be equally spaced, with At = ¢, —t, ; fixed. (Of course, we will also discretize the
spatial variable.) We use u®(t,,z) = u5(z) to denote the numerical approximation to
the solution to the original evolution equation at times ¢, = nAt, which is obtained by
successively applying the flows ®; and ®,, corresponding, respectively, to the linear and
nonlinear parts in the splitting (4.2). The simplest splitting algorithm is the Godunov
scheme:
uﬁﬂ =, (A)D \ (At)us, n=0,1,2, ..., us = ug. (4.4)

In favorable situations, for a suitable choice of norm and appropriate conditions on the
initial data, it can be proved that the Godunov scheme is first order convergent:

lup (@) = ult,, z) || = O(AL),  as At —0.
The convergence can be improved to second order by use of the Strang splitting scheme:
uh o, =0 (30D, (A)D N (RAY UL, n=0,1,2, ...,  uf =u,. (4.5)

In this case,
| us (@) = ult,,z) || = O(AL?), as At — 0,

again under appropriate assumptions. In our numerical experiments, the results of the
Godunov and Strang splitting are very similar, and so we only display the Godunov versions
in the figures.

In particular, to solve the initial value problem for the Korteweg—deVries equation
(4.3), we apply the Godunov splitting scheme (4.4) to its linear and nonlinear parts

u, = N[u] =9, (3v?), (4.6)

u, = L{u] = —u 5

fo s s ol

each of which is subject to periodic boundary conditions. Periodicity and discretization
of the spatial variable enables us to apply the fast Fourier transform (FFT) to exactly
solve the discretized linear equation. On the other hand, the nonlinear inviscid Burgers’
equation is first written in conservative form as above. As in the linear case, we use FFT
to write the numerical approximation in the form of a Fourier series, apply convolution to
square the numerical solution, and then differentiate by multiplication by the frequency
variable. The resulting system of ordinary differential equations is mildly stiff, and is
integrated by applying the Backward Euler Method based on the implicit midpoint rule,
using fixed point iteration to approximate the solution to the resulting nonlinear algebraic
system to within a prescribed tolerance. Because the time step is small, difficulties with
the formation of shock waves and other discontinuities do not complicate the procedure.
Our results, at rational and irrational times, are plotted in Figures 13 and 14. These
clearly suggest the presence of both quantization and fractalization phenomena in the
nonlinear system. It is striking that these appear, not just, as one might expect, in the
weakly nonlinear regime, but in a fully nonlinear framework in which the coefficients of both
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the linear and nonlinear terms in (4.3) have comparable magnitude. Indeed, recent results
of Erdogan, Tzirakis, and Zharnitsky, [18], imply that, for periodic boundary conditions,
the temporal evolution of high frequency data for the Korteweg-deVries equation and
other nonlinear water wave models is nearly linear over long time intervals. So, while
it may happen that these effects may eventually be overcome by the nonlinearity, any
serious investigation will require very accurate long time numerical integration schemes.
The corresponding movies have been posted at

http://www.math.umn.edu/~olver/mvdgn.html

Our numerical results are also in agreement with a theorem of Erdogan and Tzirakis,
[17; Corollary 1.5], that, when the initial data u(0, -) lies in the Sobolev space H® with
5 > —%, then the difference between solutions of the Korteweg—deVries equation and
its linearization can be controlled, meaning that the difference lies in H" for any r <
min{3s+ 1,s+ 1}, and has at most polynomially growing H" norm.

To verify that these phenomena are not restricted to integrable models such as the
Korteweg-deVries equation, in Figures 15 and 16 we plot the solution to the non-integrable
quartic Korteweg—de Vries equation

w, = —u,,, +udu, = —u,, + (%u‘l)m. (4.7)

The numerical solution algorithm is again based on Godunov splitting, using the same
Fourier-based algorithms to integrate the individual linear and nonlinear parts.

