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Abstract. In this paper, the dispersive revival and fractalization phenomena for
bidirectional dispersive equations on a bounded interval subject to periodic bound-
ary conditions and discontinuous initial profiles are investigated. Firstly, we study
the periodic initial-boundary value problem of the linear beam equation with step
function initial data, and analyze the manifestation of the revival phenomenon
for the corresponding solution at rational times. Next, we extend the investi-
gation to periodic initial-boundary value problems of more general bidirectional
dispersive equations. We prove that, if the initial functions are of bounded varia-
tion, the dynamical evolution of such periodic problems depend essentially upon
the large wave number asymptotics of the associated dispersion relations. Integral
polynomial or asymptotically integral polynomial dispersion relations produce dis-
persive revival/fractalization rational/irrational dichotomies, whereas those with
non-polynomial growth result in fractal profiles at all times. Finally, numerical
experiments, in the concrete case of the nonlinear beam equation, are used to
demonstrate how such effects persist into the nonlinear regime.
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1. Introduction

This paper is devoted to the study of the periodic initial-boundary value problem for
bidirectional dispersive partial differential equations. We prove that, for linear equations, if
the initial condition at time zero is a step function or, more generally, a function of bounded
variation, the time evolution of the bidirectional dispersive equations subject to periodic
boundary conditions will exhibit new revival phenomena at rational times, of a different
form from that previously observed in unidirectional dispersive evolution equations, whereas
at irrational times the solution exhibits a continuous, but non-differentiable fractal profile.

The term “revival” is based on the experimentally observed phenomenon of quantum
revival [3, 40], in which an electron that is initially concentrated near a single location of its
orbital shell is re-concentrated near a finite number of orbital locations at certain times. A
precursor of the revival phenomenon was observed as far back as 1834 in a striking optical
experiment, [37], conducted in 1836 by William Henry Fox Talbot. This motivated the
pioneering work of Berry and his collaborators, [1, 2, 3], on what they called the Talbot
effect in the context of the linear free space Schrödinger equation. Rigorous analytical
results and estimates justifying the Talbot effect can be found in the work of Kapitanski
and Rodnianski, [26, 32], Oskolkov, [30, 31], and Taylor, [38]. The Talbot effect governs,
in the quantum mechanical setting, the behavior of rough solutions subject to periodic
boundary conditions. The evolution of the rough initial profile, for instance, a step function,
also known as the Riemann problem [41], “quantizes” into a dispersive revival profile at
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rational times, but “fractalizes” into a continuous but nowhere differentiable profile having
a specific fractal dimension at irrational times.

In [7, 27], the same Talbot effect, which the authors called dispersive quantization and
fractalization, was shown to appear in general periodic linear dispersive equations possess-
ing an “integral polynomial” (a polynomial with integer coefficients) dispersion relation,
which included the prototypical linearized Schrödinger and Korteweg-de Vries (KdV) equa-
tions. Based on these investigations, one learns that a linear dispersive equation admitting a
polynomial dispersion relation and subject to periodic boundary conditions will exhibit the
revival phenomenon at each rational time, which means that the fundamental solution, i.e.,
that induced by a delta function initial condition, localizes into a finite linear combination
of delta functions. This has the remarkable consequence that the solution, to any initial
value problem, at rational times is a finite linear combination of translates of the initial data
and hence its value at any point on the periodic domain depends only upon finitely many
of the initial values. In [28], the revival phenomenon for the linear free space Schrödinger
equation subject to pseudo-periodic boundary conditions was investigated, see also [4] for
the same model and for the quasi-periodic linear KdV equation. In [6], a more general
revival phenomenon, that produces dispersively quantized cusped solutions of the periodic
Riemann problem for three linear integro-differential equations, including the Benjamin-Ono
equation, the Intermediate Long Wave equation and the Smith equation were studied. More
recently, these phenomena were shown to extend to multi-component dispersive equations,
see [42]. For a class of two-component linear systems of dispersive evolution equations, the
dispersive quantization conditions, which may yield quantized structures for step-function
initial value at rational times, are provided.

Inspired by these linear results, the phenomena of dispersive quantization and fractal-
ization for the periodic Riemann problem for nonlinear dispersive evolution equations on
periodic domains, including the integrable nonlinear Schrödinger (NLS), KdV and modified
KdV (mKdV) equations as well as non-integrable versions with higher-order nonlineari-
ties were studied numerically in [8]. Erdoğan, Tzirakis and their collaborators established
rigorous results on the fractalization for the nonlinear equations at a dense set of times.
Quantifying the irrational time fractalization in terms of the estimate on the fractal dimen-
sion, their results, on the one hand extend the results of Oskolkov and Rodnianski to a
class of nonlinear integer polynomial dispersive equations subject to initial data of bounded
variation, and, on the other hand, confirm the numerical observations of fractalization in [8].
Erdoǵan and Tzirakis studied the cubic NLS and KdV equations on a periodic domain with
initial data of bounded variation in [13] and [14], respectively. Subsequently, together with
Chousionis, they obtained some results on the Minkowski dimension of the fractalization
profiles for dispersive linear partial differential equations with monomial dispersion relation
[10]. We refer the reader to the survey texts [12, 15] for irrational time fractalization results.
See also the recent survey [35].

To date, investigations have almost all concentrated on unidirectional dispersive sys-
tems. In the present paper, we will show that the dispersive revival/fractalization ratio-
nal/irrational dichotomy extends to bidirectional dispersive equations of the form

utt = L[u], (1.1)

where L is a scalar differential operator with constant coefficients. Obviously, equation (1.1)
is equivalent to the following two-component evolutionary system

ut = v, vt = L[u], (1.2)

which, however, does not satisfy the dispersive quantization conditions given in [42]. As we
describe below, in the bidirectional setting, if we set the initial conditions equal to the same
step function, then the solution of the corresponding periodic Riemann problem will exhibit
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qualitative dispersive quantization behaviour, of a different form than the standard piecewise
constant solutions admitted by the unidirectional systems, such as the linear KdV and
Schrödinger equations and their associated multi-component generalizations. Interestingly,
in the concrete case of the linear beam equation

utt + uxxxx = 0, (1.3)

these solutions at rational times t∗ = πp/q with q > 2 appear to be piecewise parabolic,
non-constant between jump discontinuities, whereas at the rational times t0k = π(2k− 1)/2,
the solution becomes a continuously differentiable curve, with analytical expression (2.19).

Similar studies were initiated in one of the authors’ recent Ph.D. thesis [16], which studies
the revival property in bidirectional dispersive equations (1.1) where the operator L is an
even-order poly-Laplacian, which includes the linear wave equation and the beam equation
(1.3), subject to periodic and quasi-periodic boundary conditions. We should further men-
tion that from a general perspective, the form of the revival effect in the periodic bidirectional
problems considered here resembles this of the revival effect in the free linear Schrödinger
equation with Robin boundary conditions bu(t, 0) = (1 − b)ux(t, π), where b ∈ (0, 1) is a
parameter, see [4]. Indeed, in both cases the solution at rational times is given as the sum of
the revival of the initial condition and a more regular function, which can be considered as a
weak type of revival. Other models in the literature that exhibit such weak revivals include
the periodic cubic NLS and KdV equations [13, 14], the periodic linear Schrödinger equa-
tion with periodic potential [33, 9] and the linear Schrödinger equation subject to Dirichlet
boundary conditions [5].

The linear beam equation, which is studied in Section 2, is a typical example of a model
with the dispersion relation of the form ω(k) = ±kN , 2 ≤ N ≤ Z+, namely when N = 2.
Although it is a special case, it motivates the study of the more general case and illustrates
the idea and the method in the proof. More importantly, through the analysis and derivation
of its periodic initial-boundary value problem, we arrive at some classical results for the
Riemann zeta function. It implies that the periodic initial-boundary value problems for
such systems can provide an alternative mechanism for establishing such classical identities.

