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ABSTRACT. In this paper, we investigate the formation of singulastand the existence
of peaked traveling-wave solutions for a modified Camassimkequation with cubic non-
linearity. The equation is known to be integrable, and isashto admit a single peaked
soliton and multi-peakon solutions, of a different chagathan those of the Camassa-Holm
equation. Singularities of the solutions can occur onlyhia form of wave-breaking, and
a new wave-breaking mechanism for solutions with certaitiairprofiles is described in
detail.
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1. INTRODUCTION
This paper is concerned with the following nonlinear paditferential equatioh

mi + (W —ud)m), +yu, =0, (1.1)
for the functionu(t, ) of time ¢ and a single spatial variable in which~ is a constant,
and

m=1U— Ugg. (1.2)

The equation (1.1) has the form of a modified Camassa-Holratemuwith cubic nonlinear-
ity. It was proposed as a new integrable system by Fuchsstgl] and Olver and Rosenau
[48] by applying the general method of tri-Hamiltonian dtyato the bi-Hamiltonian rep-
resentation of the modified Korteweg-deVries equationet,dttwas obtained by Qiao [50]
from the two-dimensional Euler equations, where the véegb(t, ) andm(t, z) repre-
sent, respectively, the velocity of the fluid and its pot@ntiensity. In [51] it was shown
that equation (1.1) admits a Lax pair, and hence can be shlyde method of inverse

scattering. See Section 2 for detalils.
Applying the scaling transformation

Tr—€ex, tr—>e_1t, u—s 2u
to equation (1.1) produces
(€U — Ugy ) + [(e2u2 —u2)(*u — um)]x + yuy = 0. (1.3)
Expanding
u(t,z) = ug(t,z) + euy (t, ) + A ug(t,x) + ---
in powers of the small parameterthe leading order termy (¢, ) satisfies

2
—UQ,zzt + (u07xu0,xx)m + YU, = 0.
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We conclude that = u , satisfies the short pulse equation
Vgt = %(US)M + Y. (1.4)

This equation was derived by Schéafer and Wayne [54] as a nfodéhe propagation of
ultra-short light pulses in silica optical fibers, which is@an approximation of nonlin-
ear wave packets in dispersive media in the limit of few cyaa the ultra-short pulse
scale [9]. Numerical simulations [9] show that the shortspuéquation approximation to
Maxwell's equations in the case when the pulse spectrumtisarwowly localized around
the carrier frequency is better than that obtained from thdinear Schrodinger equation.
Well-posedness and wave breaking for the short pulse equbtve been studied in [54]
and [43], respectively. It was shown in [5] that the shorisputquation and the WKI equa-

tion [58]
w Ugy
t=|————=
(1+ u:%)% .

belong to the same hierarchy. The WKI equation is gauge afgrivto the mKdV equation,
while the short pulse equation is gauge equivalent to tleeGiordon equation [53]. Solitons
of the mKdV equation and the sine-Gordon equation correspmfoop solitons of the WKI
equation and the short pulse equation, respectively.

The original Camassa-Holm (CH) equation

mg + umy + 2um + yu, = 0, (1.5)

wherem is as above, (1.2), can itself be derived from the Kortewelrigs equation by
tri-Hamiltonian duality. The Camassa-Holm (CH) equatién4] (see also [17, 36]) was
originally proposed as a model for surface waves, and has $teeied extensively in the
last twenty years because of its many remarkable propertiésity of conservation laws
and complete integrability [6, 19, 24], with action anglei&bles constructed using inverse
scattering [3, 4, 14, 18], existence of peaked solitons aniti4meakons [1, 6, 7], geometric
formulations [8, 37, 44], well-posedness and breaking waveaning solutions that remain
bounded while their slope becomes unbounded in finite tif@e1, 12, 13, 40]. Note that
the nonlinearity in the CH equation is quadratic. Two ingdde CH-type equations with
cubic nonlinearity have been discovered: One is the equdlid), and the second is the
Novikov equation [45]

my + u’mg + %(u2)xm =0. (1.6)
The integrability, peaked solitons, well-posedness and/ hip phenomena to the Novikov
equation have been studied extensively [34, 35, 45, 56, Afi]alternative modified CH
equation was introduced in [26]. Multi-component versiofshe CH equation have been
introduced and studied in [15, 21, 27, 31, 32, 33, 48].