Keep in mind that the coefficients in both the Korteweg—deVries and quartic Korteweg—
deVries equations can be rescaled to any convenient non-zero values, and thus quantization
and fractalization of the solution can be expected to appear in any version, perhaps with
the overall magnitude of the effect governed by the relative size of the initial discontinu-
ities. Thus, the Talbot effect appears to be rather robust, and hence of importance to a
wide range of linear and nonlinear dispersive equations on periodic domains.

5. Further Directions.

We conclude by listing a few of the possibly fruitful directions for further research.

e Our numerical integration schemes are fairly crude, and it would be worth implement-
ing more sophisticated algorithms. See [58] for a recent survey on the numerics of
dispersive partial differential equations. In the linear case, the complicated behav-
iors exhibited by the (partial) Fourier series sums would serve as a good testing
ground for the application of numerical methods for dispersive waves to rough
data.

e While the explicit formulas for the solutions are rather simple Fourier series, the
amazing variety of observed behaviors, solution profiles, and fascinating spatial
and temporal patterns indicates that formulation of theorems and rigorous proofs
will be very challenging. Progress may well rely on delicate estimates, of the type
used in the analysis of number-theoretic exponential sums of Gauss and Weyl
type, [51]. One is also reminded of Bourgain’s celebrated analysis of the periodic
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problems for the nonlinear Schrédinger and Korteweg—deVries equations, [12,13],
that involves similarly subtle number-theoretic analysis.

e Zabusky and Kruskal’s numerical experimentations that led to the discovery of the
soliton were motivated by the fact that the Korteweg—deVries and Boussinesq equa-
tions are continuum limits of the nonlinear mass-spring chains, whose surprising
lack of thermalization came to light in the seminal work of Fermi, Pasta, and Ulam,
[19]. It would be interesting to see how the foregoing dispersive effects might be
manifested in the original Fermi-Pasta—Ulam chains when the initial displacement
includes a sharp transition.

e An interesting and apparently difficult question is to determine the fractal dimension
of the graphs of solutions at fixed times that are given by such slowly converging
Fourier series. The wide variety of individual space plots in the accompanying
figures indicates that this is considerably more subtle than the Fourier series that
were rigorously analyzed by Chamizo and Cérdoba, [15], or those of Weierstrass—
Mandelbrot form that were investigated by Berry and Lewis, [5]. Indeed, for fixed
t, all of our series have the same slow O(1/k) rate of decay of their Fourier co-
efficients, and hence the fractal nature of their graphs depends essentially on the
detailed dispersion relation asymptotics. Further, when the large wave number
asymptotic power is in the range 1 < a < 2, the graphs appear to be (mostly)
smooth over some initial time interval, then increasingly oscillatory, only later ap-
parently achieving a fractal nature. Using Besov space methods, Rodnianski, [43],
rigorously proves that the graphs of real and imaginary parts of rough solutions to
the linear Schrodinger equation have fractal dimension % at a dense subset of irra-
tional times, reconfirming some of Berry’s observations, [2]. We do not know how
difficult it would be to extend Rodnianski’s techniques to more general dispersion
relations.

e We have concentrated on the periodic boundary value problem for linearly dispersive
wave equations. The behavior under other boundary conditions, e.g., u(t,0) =
u,(t,0) = u(t,27) = 0, is not so clear because, unlike the Schrodinger equation,
these boundary value problems are not naturally embedded in the periodic version.
Fokas and Bona, [9, 20, 21], have developed a new solution technique for initial-
boundary value problems for linear and integrable nonlinear dispersive partial
differential equations based on novel complex integral representations. It would be
instructive to investigate how the effects of the dispersion relation in the periodic
and other problems are manifested in this approach.

e Another important direction would be to extend our analysis to linearly dispersive
equations in higher space dimensions. Berry, [2], gives a non-rigorous argument
that, at least for the linearized Schrodinger equation, a fractal Talbot effect per-
sists for higher dimensional boundary value problems. Other important exam-
ples worth investigating include the integrable Kadomtsev—Petviashvili (KP) and
Davey—Stewartson equations, [16], and non-integrable three-dimensional surface
wave models found in [7, 36].