The three concrete goals of the present paper are as follows. The first is to investi-
gate the new phenomenon of dispersive revival in greater detail, by examining the periodic
initial-boundary value problems for bidirectional dispersive equations. We will provide an
explicit characterization of the solution profiles of the periodic Riemann problem for the
linear beam equation, leading to the general form of dispersive revival for bidirectional pe-
riodic initial-boundary value problems with various dispersion relations, including integral
polynomial and non-polynomial. Our main results contain the analytic description of the
new phenomena of the dispersive revival, which can be found in Section 2 for the linear beam
equation, and Section 3 for general bidirectional equations, respectively. In the particular
case of monomial dispersion relations, we present an alternative approach. Secondly, with
the aim to show that such effects can persist into the nonlinear regime, we present numer-
ical simulations, based on the Fourier spectral method, of the periodic Riemann problem
for the nonlinear beam equation in Section 4. Numerical approximation supplies strong ev-
idence that the dispersive revival/fractalization rational/irrational dichotomy persists into
the nonlinear regime, whereas, when compared with the unidirectional systems, the nonlin-
ear terms induce greater variations of the curve profiles, including their convexities. Finally,
in the course of our analysis, we find that the solutions at rational times of the periodic
Riemann problem for bidirectional dispersive equations with integral polynomial dispersion
relations are closely related to identities for the Riemann zeta function, which is of great
importance in analytic number theory. In summary, these new revival phenomena warrant
further investigation, both mathematically, and to develop its profound applications.
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2. Revival for the linear beam equation

The starting point is the periodic initial-boundary value problem for the linear beam
equation on the interval 0 ≤ x ≤ 2π:

utt + uxxxx = 0,

u(0, x) = f(x), ut(0, x) = g(x),

∂jxu(t, 0) = ∂jxu(t, 2π)
∂jx∂tu(t, 0) = ∂jx∂tu(t, 2π),

j = 0, 1, 2, 3.

(2.1)

The linear beam equation is a bidirectional dispersive equation modeling small vibrations of
a thin elastic beam, with quadratic dispersion relation ω(k) = ±k2. We focus our attention
on the initial data given by a step function:

f(x) = g(x) = σ(x) =

{
−1, 0 ≤ x < π,

1, π ≤ x < 2π,
(2.2)

known as the Riemann problem. Without further mention, here and elsewhere below, we
assume that functions and distributions defined on [ 0, 2π ] are extended 2π-periodically to
R in the usual way, when required.

For the solution of (2.1) with initial data (2.2), we have the following result.

Lemma 2.1. The periodic initial-boundary value problem (2.1)-(2.2) has the following so-
lution

u(t, x) = − 4

π

(
+∞∑
n=0

cos((2n+ 1)2t) sin((2n+ 1)x)

2n+ 1
+

+∞∑
n=0

sin((2n+ 1)2t) sin((2n+ 1)x)

(2n+ 1)3

)
.

(2.3)

Throughout the paper, a time t > 0 will be designated as rational if t/π ∈ Q, i.e.,
t = t∗ = πp/q, with p and 0 6= q ∈ Z+ having no common factors. Otherwise, if t/π /∈ Q,
the time is called irrational. To analyze the qualitative behavior of solution (2.3) at the
rational times, we invoke the following Lemma.

Lemma 2.2. Given j, q ∈ Z+ with q 6= 0, let σj,q(x) be the box function defined as

σj,q(x) =

 1,
πj

q
≤ x < π(j + 1)

q
, 0 ≤ j ≤ 2q − 1,

0, otherwise.
(2.4)

Let N, p, q ∈ Z+, N ≥ 2, q 6= 0. Then, the following formulae hold.
(i)

− 4

π

+∞∑
n=0

cos

(
(2n+ 1)N

πp

q

)
2n+ 1

sin((2n+ 1)x) =

2q−1∑
j=0

aj

(
p

q

)
σj,q(x), (2.5)

(ii) For each even N ,

− 4

π

+∞∑
n=0

sin

(
(2n+ 1)N

πp

q

)
2n+ 1

sin((2n+ 1)x) =

2q−1∑
j=0

bj

(
p

q

)
σj,q(x), (2.6)

(iii) For each odd N ,

− 4

π

+∞∑
n=0

sin

(
((2n+ 1)N

πp

q

)
2n+ 1

cos((2n+ 1)x) =

2q−1∑
j=0

b̃j

(
p

q

)
σj,q(x), (2.7)
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where aj , bj , b̃j ∈ R, j = 0, . . . , 2q − 1, are certain constants which depend on p and q.

To prove Lemma 2.2, we need the following theorem, which is based on Theorem 3.2
and Corollary 3.4 in [7], and underlies the dispersive quantization effect for equations with
“integral polynomial” dispersion relation.

Definition 2.3. A polynomial P (k) = c0 + c1k+ · · ·+ cNk
N is called an integral polynomial

if its coefficients are integers: ci ∈ Z, i = 0, . . . , N .

Theorem 2.4. Suppose that the dispersion relation of the evolution equation ut = L[u] is
an integral polynomial :

ω(k) = P (k).

Then at every rational time t∗ = πp/q, with p and 0 6= q ∈ Z, the fundamental solution

F (t, x) ∼ 1

2π

∞∑
k=−∞

e i (kx+ω(k)t)

is a linear combination of q periodically extended delta functions concentrated at the rational
nodes xj = πj/q for j ∈ Z. Moreover, at t∗ = πp/q, the solution profile to the periodic
initial-boundary value problem for ut = L[u] is a linear combination of ≤ 2q translates of its
initial data u(0, x) = f(x), i.e.,

u

(
πp

q
, x

)
=

2q−1∑
j=0

aj

(
p

q

)
f

(
x− πj

q

)
.

Remark 2.5. Slightly more generally, the dispersion relation can be a nonzero multiple of
an integral polynomial. By suitably rescaling time, the stated result holds, the only difference
being which times are designated as rational or irrational. A similar remark holds if one
rescales space to consider the equation on a different spatial interval.

Proof of Lemma 2.2. According to Theorem 2.4, if the underlying equation admits a
dispersion relation ω(k) = ±kN , and the initial data is the unit step function

u(0, x) =

{
0, 0 ≤ x < π,

1, π ≤ x < 2π,

with Fourier coefficients

ck =


1

2
, k = 0,

0, k 6= 0 even,
i

πk
, k odd.

Then, at a rational time t∗ = πp/q, the corresponding solution has the Fourier series form

u±(t, x) =

+∞∑
k=−∞

cke
i (kx±kN t)

and hence is constant on every subinterval πj/q < x < π(j + 1)/q, for j = 0, . . . , 2q − 1,
namely

u±(t∗, x) =

2q−1∑
j=0

γ±j

(
p

q

)
σj,q(x), (2.8)

for certain γ±j ∈ C, j = 0, . . . , 2q − 1, dependent on p and q. We thus need to distinguish
two cases:
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Case 1. N is even. It is easy to see that

u+(t∗, x) + u−(t∗, x) =

+∞∑
k=−∞

ck

(
e i (kx+kN t∗) + e i (kx−kN t∗)

)

= 1− 4

π

+∞∑
n=0

cos
(
(2n+ 1)N t∗

)
2n+ 1

sin((2n+ 1)x),

u+(t∗, x)− u−(t∗, x) =

+∞∑
k=−∞

ck

(
e i (kx+kN t∗) − e i (kx−kN t∗)

)

= −4 i

π

+∞∑
n=0

sin
(
(2n+ 1)N t∗

)
2n+ 1

sin((2n+ 1)x).

Case 2. N is odd. Similar to the above, we have

u+(t∗, x) + u−(t∗, x) =

+∞∑
k=−∞

ck

(
e i (kx+kN t∗) + e i (kx−kN t∗)

)

= 1− 4

π

+∞∑
n=0

cos
(
(2n+ 1)N t∗

)
2n+ 1

sin((2n+ 1)x),

u+(t∗, x)− u−(t∗, x) =

+∞∑
k=−∞

ck

(
e i (kx+kN t∗) − e i (kx−kN t∗)

)

= − 4

π

+∞∑
n=0

sin
(
(2n+ 1)N t∗

)
2n+ 1

cos((2n+ 1)x).

Finally, these formulae, together with (2.8) yield (2.5)-(2.7), respectively, proving the
lemma.

�

Denote the solution (2.3) as

u(t, x) := I(t, x) + II(t, x). (2.9)

Note that (2.5) implies that the first summation in (2.9) evaluated at rational times t∗ has
the representation

I(t∗, x) =

2q−1∑
j=0

aj

(
p

q

)
σj,q(x), (2.10)

for certain constants a0, . . . , a2q−1 determined by (2.5). In particular, if q = 2, at the
corresponding specific rational time t0k = π(2k − 1)/2, k ∈ Z+, it vanishes identically.