Dual integrable nonlinear systems, such as the CH and modfi¢ equations, are en-
dowed with nonlinear dispersion, which, in most cases, lesabhem to support non-smooth
soliton-like structures. A number of additional examplédumal integrable systems derived
using the method of tri-Hamiltonian duality can be found20,[48]. Dual equations sup-
port a remarkable variety of non-analytic solutions [4BLluding peakons, compactons,
tipons, rampons, mesaons, and so on. Convergence of ansbjtitions to non-analytic
compactons and peakons was proved in [39, 41].

The aim of this paper is to investigate whether the modifiedeQtiation (1.1) has sim-
ilar remarkable properties as the CH equation (1.5). Sihearodified CH equation has
a cubic nonlinearity which the CH equation is only quadratice expects that the modi-
fied CH equation should also have peaked solitons and waaking. The following two
sections review the bi-Hamiltonian structure and geomdtimulations of the modified
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CH equation. In Section 4, detailed blow-up criteria fooet solutions are established;
see Theorem 4.2. It is shown that the solutions of the mod@idcequation can only have
singularities which correspond to wave breaking. A suffitisondition for wave breaking

of strong solutions in finite time is specified in Section 5¢ Sdeorem 5.2. Finally, the

existence of single peakon and multi-peakon solutions nsatestrated in Section 6. Inter-
estingly, in contrast to the CH equation, with= 0, we find that multi-peakon solutions of
(1.1) have only constant amplitudes.

2. GEOMETRIC FORMULATION AND INTEGRABILITY

The CH equation (1.5) has the three distinct geometric ftatimns. First, it describes
the geodesic flows, respectively, on the Bott-Virasoro gréar the casey # 0 [44, 55]
and on the diffeomorphism group of the unit circle undét metric for the case; =
0 [37]. Note that the two geometric descriptions are not ag@ls: fory = 0 (on the
diffeomorphism group) the Riemannian exponential map &callchart, but this is not the
case fory # 0 (on the Bott-Virasoro group) cf. the discussion in the pgdféf. Second,
it describes families of pseudo-spherical surfaces [2§, BRrthermore, it arises from a
non-stretching invariant planar curve flow in the centroiatiine geometry [8]. While
it is not clear whether the modified CH equation (1.1) alsacdlees geodesic flows on
diffeomorphism groups, we can show that it arises from ainisit (arc-length preserving)
invariant planar curve flow in Euclidean geometry. Indedé, modified KdV and KdV
equations arise naturally from non-stretching invaridahar curve flows in Euclidean and
centro-equiaffine geometry, respectively [8, 25, 49].

According to the theory of moving frames, [28, 47], any Ede&in-invariant plane curve
flow for C C R? has the form

oC

wheret andn are the Euclidean tangent and normal vectors, while the alcaimd tangent
velocities, f andg, are arbitrary Euclidean differential invariants, meartinat they depend
on the curvature and its derivatives with respect to thelergth s of the curveC'. Ac-
cording to equation (4.13) in [47], which is a consequencéhefmoving frame calculus
developed for curve and submanifold flows invariant underega Lie group actions, the
curve flow (2.1) isintrinsic or non-stretching meaning that it preserves arc length, if and
only if

gs — kf =0. (2.2)
In condition (2.2), the operator producing multiplicatiby — « is particular to Euclidean
geometry, and other transformation groups lead to altemnatiteria for arc length preser-
vation of the flow. Furthermore, according to Example 5.54w][(see also [25]) when
the curve evolves intrinsically according to (2.1) with thenstraint (2.2), the curvature
invariant satisfies

ke = R[f], where R =02 + k% + ks0; 'k (2.3)
is the well known recursion operator, [46], of the modifiedeuation
Kt = Kgss 1 %'42“37 (2.4)