17



Acknowledgments: We’d like to thank Michael Berry, Jerry Bona, Adrian Diaconu,
Dennis Hejhal, Svitlana Mayboroda, and Konstantin Oskolkov for supplying references and
helpful advice. We also thank the anonymous referees for helpful and thought-provoking

comments.

[10]

[11]
[12]
[13]
[14]
[15]

[16]

References

Benjamin, T.B., Bona, J.L., and Mahony, J.J., Model equations for long waves in
nonlinear dispersive systems, Phil. Trans. Roy. Soc. London A 272 (1972),
47-T78.

Berry, M.V., Quantum fractals in boxes, J. Phys. A 29 (1996), 6617-6629.

Berry, M.V., and Bodenschatz, E., Caustics, multiply-reconstructed by Talbot
interference, J. Mod. Optics 46 (1999), 349-365.

Berry, M.V., and Klein, S., Integer, fractional and fractal Talbot effects, J. Mod.
Optics 43 (1996), 2139-2164.

Berry, M.V., and Lewis, Z.V., On the Weierstrass—Mandelbrot fractal function,
Proc. Roy. Soc. London A 370 (1980), 459-484.

Berry, M.V., Marzoli, 1., and Schleich, W., Quantum carpets, carpets of light,
Physics World 14(6) (2001), 39-44.

Bona, J.L., Chen, M., and Saut, J.—C., Boussinesq equations and other systems for
small-amplitude long waves in nonlinear dispersive media. I. Derivation and
linear theory, J. Nonlinear Sci. 12 (2002), 283-318.

Bona, J.L., Chen, M., and Saut, J.—C., Boussinesq equations and other systems for
small-amplitude long waves in nonlinear dispersive media. II. The nonlinear
theory, Nonlinearity 17 (2004), 925-952.

Bona, J.L., and Fokas, A.S., Initial-boundary-value problems for linear and
integrable nonlinear dispersive partial differential equations, Nonlinearity
21 (2008), T195-T203.

Bona, J.L., and Sachs, R.L., Global existence of smooth solutions and stability of
solitary waves for a generalized Boussinesq equation, Commun. Math. Phys.
118 (1988), 15-29.

Bona, J.L., and Smith, R., A model for the two-way propagation of water waves in
a channel, Math. Proc. Camb. Phil. Soc. 79 (1976), 167-182.

Bourgain, J., Exponential sums and nonlinear Schrodinger equations, Geom. Funct.
Anal. 3 (1993), 157-178.

Bourgain, J., Periodic Korteweg de Vries equation with measures as initial data,
Selecta Math. 3 (1997), 115-159.

Broer, L.J.F., Approximate equations for long water waves, Appl. Sci. Res. 31
(1975), 377-395.

Chamizo, F., and Cérdoba, A., Differentiability and dimension of some fractal
Fourier series, Adv. Math. 142 (1999), 335-354.

Drazin, P.G., and Johnson, R.S., Solitons: An Introduction, Cambridge University
Press, Cambridge, 1989.

18



[17]
18]

[19]

20]
[21]

22]

23]

[24]

25]
26]

27]

28]
29]
30]

[31]

32]

Erdogan, M.B., and Tzirakis, N., Global smoothing for the periodic KdV evolution,
Inter. Math. Res. Notes, to appear.

Erdogan, M.B., Tzirakis, N., and Zharnitsky, V., Nearly linear dynamics of
nonlinear dispersive waves, Physica D 240 (2011), 1325-1333.

Fermi, E., Pasta, J., and Ulam, S., Studies of nonlinear problems. I., preprint, Los
Alamos Report LA 1940, 1955; in: Nonlinear Wave Motion, A.C. Newell, ed.,
Lectures in Applied Math., vol. 15, American Math. Soc., Providence, R.I.,
1974, pp. 143-156.