When it comes to II(t∗, x), firstly, a direct computation shows that for any t > 0 we have
that

sin((2n+ 1)2t) sin((2n+ 1)x)

(2n+ 1)3

= −
ˆ x

0

ˆ y

0

sin((2n+ 1)2t) sin((2n+ 1)z)

2n+ 1
dzdy +

sin((2n+ 1)2t)

(2n+ 1)2
x.

(2.11)
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Next, again thanks to Lemma 2.1, we find that the first of the two components in II(t, x)
satisfies,

II(1)(t∗, x) =
4

π

ˆ x

0

ˆ y

0

+∞∑
n=0

sin((2n+ 1)2t∗) sin((2n+ 1)z)

2n+ 1
dzdy

= −
ˆ x

0

ˆ y

0

2q−1∑
j=0

bj

(
p

q

)
σj,q(z) dzdy,

(2.12)

for certain constants bj , j = 0, . . . , 2q − 1 determined by (2.6). We denote

F (y) =

ˆ y

0

2q−1∑
j=0

bjσ
j,q(z) dz, for 0 ≤ y ≤ x,

and set

H(x) =

ˆ x

0

F (y)dy.

It is easy to verify that

F (y) =


b0y, 0 ≤ y ≤ π

q ,

bjy +
π

q

j−1∑
m=0

bm −
π

q
jbj ,

π

q
j ≤ y ≤ π

q
(j + 1), j = 1, . . . , 2q − 1,

and hence

H(x) =



1
2b0x

2, 0 ≤ x ≤ π

q
,

1
2b1x

2 +
π

q
(b0 − b1)x+

π2

2q2
(b1 − b0),

π

q
≤ x ≤ 2π

q
,

1
2bjx

2 + h1x+ h0,
π

q
j ≤ x ≤ π

q
(j + 1), j = 1, . . . , 2q − 1,

(2.13)
where

h1 =
π

q

(
j−1∑
m=0

bm −mbm

)
and h0 =

π2

q2

[
j−1∑
m=1

(
m−1∑
i=0

bi +
bm
2

)
+
j2

2
bj − j

j−1∑
m=0

bm +
b0
2

]
.

This, when combined with (2.10) and (2.11), allows us to arrive at the exact result for
the solution (2.1) at the rational times, which is summarized in the following theorem.

Theorem 2.6. At a rational time t∗ = πp/q, the solution to the periodic initial-boundary
value problem (2.1) for the linear beam equation with the step function initial datum (2.2)
takes the form

u(t∗, x) =

2q−1∑
j=0

aj

(
p

q

)
σj,q(x)−H(x) + C(t∗)x, (2.14)

where

C(t∗) = − 4

π

+∞∑
n=0

sin((2n+ 1)2t∗)

(2n+ 1)2
, (2.15)

σj,q(x) is the box function defined in (2.4), H(x) is the piecewise quadratic function defined
in (2.13), and aj, j = 0, . . . , 2q − 1, are certain constants determined by equation (2.5).
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With the explicit expression (2.3) of the solution in hand, we now analyze its qualitative
behaviour. First of all, as a direct corollary of the estimate on the solution of the linearized
dispersion equation given by Oskolkov [31] and Rodnianski [32] — see also [15] — one has, for
almost all irrational t/(2π), the first summation I ∈

⋂
ε>0 C

1
2−ε, which in turn indicates that

the second one II ∈
⋂
ε>0 C

5
2−ε. We thus conclude that, at the irrational times, the profile

of the solution (2.1) is a continuous fractal, with fractal dimension D = 3/2. When it comes
to the rational times, note that in the expression of the solution (2.14), on the one hand,
H(x) ∈ C1, on the other hand, I(t∗, x) is a piecewise constant with ≤ 2q discontinuities,
apart from the specific times t0k = π(2k − 1)/2, k ∈ Z+, which will result in I(t0k, x) ≡ 0.
Therefore, we need to distinguish two cases:

Case 1. q = 2. At times t0k = π(2k − 1)/2, k ∈ Z+,

u(t0k, x) = −H(x) + (−1)k
4

π

+∞∑
n=0

1

(2n+ 1)2
x ∈ C1.

Referring back to the relation (2.6) corresponding to q = 2, p = 2k − 1, and N = 2, and
solving for bj by making use of the inverse discrete Fourier transform (IDFT) gives rise to

b0 = b1 = (−1)k, b2 = b3 = (−1)k−1. (2.16)

Then, (2.13) readily leads to

Hk(x) = (−1)k−1

{
− 1

2x
2, 0 ≤ x ≤ π,

1
2x

2 − 2πx+ π2, π ≤ x ≤ 2π,
(2.17)

which, together with the fact that the solution (2.3) is 2π-periodic, i.e., u(t0k, 0) = u(t0k, 2π),
yields

+∞∑
n=0

1

(2n+ 1)2
=
π2

8
. (2.18)

It follows that, evaluated at each t0k = (2k − 1)π/2, k ∈ Z+, the solution can be written as

u(t0k, x) = (−1)k−1

{
1
2 (x2 − πx), 0 ≤ x ≤ π,
− 1

2 (x2 − 3πx+ 2π2), π ≤ x ≤ 2π.
(2.19)

More interestingly, we find that the conclusion (2.18) agrees with the classical result

ζ(2) =

+∞∑
n=0

1

n2
=
π2

6
, (2.20)

where

ζ(s) =

+∞∑
n=0

1

ns
, s > 1 (2.21)

is the Riemann zeta function. The above procedure provides an alternative mechanism for
establishing such classical identities, and the behavior of these solutions at rational times
has intriguing connections with such number-theoretic exponential sums.

Case 2. q 6= 2. According to (2.14), at each rational time t∗ = πp/q, q 6= 2, the
solution consists of a piecewise constant function, which is constant on the intervals πj/q <
x < π(j + 1)/q for j = 0, . . . , 2q − 1, combined with a continuously differentiable function
−H(x) + C(t∗)x, being composed of different parabolas defined on the intervals πj/q ≤
x < π(j + 1)/q, j = 0, . . . , 2q − 1. Therefore, in the present case, the solution profile is a
discontinuous, piecewise parabolic curve.
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For instance, let us take t∗ = π/3 as an example. On the one hand,

I
(π

3
, x
)

= − 4

π

+∞∑
n=0

cos((2n+ 1)2 π3 )

2n+ 1
sin((2n+ 1)x) =

5∑
j=0

aj

(
1

3

)
σj,q(x),

where, a direct computation through IDFT shows that

a0 = a2 = a3 = a5 = 0, a1 = −1, a4 = 1.

On the other hand, bj (0 ≤ j ≤ 5) in H(x) are obtained from the relation

− 4

π

+∞∑
n=0

sin((2n+ 1)2 π3 )

2n+ 1
sin((2n+ 1)x) =

5∑
j=0

bj

(
1

3

)
σj,q(x).

We have

b0 = b2 = −b3 = −b5 = −
√

3

3
, b1 = −b4 = −2

√
3

3
.

Again, owing to the periodicity of the solution, one has

+∞∑
n=0

sin((2n+ 1)2 π3 )

(2n+ 1)2
= −π

4
C
(π

3

)
=

√
3π2

18
. (2.22)

Finally, inserting them into (2.13) and then (2.14) gives rise to the explicit solution at time
t∗ = π/3, namely

u
(π

3
, x
)

=



√
3
6

(
x2 − 4π

3 x
)
, 0 ≤ x ≤ π

3 ,√
3
3

(
x2 − πx+ π2

18

)
− 1, π

3 ≤ x ≤
2π
3 ,

√
3
6

(
x2 − 2π

3 x−
π2

3

)
, 2π

3 ≤ x ≤ π,

−
√
3
6

(
x2 − 10π

3 x+ 7π2

3

)
, π ≤ x ≤ 4π

3 ,

−
√
3
3

(
x2 − 3πx+ 37π2

18

)
+ 1, 4π

3 ≤ x ≤
5π
3 ,

−
√
3
6

(
x2 − 8π

3 x+ 4π2

3

)
, 5π

3 ≤ x ≤ 2π.

(2.23)

Remark 2.7. Note that, at the rational points, the series (2.22) contains the odd terms of
Riemann’s non-differentiable function, which was introduced by Riemann in 1872; see [11]
for details. The connection between the Riemann’s non-differentiable function and solutions
of the vortex filament equation with polygonal initial data was recently established in [22, 23].