which corresponds to the particular flow (2.1) wjth= kg, g = % K2

Remark 2.1. The operatorR is a particular instance, for Euclidean-invariant planerea
flows, of the general moving frame calculus for invariantreahifold flows that has been
developed iff47]. For example, the evolution of centro-equiaffine curvatumeer an in-
variant curve flow in centro-equiaffine geometry is govergthe KdV recursion operator.
In a similar fashion, the operator governing the evolutiditarvature and torsion under the
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Euclidean-invariant flow of a space curve is the recursioerafor for vortex filament flow,
which can be mapped to the integrable nonlinear Schrodiegeration under the Hasimoto
transformation,[29, 38] Many, but not all, Klein geometries produce recursion @pers
and integrable systems for the evolution of differentialanants under group-invariant
flow. It remains an intriguing and unresolved mystery as tg wkegrable systems arise so
often in this geometric context.

In particular, if we set
= —2us, K=m=u— Uss,
then by (2.2),
g=—(u®—u)+0,
whereb is a constant. Therefore(t, s) satisfies the equation

my + ((u2 - ug)m)s + (b+ 2)ugss — bus = 0. (2.5)

Settingz = s + (b + 2)t, (2.5) becomes

my + ((u2 - ui)m)x + 2u, = 0, m=u— Ugg, (2.6)
which is equivalent, up to rescaling, to the modified CH eigmatl.1). The preceding
derivation implies that the modified CH equation can be mgams a Euclidean-invariant
version of the CH equation, just as the mKdV equation is aiBeah-invariant counterpart
to the KdV equation from the viewpoint of curve flows in Kleir@metries.

Since it possesses a recursion operator, the modified CHieqa.1) is formally com-
pletely integrable. Indeed, it can be written in the bi-Hiomian form [48, 51]

— 2_ .2 _ - JY g
my = —((u ux)m)x Yy = J — ,

where
J:—axmax_lm@x—%v(?z and Kz@i—@x
are compatible Hamiltonian operators, while

1
Hy= / mudz, Hy = Z/ (u! 4+ 20%u2 — 2ul +2yu?) do.  (2.7)
R R

are the corresponding Hamiltonian functionals. Accordimghe Theorem of Magri, [46],

the associated recursion opera®r= J - K~! produces a hierarchy of commuting Hamil-

tonian functionals and bi-Hamiltonian flows — although irstbase most are non-local.
The modified CH equation (1.1) also admits the following Lastriulation [51]:

() =ven () (), =venen (7).

where
1/ —
U(m7>\):§<_)\QTn )\an>7 Q:Q(Aﬁ):\/l—%/\%,
and
V(m,u,\) =

A72Q + 1Q(u? — u2) A 7w — Quy) — AU —u)m
A Hu + Qug) + %/\(u2 —u)m —-\72Q — %Q(u2 —u?2) ’



WAVE BREAKING AND PEAKONS FOR A MODIFIED CAMASSA-HOLM EQUATON 5

3. ANALYTIC PRELIMINARIES

In this paper, we will study the Cauchy problem for the modifzamassa-Holm equation
on the entire line:

mt—i—((uz—ug)m)x—i—’yux:O, m=u—1ug t>0 xR,

u(0,z) = up(z), =z €R, (3.1)
u,m — 0 as |z| = oo.

Throughout, various positive constants will be uniformndted by a common letter
C. The norm of a Banach spacgis denoted by - || z. Let S(R) be the space of rapidly
decayingC functions orR, andS’(R) its dual space containing all tempered distributions.
GivenT > 0, let C¢°([0,T") x R) denote the space of all smooth functions with compact
support on[0,7") x R, which may be obtained as the restriction[@o7") x R of smooth

functions onR? with compact support contained (r-7, T') x R.
We will require the notions of strong (or classical) and weakitions.

Definition 3.1. If m € C([0,T); H*) N C*([0,T]; H*~!) with s > % and somel’ > 0
satisfies(3.1), thenm is called a strong solution of, T']. If m is a strong solution on
[0, 7] for everyT > 0, then itis called a global strong solution.