Fokas, A.S., A Unified Approach to Boundary Value Problems, CBMS—NSF
Conference Series in Applied Math., vol. 78, STAM, Philadelphia, 2008.

Fokas, A.S., and Spence, E.A., Synthesis, as opposed to separation, of variables,
SIAM Review 54 (2012), 291-324.

Ford, K., Recent progress on the estimation of Weyl sums, in: Modern Problems
of Number Theory and its Applications: Current Problems, Part I1I, V.N.
Chubarikov and G.I. Arkhipov, eds., Mosk. Gos. Univ. im. Lomonosova,
Mekh.-Mat. Fak., Moscow, 2002, pp. 48—66.

Hannay, J.H., and Berry, M.V., Quantization of linear maps on a torus — Fresnel
diffraction by a periodic grating, Physica 1D (1980), 267—290.

Hardy, G.H., and Littlewood, J.E., Some problems of Diophantine approximation.
II. The trigonometric series associated with the elliptic ¥—functions, Acta Math.
37 (1914), 193-238.

Hasegawa, A., and Matsumoto, M., Optical Solitons in Fibers, Third Edition,
Springer—Verlag, New York, 2003.

Holden, H., Karlsen, K.H., Risebro, N.H., and Tao, T., Operator splitting for the
KdV equation, Math. Comp. 80 (2011), 821-846.

Kapitanski, L., and Rodnianski, I., Does a quantum particle know the time?,
in: Emerging Applications of Number Theory, D. Hejhal, J. Friedman, M.C.
Gutzwiller and A.M. Odlyzko, eds., IMA Volumes in Mathematics and its
Applications, vol. 109, Springer Verlag, New York, 1999, pp. 355-371.

Kaup, D.J., A higher-order water-wave equation and the method for solving it,
Prog. Theor. Physics 54 (1975), 396-408.

Kupershmidt, B.A., Mathematics of dispersive waves, Commun. Math. Phys. 99
(1985), 51-73.

Lax, P.D., Periodic solutions to the KdV equation, Commun. Pure Appl. Math. 28
(1975), 141-188.

Lax, P.D., and Levermore, C.D., The small dispersion limit of the Korteweg—deVries
equation I, II, III, Commun. Pure Appl. Math. 36 (1983), 253-290, 571-593,
809-829.

Lax, P.D., Levermore, C.D., and Venakides, S., The generation and propagation of
oscillations in dispersive initial value problems and their limiting behavior, in:
Important developments in soliton theory, A.S. Fokas and V.E. Zakharov, eds.,
Springer—Verlag, Berlin, 1993, pp. 205-241.

19



[33] McKean, H.P., Boussinesq’s equation on the circle, Commun. Pure Appl. Math. 34
(1981), 599-691.

[34] McKean, H.P., and van Moerbeke, P., The spectrum of Hill’s equation, Invent.
Math. 30 (1975), 217-274.

[35] Muto, V., Soliton oscillations for DNA dynamics, Acta Appl. Math. 115 (2011),
5-15.

[836] Nwogu, O., Alternative form of Boussinesq equations for nearshore wave
propagation, J. Waterway Port Coastal Ocean Eng. 119 (1993), 618-638.

[37] Olver, P.J., Hamiltonian perturbation theory and water waves, Contemp. Math. 28
(1984), 231-249.

[38] Olver, P.J., Dispersive quantization, Amer. Math. Monthly 117 (2010), 599-610.

[39] Olver, P.J., Introduction to Partial Differential Equations, Pearson Publ., Upper
Saddle River, N.J., to appear.

[40] Oskolkov, K.I., Schrédinger equation and oscillatory Hilbert transforms of second
degree, J. Fourier Anal. Appl. 4 (1998), 341-356.

[41] Oskolkov, K.I., A class of .M. Vinogradov’s series and its applications in harmonic
analysis, in: Progress in Approximation Theory, Springer Ser. Comput. Math.,
19, Springer, New York, 1992, pp. 353-402.