All in all, in the context of the linear beam equation, the evolution of the periodic step
function initial datum will take on three different qualitative behaviors. At irrational times,
it evolves into continuous but non-differentiable fractal-like profile. At rational times t∗ =
πp/q (q 6= 2), the solution takes on a discontinuous, piecewise parabola behavior. On the
other hand, at each specific rational time t0k = π(2k − 1)/2, k ∈ Z+, the quantization
effect disappears entirely, and the solution instantly becomes a continuously differentiable
function, emerging at regular π-periodic intervals. We conclude that the revival phenomena
exhibited by the periodic evolution of the linear beam equation differs from that arising in
the linear KdV, the linear Schrödinger, and other unidirectional linear dispersive evolution
equations studied previously.
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(a) t = π/2 (b) t = π/3 (c) t = π/5

Figure 1: The solutions to the periodic initial-boundary value problem for the linear beam
equation at rational times.

(a) t = 0.1 (b) t = 0.3 (c) t = 0.5

Figure 2: The solutions to the periodic initial-boundary value problem for the linear beam
equation at irrational times.

In Figures 1 and 2, we display the graphs of the solution at some representative rational
and irrational times, respectively. These figures are plotted by straightforwardly applying
the Fourier series representation of u(t, x) given by (2.3). We sum over 1001 terms1 to obtain
the numerical approximation of the solution. As illustrated in Figure 1(a), the solution is
continuous at π/2. While, referring to Figure 1(b) and Figure 1(c), it appears that, at π/3
and π/5, there exist a finite number of jump discontinuities, and between which parabolic
curves of different form arise. Obviously, the plots in Figure 1, which obtained by simply
truncating the Fourier series (2.3), are entirely consistent with the explicit expressions given
by (2.19) and (2.23). On the other hand, Figure 2 shows that, at irrational times, the solution
displays continuous, but nowhere differentiable fractal-like profiles, as claimed above.

Remark 2.8. It is worth mentioning that, in view of the series (2.10) and that in II(1)(t∗, x),
the distribution of the discontinuity points in H(x) depends on the value of q, especially on
its parity. As studied in [29], general speaking, the piecewise subintervals for these series are
πj/q ≤ x < π(j + 1)/q, j = 0, . . . , 2q − 1. However, if q is even (for instance q = 2, whose
corresponding solution is a representative example which can manifest such characteristic),
the solutions sometimes assume identical values on adjacent subintervals, and so exhibits
larger regions of constancy. See also [29] for a number-theoretic characterization of these
occurrences.

1Summing over a larger number of terms produces no appreciable difference in the solution
profiles.
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(a) t = π/2 (b) t = π/3 (c) t = π/5

(d) t = 0.1 (e) t = 0.3 (f) t = 0.5

Figure 3: The solutions to the periodic initial-boundary value problem (2.1) with initial
data f(x) = σ̃(x), g(x) = σ(x).

(a) t = π/2 (b) t = π/3 (c) t = π/5

(d) t = 0.1 (e) t = 0.3 (f) t = 0.5

Figure 4: The solutions to the periodic initial-boundary value problem (2.1) with initial
data f(x) = 0, g(x) = σ(x).
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(a) t = π/2 (b) t = π/3 (c) t = π/5

(d) t = 0.1 (e) t = 0.3 (f) t = 0.5

Figure 5: The solutions to the periodic initial-boundary value problem (2.1) with initial
data f(x) = σ(x), g(x) = 0.

Formula (2.3) provides the solution of (2.1) with the same step function f = g = σ(x)
(2.2) as the initial data. Indeed, in view of Theorem 3.1 below, we find that the first and
second terms in solution (2.3) are induced by the initial data u|t=0 = f(x) and ut|t=0 = g(x),
respectively. It is noticed that the emergence of such a dichotomy phenomenon is not only
for the case f = g. For instance, if we take the initial g(x) = σ(x), while

f(x) = σ̃(x) =

{
0, 0 ≤ x < π,

1, π ≤ x < 2π.

Figure 3 suggests that the different steps functions will also evolve into three different qual-
itative behaviors. Furthermore, in Figure 4 and Figure 5, we display the graphs of solutions
corresponding to f(x) = 0, g(x) = σ(x), and f(x) = σ(x), g(x) = 0, respectively. As
demonstrated in Figure 4, if f(x) = 0, the dispersive quantization induced by f(x) dispears
entirely, and then the solution will retain a C1 profile all the time. On the other hand,
if f(x) = σ(x), g(x) = 0, referring to Figure 5(b) and Figure 5(c), the solutions take on
dispersive quantization at the rational times. While, as shown in Figure 5(a), the solution
will vanish at π/2, since I(π/2, x) ≡ 0 as claimed above.

3. Revival for bidirectional dispersive equations

In the preceding section, we concentrated on the periodic initial-boundary problem for
the linear beam equation. In this section, we will seek to extend our analysis to bidirec-
tional dispersive equations possessing more general dispersion relations, as before, subject
to general initial conditions and periodic boundary conditions.

Let L be a scalar, constant coefficient integro-differential operator with real-valued Fourier
transform L̂(k) = −ϕ(k), where ϕ(k) > 0 is a real-valued function of k. The associated
bidirectional scalar equation

utt = L[u] (3.1)
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has real dispersion relation ω(k) = ±
√
ϕ(k). We subject (3.1) to periodic boundary condi-

tions posed on the interval 0 ≤ x ≤ 2π, and initial conditions

u(0, x) = f(x), ut(0, x) = g(x), (3.2)

where f(x) and g(x) are of bounded variation, and g(x) is required to satisfy
´ 2π
0
g(x) dx = 0.

As usual, the first step is to construct the (formal) solution as a Fourier series

u(t, x) ∼
+∞∑

k=−∞

ak(t)e i kx.

To this end, we first expand the initial data f(x) and g(x) in Fourier series

f(x) ∼
+∞∑

k=−∞

cke
i kx, where ck = f̂(k) =

1

2π

ˆ 2π

0

f(x)e− i kx dx

and

g(x) ∼
+∞∑

k=−∞

dke
i kx, where dk = ĝ(k) =

1

2π

ˆ 2π

0

g(x)e− i kx dx.

Next, an analogous analysis as used for the linear beam equation with step function initial
conditions, implies that the corresponding coefficients ak(t) satisfy the following linear ODE

a′′k(t) + ϕ(k)ak(t) = 0. (3.3)

Solving it yields

ak(t) = Ake
i
√
ϕ(k)t +Bke

− i
√
ϕ(k)t.

Finally, using the initial data again, we find that the solution to the periodic initial-boundary
value problem (3.1)-(3.2) is given by

u(t, x) =
∑
k

f̂(k) cos
(√

ϕ(k) t
)
e i kx +

∑
k 6=0

ĝ(k)√
ϕ(k)

sin
(√

ϕ(k) t
)
e i kx. (3.4)

With the Fourier series representation (3.4) in hand, we are now able to analyze the qual-
itative behavior of the solution at rational times. We will show that the dynamical evolution
of equation (3.1) on periodic domains with initial profiles (3.2) depends dramatically upon
the asymptotics of the dispersion relation at large wave number. In all cases considered
here, the large wave number asymptotics of the dispersion relation is given by a positive
power of the wave number:√

ϕ(k) ∼ |k|α, 2 ≤ α ∈ R, as |k| → ∞. (3.5)

3.1. Monomial dispersion relation: As the first step, we will study the special case of
monomial dispersion relation given by

ω(k) = ±kN , 2 ≤ N ∈ Z+. (3.6)

The main results for the corresponding solutions are summarized in Theorem 3.1 below.
Hereafter, we define the operator ∂−1x by the formula

∂−1x P (x) =

ˆ x

2(k−1)π
P (y) dy, x ∈ [ 2(k − 1)π, 2kπ ]. (3.7)

We further define its M -th order power ∂−Mx via the recursive relation ∂−Mx = ∂−1x ∂
−(M−1)
x ,

for M ≥ 1.
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Theorem 3.1. Suppose that equation (3.1) has the monomial dispersion relation (3.6), the
initial data f(x) and g(x) in (3.2) are of bounded variation, and g(x) satisfies

´ 2π
0
g(x) dx =

0. Let G(x) = ∂−Nx g(x). Then at each rational time t∗ = πp/q, the solution to the periodic
initial-boundary value problem (3.1)-(3.2) takes the form

u(t∗, x) =

2q−1∑
j=0

aj

(
p

q

)
f

(
x− πj

q

)
+ iN

2q−1∑
j=0

bj

(
p

q

)
G

(
x− πj

q

)
+

N−1∑
j=0

Cjx
j , (3.8)

Cj =
i j

j !