Substituting the formula fom in terms ofw into the partial differential equation (3.1)
results in the following fully nonlinear partial differaat equation:

ug + (u2 - %ui) Up + 0, (1 — 02)71 (%u?’ + uu’ + Yu) + %(1 -0 W2 =0. (3.2
Recall that
u=(1-0)"tm=pxm, where  p(x) = %e_m, (3.3)

andx* denotes the convolution product &) defined by

(f * 9)(x) = /R £ (w)g( — y)dy.
This formulation allows us to define a weak solution as foow

Definition 3.2. Given initial datau, € W'3(R), the functionu € L2.([0,T), W,-*(R))

is said to be a weak solution to the initial-value problé€Bnl) if it satisfies the following
identity:

T
/ / [wpr + 2 uloptiud o+ px (30’ +uud +yu) 0o — 2(p*ud) o] dudt
o Jr

4 / up() (0, ) dx = 0,
. (3.4)

for any smooth test functiop(t, z) € C°([0,7) x R). If u is a weak solution off0, T")
for everyT > 0, then it is called a global weak solution.

Remark 3.1. Since the Sobolev spad€’(R) can be embedded in the Hélder space
C*R)with0 < a < % Definition 3.2 precludes the admissibility of discontinsshock
waves as weak solutions.

Wave breaking relies crucially on strong nonlinear disiperswhich, however, makes
the analysis more challenging. The conservation ofAHenorm allows us to control the
solutions to the CH equation. For transport equations, atisol blows up in finite time
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when its slopeu, is unbounded from below. To apply this idea, let us rewriterttodified
CH equation (1.1) as a transport equation in terms.@fong the flow generated hy —u?2

my + (u? — ul)my = —2u,m? — yu,. (3.5)

Roughly speaking, the transport equation theory ensuedsiththe slope
(u? — u?), = 2uym (3.6)

is bounded, the solution will remain regular, and can’t blgwin finite time. More precisely,
the solution blows up at some finite tirie > 0 only if ||m(¢,-)||?- becomes unbounded
on [0,7). From this, together with the Sobolev embedding theorers, aam see that the
solution blows up in finite time if and only if the slope (3.8) uinbounded from below.
Thus to obtain a global solution, the main problem is thasitmpossible to be bound
(3.6) in terms of thelZ'-norm of the solution unless a higher, positive conserveahtity
involved in H3-norm of the solution can be found. To overcome this diffigulte may
regard the evolution equation (3.5) in terms of the quarn{Bt¥) being transported along
the flow generated by? — u2. Then wave breaking can be established by using the global
conservative property of the potential densityalong the characteristics; see (5.1) below.
We expect this new method can be found more applicationsabveéh wave breaking of
the nonlinear dispersive equations with higher nonliriesyi

4. BLOW-UP CRITERIA

In this section, we study the well-posedness and estabtigdria for the blow up of
solutions to the Cauchy problem for the modified CH equati)( We first recall some
1-D Moser-type estimates, [27].

Proposition 4.1. For s > 0, the following estimates hold:
I fallas®)y < CUNFIas ) lgllLoe®) + 1l Lo @) N9l s =) )

HfargHHS(]R) < C( HfHHs+1(R)H9||L°o(R) + ||f||L°°(R)Ham9HHS(]R) ),
where theC"s are constants independent pandg.

(4.1)

The following estimates for solutions to the one-dimenaldmnansport equation have
been used in [2, 27]. The following result is Theorem 3.142h [

Lemma 4.1. Consider the one-dimensional linear transport equation

of+vof =g, fli=o = fo. (4.2)
Let0 < ¢ < 1, and suppose that
fO € HJ(R)> g e Ll([ovT];HJ(R))a
ve € LY([0,T]; L=(R)), f e L*>([0,T); H (R)) N C([0,T]; S'(R)).

Thenf € C([0,T]; H? (R)). More precisely, there exists a constantlepending only o
such that, for everg < ¢t < T,

t t
1£Ollu <ol +C [ Nouedr+C [ @IV (r)ar (43)
0 0
and hence,
t t
- <eCVO o )| gedr [ = T)|| oo dr.
£ Ol << O (follze +C [ Nalear) with V)= [ 0001~ a

In [22], the following local well-posedness result was afxta (with a slight modifica-
tion).
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Theorem 4.1. Letmg = (1 — 82)ug € H*(R) with s > 3. Then there exists a tinié > 0
such that the initial-value problerf8.1) has a unique strong solutiom € C([0,7]; H*) N
CL([0,T); H5~') and the mapng ~ m is continuous from a neighborhood of, in H*
into C([0, T); H*) N CL([0, T]; HS1).