[42] Peregrine, D.H., Calculations of the development of an undular bore, J. Fluid Mech.
25 (1966), 321-330.

[43] Rodnianski, I., Fractal solutions of the Schrédinger equation, Contemp. Math. 255
(2000), 181-187.

[44] Sachs, R.L., On the blow-up of certain solutions of the “good” Boussinesq equation,
Appl. Anal. 36 (1990), 145-152.

[45] Scott, A.C., Soliton oscillations in DNA, Phys. Rev. A 31 (1985), 3518-3519.

[46] Talbot, H.F., Facts related to optical science. No. IV, Philos. Mag. 9 (1836),
401-407.

[47] Taylor, M., The Schrodinger equation on spheres, Pacific J. Math. 209 (2003),
145-155.

[48] Thaller, B., Visual Quantum Mechanics, Springer—Verlag, New York, 2000.

[49] Venakides, S., The zero dispersion limit of the Korteweg—deVries equation with
nontrivial reflection coefficient, Commun. Pure Appl. Math. 38 (1985), 125-155.

[50] Venakides, S., The zero dispersion limit of the Korteweg—deVries equation with
periodic initial data, Trans. Amer. Math. Soc. 301 (1987), 189-225.

[51] Vinogradov, .M., The Method of Trigonometrical Sums in the Theory of Numbers,
Dover Publ., Mineola, NY, 2004.

[52] Whitham, G.B., Variational methods and applications to water waves, Proc. Roy.
Soc. London 299A (1967), 6-25.

[53] Whitham, G.B., Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.
[54] Yuen, H.C., and Lake, B.M., Instabilities of waves on deep water, Ann. Rev. Fluid
Mech. 12 (1980), 303—-334.

[55] Zabusky, N.J., and Kruskal, M.D., Interaction of “solitons” in a collisionless plasma
and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240-243.

20



[56] Zakharov, V.E., Stability of periodic waves of finite amplitude on the surface of a
deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190-194.

[57] Zakharov, V.E., and Shabat, A.B., A scheme for integrating the nonlinear equations
of mathematical physics by the method of the inverse scattering problem. I,
Func. Anal. Appl. 8 (1974), 226-235.

[58] Zuazua, E., Propagation, observation, and control of waves approximated by finite
difference methods, SIAM Review 47 (2005), 197-243.

21



t=1 t=25 t=10
»/AVAUWJP\ 1\ JM\M i Wi NN\ iy i
/\J/ ./ \\f\/\ ad W‘W S \ \/N' ’ M vw"’ "
A / \ Bt ’ N P ‘\/AM “\WM\M | - ! !
v Vi W W i
t =50 t = 100 t = 1000
k

Figure 2. RLW/BBM Dispersion: w = T%kz .

\
|

/ \ /\‘,ﬁ N f N\/J

t =250 t =100 t = 1000
k

Figure 3. Regularized Boussinesq Dispersion: w =

22



N \U’
\11 i AM\AH“ \/ —
/ Y
t=1 t=2 t=25
AWA /\/\\ )
/MWb ~ - \ﬂw M m MNN W i
/

M h ”"fﬂ\/v
. W!“Wf ! W W\m\\ /\ WV\MM '“*\M”'m,,\

I L L Jay v i M\JI\W X‘«N
LTS vY AR ¥ W“’“ Jd " fm Y
t =50 t="75 t =100
Figure 4. Water Wave Dispersion: w = vk tanh £ sign k.
ns/\\ V‘ A /N
’W \ A / ) /w \J“ \\/“ fN\/ \// u \/\"Wﬂ
IV \ / \/ N4 \/
v
/\\‘W%L ANM \ﬁ\/\/ N NA\AJ N \/\/\AWM WMM ”’VW\M
I\/\ WN . o ﬂ‘ Nf’“ \m
i ANPNEe [apn g o | ”M"J\'Ww e { ',
HnTA N ) W w W) v
t =20 t =50 t =100
Figure 5.  Square Root Dispersion: w = /| k| sign k.