∑
k 6=0

ĝ(k) sin(kN t∗)

kN−j
, (3.9)

where the coefficients aj , bj ∈ C, j = 0, . . . , 2q − 1, are constants depending on p and q.

The proof of the theorem relies on the following lemma, which is a direct corollary of
Theorem 3.2 established in [7] and is a special case of Lemmas 7.5 and 7.6 in [16]. Thus,
we omit the proof. Moreover, we remark that the expression (3.8) for the exact solution is
equivalent to (3.25) in the next subsection, although not exactly the same in form.

Lemma 3.2. Let P (k) be an integral polynomial. Assume that f(x) is of bounded variation,
and let f̂(k) be the Fourier coefficient of f(x), i.e.,

f̂(k) =
1

2π

ˆ 2π

0

f(x)e− i kx dx.

Given t∗ = πp/q, with p and 0 6= q ∈ Z+, there exist constants a1j , a2j ∈ C, j = 0, . . . , 2q− 1,
depending on p and q, such the following two formulae hold:

∞∑
k=−∞

f̂(k) cos (P (k)t∗) e i kx =

2q−1∑
j=0

a1j

(
p

q

)
f

(
x− πj

q

)
, (3.10)

∞∑
k=−∞

f̂(k) sin (P (k)t∗) e i kx =

2q−1∑
j=0

a2j

(
p

q

)
f

(
x− πj

q

)
. (3.11)

Proof of Theorem 3.1. First of all, according to (3.4), under the assumption of the the-
orem, the solution to the corresponding periodic initial-boundary problem has the form

u(t, x) =
∑
k

f̂(k) cos(kN t)e i kx +
∑
k 6=0

ĝ(k) sin(kN t)

kN
e i kx := I(t, x) + II(t, x). (3.12)

Furthermore, since f(x) and g(x) are of bounded variation and N ≥ 2, the first summation
in expression (3.12) is conditionally convergent, and the second one is absolutely convergent.

At the rational times t∗ = πp/q, by Lemma 3.2, the first summation is a linear combina-
tion of translates of f(x), i.e.,

I(t∗, x) =

2q−1∑
j=0

a1j

(
p

q

)
f

(
x− πj

q

)
,

for certain a10, . . . , a12q−1 ∈ C determined by (3.10) with P (k) = kN .
Note that

∂−Mx e i kx =
1

( i k)M
e i kx −

M−1∑
j=0

1

j! ( i k)M−j
xj , for 0 ≤ x ≤ 2π. (3.13)
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It follows that, at the rational times t∗ = πp/q, the second summation satisfies

II(t∗, x) =
∑
k

iN ĝ(k) sin(kN t∗)∂−Nx e i kx +
∑
k 6=0

ĝ(k) sin(kN t∗)

N−1∑
j=0

i j

j! kN−j
xj

:= II(1)(x) + II(2)(x).

Since g(x) is of bounded variation, the series Cj given in (3.9) is convergent for each j =

0, . . . , N − 1, then the second component II(2)(x) readily leads to the last term in (3.8). On
the other hand, in the case of P (k) = kN , applying equation (3.11) to the delta function
δ(x) yields

1

2π

∞∑
k=−∞

sin
(
kN t∗

)
e i kx =

2q−1∑
j=0

bj

(
p

q

)
δ

(
x− πj

q

)
,

for some constants bj ∈ C, j = 0, . . . , 2q − 1. We thus deduce II(1)(x) as follows:

II(1)(x) =
iN

2π

∑
k

sin(kN t∗)

ˆ 2π

0

g(y)e− i ky∂−Nx e i kx dy

=
iN

2π

∑
k

sin(kN t∗)

ˆ 2π

0

e i ky∂−Nx g(x− y) dy

= iN
ˆ 2π

0

G(x− y)

2q−1∑
j=0

bjδ

(
y − πj

q

)
dy = iN

2q−1∑
j=0

bjG

(
x− πj

q

)
.

Summing II(1)(x), II(2)(x) and I(t∗, x) gives (3.8), which justifies the statement of the theo-
rem. �

In particular, if the initial data f(x) and g(x) are the step function σ(x) given in (2.2),
the following corollary holds.

Corollary 3.3. Let σj,q(x) be the box function defined in (2.4). At a rational time t∗ =
πp/q, the solution to the periodic initial-boundary value problem (3.1)-(3.2) on the interval
0 ≤ x ≤ 2π, with initial data f(x) = g(x) = σ(x) given in (2.2) takes the form

u(t∗, x) =

2q−1∑
j=0

aj

(
p

q

)
σj,q(x) + (−1)[

N
2 ]∂−Nx

2q−1∑
j=0

bj

(
p

q

)
σj,q(x) +

[N
2 ]−1∑
j=0

Djx
2j+1, (3.14)

where

Dj =
(−1)j+14

π(2j + 1)!

+∞∑
n=0

sin((2n+ 1)N t∗)

(2n+ 1)N−2j
, j = 0, . . . ,

[
N

2

]
− 1, (3.15)

and the coefficients aj , j = 0, . . . , 2q − 1 are determined by formula (2.5) in Lemma 2.1,
bj , j = 0, . . . , 2q − 1 satisfy (2.6) for even N , and (2.7) for odd N , respectively.

Proof. If f(x) = g(x) = σ(x), the corresponding solution (3.4) reduces to

u(t∗, x) = − 4

π

[
+∞∑
n=0

cos((2n+ 1)N t∗) sin((2n+ 1)x)

2n+ 1
+

+∞∑
n=0

sin((2n+ 1)N t∗) sin((2n+ 1)x)

(2n+ 1)N+1

]
.

Obviously, the first summation is exactly the first term in (3.14). As for the second summa-
tion, a direct induction procedure shows that, if N is even,

sin((2n+ 1)x)

(2n+ 1)N+1
= (−1)

N
2 ∂−Nx

sin((2n+ 1)x)

2n+ 1
+

N
2 −1∑
j=0

(−1)j

(2j + 1)!(2n+ 1)N−2j
x2j+1,
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whereas, if N is odd,

sin((2n+ 1)x)

(2n+ 1)N+1
= (−1)

N−1
2 ∂−Nx

cos((2n+ 1)x)

2n+ 1
+

N−1
2 −1∑
j=0

(−1)j

(2j + 1)!(2n+ 1)N−2j
x2j+1.

Substituting into the second summation, and making use of formulae (2.6) and (2.7) for
even and odd N , respectively, verifies (3.14), proving the corollary. �

More specifically, if the underlying equation is exactly the linear beam equation in (2.1)
with dispersion relation ω(k) = ±k2. It follows that the second term in (3.14) reduces to
(2.12), which is nothing but −H(x) in (2.14). Meanwhile, the third term is identical to
C(t∗)x in (2.14). This indicates that in this particular case, Corollary 3.3 is in accordance
with Theorem 2.6.

As in Section 2, let us now illustrate how, by Corollary 3.3, we can calculate the value of
the Riemann zeta function at s = 4. We define

HN
p,q(x) = ∂−Nx

2q−1∑
j=0

bj

(
p

q

)
σj,q(x),

where bj are determined by the formulae (2.6) for even N , or (2.7) for odd N , respectively.
Denote

SNl (t) =

+∞∑
n=0

sin((2n+ 1)N t)

(2n+ 1)l
, for l ∈ Z+, with l ≥ 2, (3.16)

and let

ΓN =



N
2∑

k=1

(−1)k(2π)N−2k+1

(N − 2k + 1)!
SN2k(t∗), if N even,

N−1
2∑

k=1

(−1)k(2π)N−2k

(N − 2k)!
SN2k+1(t∗), if N ≥ 3 odd.

(3.17)

According to (3.14), we find a formula involving the sum ΓN , which along with the periodicity
produces

ΓN =
π

4
HN
p,q(2π). (3.18)

Note that, if N is even, at the special rational times t∗l = (2l − 1)π/2, l ∈ Z+,

SNN (t∗l ) = (−1)l−1
+∞∑
n=0

1

(2n+ 1)N
,

while, if N is odd, SNN (t∗l ) is a alternating series, namely,

SNN (t∗l ) = (−1)l−1
+∞∑
n=0

(−1)n

(2n+ 1)N
.

Hereafter, we denote

σ(N) =

+∞∑
n=0

1

(2n+ 1)N
, for even N, τ(N) =

+∞∑
n=0

(−1)n

(2n+ 1)N
, for odd N,

respectively. Therefore, in the special rational times t∗l setting, (3.18) establishes the recur-
sion formulae for σ(2k) and τ(2k + 1) for each k ∈ Z+. More precisely, for even N

σ(N) =
(−1)

N
2

8

HN
1,2(2π)− 4

π

N
2 −1∑
k=0

(−1)k(2π)N−2k+1

(N − 2k + 1)!
σ(2k)

 ,



BIDIRECTIONAL DISPERSIVE EQUATIONS 17

or, for odd N ,

τ(N) =
(−1)

N−1
2

8

HN
1,2(2π)− 4

π

N−1
2 −1∑
k=0

(−1)k(2π)N−2k

(N − 2k)!
τ(2k + 1)

 ,

which are initiated by the series σ(2) (2.18) for even N , or τ(3) for odd N , respectively. As
far as τ(3) is concerned, one can verify from (2.7) for N = 3 that

b̃0 = −1, b̃1 = b̃2 = 1, b̃3 = −1,

which immediately yields

H3
1,2(x) =


− 1

6x
3, 0 ≤ x ≤ π

2 ,
1
6

(
x3 − 3πx2 + 3π2

2 x− π3

4

)
, π

2 ≤ x ≤
3π
2 ,

− 1
6

(
x3 − 6πx2 + 12π2x− 13π3

2

)
, 3π

2 ≤ x ≤ 2π.

We thus arrive at

τ(3) =

+∞∑
n=0

(−1)n

(2n+ 1)3
=
π3

32
.

When it comes to ζ(4), we calculate from (2.16) that

H4
1,2(x) =

{
− 1

24x
4, 0 ≤ x ≤ π,

1
24

(
x4 − 8πx3 + 12π2x2 − 8π3x+ 2π4

)
, π ≤ x ≤ 2π.

Consequently,

σ(4) =

+∞∑
n=0

1

(2n+ 1)4
=

1

8

(
H4

1,2(2π) +
4π2

3!
ζ̄(2)

)
=
π4

96
,

which further yields the following classical result for the Riemann zeta function at s = 4:

ζ(4) =

+∞∑
n=0

1

n4
=
π4

90
.

3.2. Monomial dispersion relation — second approach. We now briefly consider a
different approach in the monomial case, which is based on [16, Chapter 7] and derive an
alternative representation of the solution at rational times. Hence, the dispersion relation
assumes the form (3.6). Moreover, only for this subsection, we relax the condition on g and
allow it to have non-zero mean over [0, 2π].

The solution to the periodic initial-boundary value problem (3.1)-(3.2) is given by

u(t, x) =
∑
k

f̂(k) cos(kN t)e i kx +
1

2π

ˆ 2π

0

g(y)dy t+
∑
k 6=0

ĝ(k) sin(kN t)

kN
e i kx

:= I(t, x) + 〈g〉 t+ II(t, x),

(3.19)

where 〈g〉 is the mean of g and I(t, x), II(t, x) correspond to the two Fourier series repre-
sentations respectively. In the following, we derive an alternative representation of the term
II(t, x). In particular, we will show that II(t, x) can be expressed as the time-evolution of
the periodic convolution of the function g − 〈g〉 with a polynomial of degree N ≥ 2. As it
is known, see for example [24, Proposition 2.76], the convolution gains the regularity of the
most regular function between the two involved. Consequently, we may deduce that at any
time t > 0, either rational or irrational, the Fourier series representation of II(t, x) defines a
2π-periodic function of class CN (R).

Let us make all the above precise and define first the following family of polynomials on
[0, 2π].
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Definition 3.4. Let N ≥ 1 be an integer. We denote by QN : [0, 2π] → C the polynomial
of degree N , defined inductively by the formula

QN (x) =
(− i )NxN

(−1)N−1N !
−
N−1∑
`=1

(−1)`−N

(− i )`−N
(2π)N−`

(N − `+ 1)!
Q`(x). (3.20)

The crucial feature of the polynomial QN is the form of its Fourier coefficients, which
are equal to k−N . As we shall shortly see, this will allow us to invoke the operation of the
periodic convolution in the representation of II(t, x).

Lemma 3.5. Fix an integer N ≥ 1 and consider the polynomial QN : [0, 2π] → C. Then,
for k 6= 0, Q̂N (k) = k−N .

Proof. The proof follows by induction on N . It is easy to show that the statement holds
for N = 1 and N = 2. We assume that Q̂`(k) = k−` for ` = 1, 2, . . . , N , with N ≥ 3, and
calculate the Fourier coefficients of QN+1.

Let k 6= 0. Then, we have that

Q̂N+1(k) =
1

2π

ˆ 2π

0

QN+1(y)e− i kydy

=
(−i)N+1

2π(−1)N (N + 1)!

ˆ 2π

0

yN+1e− i kydy −
N∑
`=1

(−1)`−N−1

(− i )`−N−1
(2π)N+1−`

(N − `)!
1

k`
.

However, a direct calculation shows that
ˆ 2π

0

yN+1e− i kydy =
2π(−1)N (N + 1)!

(− i )N+1kN+1
+ (N + 1)!

N∑
`=1

(−1)`−1

(− i )`
(2π)N+2−`

(N − `)!
1

k`
. (3.21)

Substituting back for Q̂N+1(k) we find that

Q̂N+1(k) =
1

kN+1
,

which concludes the proof. �

We now turn our attention to the second ingredient needed for the alternative represen-
tation of II(t, x). Thus, we recall the definition of the periodic convolution, see [36].

Definition 3.6. Let f and g be 2π-periodic on R and such that f , g ∈ L1(0, 2π). Then the
2π-periodic convolution of f and g is defined by

f ∗ g(x) =
1

2π

ˆ 2π

0

f(x− y)g(y)dy, x ∈ [0, 2π]. (3.22)

From [36, Proposition 3.1], we know that f ∗ g defines a 2π-periodic continuous function
whose Fourier coefficients are given by f̂ ∗ g(k) = f̂(k)ĝ(k). Summarizing the above, we
arrive at the following lemma which identifies II(t, x) based on the convolution of g − 〈g〉
with QN .

Lemma 3.7. Assume that g is of bounded variation over [0, 2π]. Fix integer N ≥ 2 and
consider the function

v(x) = (g − 〈g〉) ∗QN (x), x ∈ [0, 2π]. (3.23)
Then, at any fixed time t ≥ 0, we have that

II(t, x) =

∞∑
k=−∞

v̂(k) sin(kN t)e i kx. (3.24)
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Proof. Let g̃ = g − 〈g〉. Then, the Fourier coefficients of g̃ are given by

̂̃g(k) = ĝ(k), k 6= 0, ̂̃g(0) = 0.

Moreover, from Lemma 3.5, we know that for k 6= 0, Q̂N (k) = k−N . Hence,

v̂(k) = ̂̃g(k) Q̂N (k) =

{
0, k = 0,
ĝ(k)
kN

, k 6= 0,

which implies that for any t > 0,

∞∑
k=−∞

v̂(k) sin(kN t)e i kx =
∑
k 6=0

ĝ(k)

kN
sin(kN t)e i kx = II(t, x).

�

The validity of the revival effect at rational times t∗ = πp/q follows again by Lemma 3.2
applied directly on I(t∗, x) and II(t∗, x) in conjunction with Lemma 3.7. This is the context
of the next theorem.

Theorem 3.8. Suppose that equation (3.1) admits the monomial dispersion relation (3.6),
the initial data f(x) and g(x) in (3.2) are of bounded variation. Then, at each rational time
t∗ = πp/q, the solutions to the periodic initial-boundary value problem (3.1)-(3.2) take the
form

u(t∗, x) =

2q−1∑
j=0

aj

(
p

q

)
f

(
x− πj

q

)
+ 〈g〉 t∗ +

2q−1∑
j=0

dj

(
p

q

)
v

(
x− πj

q

)
, (3.25)

where v(x) = (g−〈g〉) ∗QN (x) and the coefficients aj , dj ∈ C, j = 0, . . . , 2q− 1, are certain
constants depending on p, q.