23



w _ K
S et e %/

t=.5 t=1 t=>5
N W\ /f“
r’ m )
\J\ /7 / V \/\N \/\{WV\MV\AH )WWWW
‘ AR WY
t =50 t = 500 t = 5000
Figure 6. Asymptotically Linear Dispersion: w = +/|k(k+1)| signk.
N “;“‘Jﬂ\\/\f‘M’u\w\\w—ﬁ\ N //P\EV‘AW\/WWMW\\\WWM\ '“W"M ﬁf/w \MWM’\/WJ\NVW
\\ / \\\ /, ‘% .
W%ng \ ‘JA\N\;AV“MW mmh %jf\vf\vﬁ\vr\vwv/\ nepa”
t=.05 t=.1 t=.2
e Pt M
M /nw// »\vffwb\\ LL/N/V ﬂw‘wﬁ N“WVM Yo /\V\\\ f”“wm
M RITALYY PO
Kn\wf W W\%N Www Y
t=.5 t=1 t=2
Figure 7.  Three-halves Dispersion: w = |k[>/? sign k.

: )
e ) =

_ 1 _
t—%ﬂ' t =

Figure 8. Benjamin-Ono Dispersion: w = | k|? sign k.

24



V/VWWWV VHN VUW Ww vl
M o 4 oy - P
N Ay N AUk LENEVYNNS,
‘\HY\I*’ H SAY \erl o
t=g57 t=fem t=+m

Figure 9. Integrable Boussinesq Dispersion: w =k /1 + %kQ.

\ Jf W\MW oy \“’% M M,

e
e N T e
V\JHWJ ¥ u\Mﬁ/\/W W \M‘W
t = _1 t = ,2 t= .3
/V Y /MKWM o
‘ v
| gt e M M”Wr
Nﬂw n/ﬁ W"O/ﬂ““'wﬁwr“ﬂ LJ\MM(\A il ,N'V‘»/WW L“\AH/‘ Wﬂ\q,\ A ! ’
o v s
t= t=m t=1m
30 15 10
Figure 10.  Five-halves Dispersion: w = |k|[*/? sign k.
e e A
\AMMA w»\lr"\f\m W/N‘\‘ H« A ,’M v ,\(\\ /JJ\/'IW\'M 1
W AR (VAT
t = _1 t = ,2 t= .3

. ‘ N —
= e
_ 1 _ 1 1
t—%ﬂ' t—1—5 t_1_07r

Figure 11. Korteweg-deVries Dispersion: w =k — %k?’.

25



Aahadadladn ol
RALREAIRIRLE

RLW/BBM

V

= kllsignk

%%WWW

= k3/2signk

A
N

Integrable Boussinesq

Korteweg-deVries

M

\/\/ ”VVWM

Water Waves

Y WMM

vy W"

w(k) = k5 *signk

1

Benjamin—Ono

MII “ 1 h L“L
T

w(k) = k5 ?signk

w(k) = k*signk

Figure 12.  Plots of u(¢,0) for Representative Dispersion Relations.



‘
-
:
,
-
:
Fi 13
igure 13.
,
,
.
:
,
:
“
w
“
.
:

Figure 14.

Time =003

Time =15

Time =0.15
15
3
0|
o
0|
-
7 3 0
Time =3
15|
1
0|
o
0|
"
o 2 3 a

Korteweg—deVries Equation: Irrational Times.

Time = 0.1pi

Time = 0.25pi

t=.25m

Time = 1.5pi

2

3

t=15m

Korteweg—deVries Equation: Rational Times.

27




Time =001

Time =002

Figure 15.

Time = 0.01pi

-

Time = 0.51
p
3
o8|
04|
04
02|
o
% 1 2 3 s B B

Figure 16.

Time =0.1

Korteweg—deVries Equation: Irrational Times.

Time = 0.1pi

Time = 0.25pi

:

Time = 15pi

-

3 B ®

t=15m

Quartic Korteweg—deVries Equation: Rational Times.