As a consequence of Theorem 3.8, equivalently of Theorem 3.1, the solution at rational
times is, at least, piecewise continuous, given that f(x) has finitely many jump disconti-
nuities. More specifically, the first term in (3.25), I(t∗, x), corresponds to the revival of
the initial function f(x), whereas the third term, II(t∗), is the revival of the 2π-periodic,
CN (R) function v(x) = (g − 〈g〉) ∗QN (x) and thus, together with the constant term, 〈g〉t∗,
a 2π-periodic, CN (R) function. Therefore, the solution is given as the sum of the revival
of the initial condition f(x) and a more regular function, which ensures the revival of the
initial jump discontinuities of f(x).

3.3. Integral polynomial dispersion relation. This subsection is concerned with the
case that

√
φ(k) is an integral polynomial P (k). The corresponding solution takes the form

u(t, x) =
∑
k

f̂(k) cos(P (k)t)e i kx +
∑
k 6=0

ĝ(k) sin(P (k)t)

P (k)
e i kx := I(t, x) + II(t, x). (3.26)

Firstly, using (3.10) again, we obtain that at each rational time t∗ = πp/q, the first term in
(3.26) satisfies

I(t∗, x) =

2q−1∑
j=0

aj

(
p

q

)
f

(
x− πj

q

)
.
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Next, notice that∣∣∣∣∣∣ II(t, x)−
∑
k 6=0

ĝ(k) sin(P (k)t)

cNkN
e i kx

∣∣∣∣∣∣ ≤
∑
k 6=0

|cN−1kN−1 + · · ·+ c1k + c0|
|cNP (k)kN |

|ĝ(k)|

.
∑
k 6=0

1

kN+2
,

(3.27)

where the fact that g(x) is of bounded variation has been used in the last inequality and
cN denotes the coefficient of the highest power of P (k). Since N ≥ 2, the final series is
absolutely convergent, whose sum is a constant. Thus, the above estimate implies that the
qualitative behavior of the second term relies crucially on that of the series∑

k 6=0

ĝ(k) sin(P (k)t)

cNkN
e i kx. (3.28)

While, as for (3.28), a direct generalization of the proof of Theorem 3.1 shows that, at each
rational time t∗ = πp/q,

∑
k 6=0

ĝ(k) sin(P (k)t∗)

cNkN
e i kx = iN

2q−1∑
j=0

b̄j

(
p

q

)
G

(
x− πj

q

)
+

N−1∑
j=0

C̄jx
j ,

where the coefficients b̄0, . . . , b̄2q−1 are determined by

∑
k

sin (P (k)t∗) e i kx =

2q−1∑
j=0

b̄j

(
p

q

)
δ

(
x− πj

q

)
, and C̄j =

∑
k 6=0

ĝ(k) sin(P (k)t∗)

cN j!kN−j
.

We thus conclude that, at each rational time, the series (3.28) admits the same discontinuities
and revival structure as the second summation in solution (3.12).

All in all, we may safely draw the conclusion that, in the present case, the discontinuities
of the solution will be determined by the initial data. For instance, if the initial data are
the step function σ(x), as in (2.2), by Corollary 3.3, u(t, x) will be a CN−1 curve at each
t0k = (2k − 1)π/2, k ∈ Z+, and exhibit jump discontinuities and revival profile at other
rational times.

3.4. Non-polynomial dispersion relation. If
√
ϕ(k) is not a polynomial, we distinguish

two cases. The first one assumes that, for large wave numbers, the dispersion relation is
asymptotically close to an integral polynomial P (k). Hence, suppose√

ϕ(k) ∼ P (k) +O(k−1), as |k| → ∞.

Firstly, under the assumption that f(x) is of bounded variation, the first summation in (3.4)
satisfies∣∣∣∣∣ ∑

k

f̂(k) cos
(√

ϕ(k) t
)
e i kx −

∑
k

f̂(k) cos(P (k)t)e i kx

∣∣∣∣∣
≤
∑
k

|f̂(k)| | cos
(√

ϕ(k) t
)
− cos(P (k)t)| .

∑
k 6=0

1

k2
,

(3.29)
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where the mean-value theorem has been used in the last inequality. Next, for the second
summation, one has∣∣∣∣∣∣
∑
k 6=0

ĝ(k)√
ϕ(k)

sin
(√

ϕ(k) t
)
e i kx −

∑
k 6=0

ĝ(k)

kN
sin(P (k)t)e i kx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
k 6=0

ĝ(k)√
ϕ(k)

sin
(√

ϕ(k) t
)
e i kx −

∑
k 6=0

ĝ(k)

P (k)
sin
(√

ϕ(k) t
)
e i kx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
k 6=0

ĝ(k)

P (k)
sin
(√

ϕ(k) t
)
e i kx −

∑
k 6=0

ĝ(k)

P (k)
sin(P (k)t)e i kx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
k 6=0

ĝ(k)

P (k)
sin(P (k)t)e i kx −

∑
k 6=0

ĝ(k)

kN
sin(P (k)t)e i kx

∣∣∣∣∣∣
:= II(1) + II(2) + II(3).

We directly estimate the above three terms as follows:

II(1) ≤
∑
k 6=0

|O(k−1)ĝ(k)|
|P (k)ϕ(k)|

.
∑
k 6=0

1

k2N+2
,

II(2) ≤
∑
k 6=0

| sin(
√
ϕ(k)t)− sin(P (k)t)||ĝ(k)|

|P (k)|
.
∑
k 6=0

1

kN+2
,

II(3) ≤
∑
k 6=0

|cN−1kN−1 + . . .+ c0||ĝ(k)|
|P (k)kN |

.
∑
k 6=0

1

kN+2
.

We thus conclude that∣∣∣∣∣∣
∑
k 6=0

ĝ(k)√
ϕ(k)

sin(
√
ϕ(k)t)e i kx −

∑
k 6=0

ĝ(k)

kN
sin(P (k)t)e i kx

∣∣∣∣∣∣ .
∑
k 6=0

1

kN+2
,

which, together with the estimate (3.29) imply that, in the present case, the solution u(t, x)
will exhibit the same asymptotic behavior as the polynomial case. The times at which the
solution (approximately) exhibits revivals are densely embedded in the times at which it has
a continuous, fractal profile.

For example, the Boussinesq equation

utt +
1

3
uxxxx − uxx +

3

2
α(u2)xx = 0, (3.30)

has the linear dispersion relation ω(k) = ±k
√

1
3k

2 + 1, and its leading order asymptotics
is ± 1√

3
k2. The solution of the periodic initial-boundary value problem for the linearization

of equation (3.30) subject to the step function initial data (2.2) at several representative
rational and irrational times are plotted in Figure 6. As illustrated in these figures, the
solutions exhibit the (approximately) revival profile at rational times, and the overall jump
discontinuities and revival structure is very similar to that of the linear beam equation.
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(a) t = π/2 (b) t = π/3 (c) t = π/5

(d) t = 0.1 (e) t = 0.3 (f) t = 0.5

Figure 6: The solutions to the periodic initial-boundary value problem for the linear Boussi-
nesq equation.

On the other hand, if the equation admits a non-polynomial dispersion relation with an
non-integral asymptotic exponent, i.e.,√

ϕ(k) ∼ |k|α, 2 ≤ α /∈ Z, as |k| → ∞,
we still estimate the two summations in (3.4) separately. As far as the first one is concerned,
as studied in [7], its overall qualitative behavior is entirely determined by the asymptotic
exponent α. In particular, when 2 ≤ α /∈ Z is not an integer, only fractal solution profiles
will be observed at every time. While, as for the second term, observe that in the present
situation,∣∣∣∣∣∣

∑
k 6=0

ĝ(k)√
ϕ(k)

sin(
√
ϕ(k)t)e i kx −

∑
k 6=0

ĝ(k)

|k|[α]+1
sin(|k|αt)e i kx

∣∣∣∣∣∣
≤
∑
k 6=0

|k|[α]+1 − |k|α

|k|α|k|[α]+1
|ĝ(k)| .

∑
k 6=0

|k|α′ ln |k|
|k|α|k|[α]+1

|ĝ(k)|,

for some α < α′ < [α] + 1. Note that if g(x) is of bounded variation, the estimate can only
be obtained by using

∑
k 6=0 |k|−[α]−1. In view of this situation, we need to further require

that g(x) satisfies ˆ
e i kx dg ∼ O(k(α−α

′)−δ) for all δ > 0.

Under this hypothesis, the above estimate is bounded by
∑
k 6=0 |k|−[α]−2, and hence the

second term is completely determined by the series∑
k 6=0

ĝ(k)

|k|[α]+1
sin(|k|αt)e i kx,

which, compared with the first term, will admit better regularity.
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(a) t = π/10 (b) t = π/5 (c) t = π/3

(d) t = 0.1 (e) t = 0.3 (f) t = 0.5

Figure 7: The solutions to the periodic Riemann problem for the linear equation (3.31).

We conclude that, in the present case, the solutions will retain a fractal profile at all times.
Results confirming this are displayed in Figure 7, which are the plots of the solutions to the
periodic Riemann problem for the case of three-halves dispersion relation ω(k) = ±|k| 32
corresponding to the equation

utt = H[uxxx], (3.31)
where H denotes the periodic Hilbert transform,

H[f ](x) =
1

π

+∞∑
−∞

ˆ π

−π
—

f(y)

x− y + 2πk
dy =

1

2π

ˆ π

−π
— cot

x− y
2

f(y) dy.

4. Numerical simulation of dispersive revival for nonlinear equations

In this section, we will explore the effect of periodicity on rough initial data for nonlinear
equations in the context of the nonlinear defocusing cubic beam equation of the form

utt + uxxxx + µu+ ε |u|2u = 0, (4.1)

which is motivated by the nonlinear Boussinesq equation, see [34] for details. We will
numerically approximate the solutions to the periodic initial-boundary value problem for
the beam equation (4.1) subject to periodic boundary conditions on [−π, π], with the same
step function (2.2) as initial data.

The goal of this section is to investigate to what extent revival and fractalization phe-
nomena persist into the nonlinear regime. A basic numerical technique, the Fourier spectral
method, will be employed to approximate the solution to this initial-boundary value prob-
lem. As we will see, our numerical studies strongly indicate that the dispersive revival
phenomenon admitted by the associated linearized equation will persist into the nonlinear
regime. However, some of the qualitative details — for instance, the convexity of the curves
between the jump discontinuities — will be affected by the nonlinearity, in contrast to what
was observed in the unidirectional case.
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4.1. The Fourier spectral method. Let us first summarize the basic ideas behind the
Fourier spectral method for approximating the solutions to nonlinear equations. One can
refer to [19, 39] for details of the method.

Formally, consider the initial value problem for a nonlinear evolution equation

ut = K[u], u(0, x) = u0(x), (4.2)

where K is a differential operator in the spatial variable with no explicit time dependence.
Suppose K can be written as K = L+N , in which L is a linear operator characterized by
its Fourier transform L̂u(k) = ω(k)û(k), while N is a nonlinear operator. We use F [·] and
F−1[·] to denote the Fourier transform and the inverse Fourier transform of the indicated
function, respectively, so that the Fourier transform for equation in (4.2) takes the form

ût = ω(k)û+ F [N(F−1[û]) ].

Firstly, periodicity and discretization of the spatial variable enables us to apply the fast
Fourier transform (FFT) based on, for instance, 512 space nodes, and arrive at a system
of ordinary differential equations (ODEs), which we solve numerically. For simplicity, we
adopt a uniform time step 0 < ∆t � 1, and seek to approximate the solution û(tn) at the
successive times tn = n∆t for n = 0, 1, . . .. The classic fourth-order Runge-Kutta method,
which has a local truncation error of O((∆t)5), is adopted, and its iterative scheme is given
by

û(tn+1) = û(tn) +
1

6
(fk1 + 2fk2 + 2fk3 + fk4), n = 0, 1, . . . , û(t0) = û0(k),

where
fk1 = f(tn, û(tn)), fk2 = f(tn + ∆t/2, û(tn) + ∆tfk1/2),

fk3 = f(tn + ∆t/2, û(tn) + ∆tfk2/2), fk4 = f(tn + ∆t, û(tn) + ∆tfk3)

with

f(t, û) = ω(k)û+ F [N(F−1[û]) ].

Accordingly, the approximate solution u(t, x) can be obtained through the inverse discrete
Fourier transform.

Since the Runge-Kutta method is designed for first order systems of ordinary differential
equations, we convert our bidirectional second order in time system (4.1) into a first order
system by setting

v = ut,

an hence the beam equation (4.1) is mapped to the following evolutionary system

ut = v, vt = −uxxxx − µu− ε |u|2u. (4.3)

The Fourier transform for (4.3) takes the form

ût = v̂, v̂t = −(k)4û− µ û− εF [ |F−1[û]|2F−1[û] ]. (4.4)

Using the classic fourth-order Runge-Kutta method to solve the resulting system (4.4), and
then taking the inverse discrete Fourier transform, one can obtain the numerical solution to
the periodic initial-boundary value problem for the nonlinear beam equation (4.1).

4.2. Numerical Results. Figure 8 and Figure 9 display some results from our numerical
approximations of the solutions to the nonlinear beam equation (4.1) with periodic boundary
conditions and initial conditions (2.2) at some representative rational and irrational times.
Comparing the graphs in these two figures with the graphs corresponding to the same times
in Figure 1 and Figure 2, we find that, at each irrational time, all sets of plots are fairly
similar to those from the associated linear beam equation, and the solution still takes a
continuous, non-differentiable profile. When it comes to the rational times, the same jump
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discontinuities consistency for nonlinear and linear equations emerges as well. Meanwhile,
closer inspection will reveal some differences. The most noticeable is that, the shape of the
curves between jump discontinuities will change with time evolution. More precisely, the
graphs corresponding to t = π/5 show that the differences of the solution profile between the
linear and nonlinear equations is slight, except that, in the nonlinear case, the curves between
the jumps become closer to constants. Further, as the power p decreases with increasing
time, the variation in the shape of the curves from linear to nonlinear becomes greater and
greater. As illustrated in the graphs corresponding to t = π/3 and t = π/2, the convexity
of the curves has completely changed. These differences of the qualitative behavior of the
solutions exhibit the effect of the nonlinearity. Furthermore, in order to better understand
the effect of the nonlinearity, we perform further numerical experiments for smaller values
of coefficients ε and µ in equation (4.1). Referring to Figure 10, it appears that solution at
t = π/3 tends to the linear profile as ε tends to zero. Meanwhile, the shape of the curves
between jump discontinuities will change as ε increases, the most noticeable variation being
the changes in convexity. More unexpected phenomena appear when t = π/2. We find the
variation of the profile of the solution will be affected not only by the nonlinear term but
also by the linear term involving u. The plots displayed in Figure 11, corresponding to some
representative coefficients ε and µ, suggest that the solution profile, including its convexity
and the values of its peak and trough will be affected by the combination of both coefficients
ε and µ.

(a) t = π/2 (b) t = π/3 (c) t = π/5

Figure 8: The solutions to the periodic initial-boundary value problem for the beam equa-
tion with µ = ε = 1 at rational times.

(a) t = 0.1 (b) t = 0.3 (c) t = 0.5

Figure 9: The solutions to the periodic initial-boundary value problem for the beam equa-
tion with µ = ε = 1 at irrational times.
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(a) µ = 1, ε = 0.01 (b) µ = 1, ε = 0.5 (c) µ = 1, ε = 0.9

Figure 10: The solutions to the periodic initial-boundary value problem for the beam
equation at t = π/3.

(a) µ = 0.001, ε = 0.001 (b) µ = 0.001, ε = 1 (c) µ = 1, ε = 0.001

Figure 11: The solutions to the periodic initial-boundary value problem for the beam
equation at t = π/2.

Recall that the numerical experiments to the periodic initial-boundary value problem
for the KdV equation, the NLS equation and the multi-component KdV system have been
previously analyzed in [8, 42], which show that, in the unidirectional regime, the effect of the
nonlinear flow can be regarded as a perturbation of the linearized flow. When it comes to
the bidirectional dispersive equations, our numerical simulation strongly indicates that, the
dichotomy of revival/fractalization at rational/irrational times in linearization will persist
into the nonlinear regime, and the finite “revival” nature of the solutions at rational times is
not affected by the nonlinearity, however, the influence of the nonlinearity on the qualitative
behavior of the solutions is much greater than in the unidirectional setting. Motivated by
this observation, formulation of theorems and rigorous proofs concerning this novel revival
phenomenon in the nonlinear bidirectional regime, specially for the nonlinear beam and
Boussinesq equations, is eminently worth further study.
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