We are now in a position to state a blow-up criterion for thedified CH equation.

Theorem 4.2. Letmg = (1 — 92)up € H*(R) be as in Theorem 4.1 with > 1. Letm
be the corresponding solution (8.1). Assumd;;,, > 0 is the maximum time of existence.
Then

, <00 = / & [m(7)|[3e0 dT = 0. 4.4)

Remark 4.1. The blow-up criterion(4.4) implies that the lifespaf’;,  does not depend
on the regularity index of the initial datam. Indeed, letny be in H* for somes > %
and consider som& € (3, s). Denote bymn (resp.,m, ) the corresponding maximaf ®
(resp.,H*" ) solution given by the above theorem. Denotd byresp.,17) the lifespan of
ms (resp.,my). SinceH*® — H*® , uniqueness ensures tHet < 77, and thatm, = my
on [0,77). Now, if T} < T, then we must havery in C([0,T7]; H*). Hence,my €
L%([0,T7]; L), which contradicts the above blow-up criteri¢gh4). Therefore I = T7,.

Proof of Theorem 4.2We shall prove Theorem 4.2 by an inductive argument witheeisp
to the indexs. This can be achieved as follows.

Step 1. Fors € (%, 1), applying Lemma 4.1 to equation (3.5), thought of as a trarisp
equation form, we obtain

t
[m (&)l s < [lmolms + C/ 1(u? = w3 (T) | Los ()| 2= dr

(4.5)
+C’/ | (uem®)(7)|| s dT+C|’7|/ lwe (7) || 275 d7
forall 0 <t < T3, . Owing to the first Moser-type estimate in (4.1), one has
luzm?|[mrs < O(lJulzsIm?|[Lee + [fuz || oo [Im? | ) (4.6)

< Cllluallms e + llua]| oo lml| oo ml|z)-
According to (3.3),
Uy = 0p(1 — 02)"tm = dup xm, where  0,p(z) = —3 sign(x) e l?l@.7)
Young'’s inequality implies
[uz Lo < [10zpllLr[mllLee < [lml|Le, (4.8)
which, together with the fadtu, || s < C||m| g+ and (4.6), gives rise to
luzm?® ||z < Cllml|zsm o (4.9)
and
1(u? = u)al| Lo = 2llmug| Lo < Cllml|ze [Jusllzee < Cllml|Fe. (4.10)

Plugging (4.9) into (4.5) leads to

t
[m (&)l s < [mollzs + C/O (lm()lZ + Dllm(7)l| a2 dr, (4.11)
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which, by Gronwall’'s inequality, yields
t
()]s < HmOHHSeCfO(llm(T)lliooHvl)dT. (4.12)

Therefore, if the maximal existence tirﬂ‘gm < oo satisfies

*

T’!?LO

|7 Il dr <,
0

the inequality (4.12) implies that

limsup |[|m(t)||gs < o0,
m sup m(®)ll (4.13)

which contradicts the assumption on the maximal existeineef;; < oo. This completes
the proof of Theorem 4.2 for € (%, 1).

Step 2.Fors € [1, 2), by differentiating (3.5) once with respectitowe have
Ar(my) + (u? — u2)dp(my) = —3up(m?)e — 2upem?® — 4 Ugy. (4.14)

Applying Lemma 4.1 to (4.14) yields

t
10z (t, )| a1 < [|8zmol| s +C/ 1(u? = u)all oo 0wl o1 d
0

. (4.15)
+C [ (almellges + asm?ages + e ) dr
Thanks to the Moser-type estimates (4.1) along with (4.8, deduces
[ue Bz (m*)|[ g1 < Cl[ullasllm? || o + || poo 182 (M) | o)
< C(llmell s llmlFoe + lfuellzoe lfmll o Im]]ar+) (4.16)

2
< Climllzoollml s
Using the Moser-type estimates (4.1) again leads to
HummzuHS*l + [Vt || s

< Ollugalpoe [lm? | g + Nzl gt [m?|[2e + Wllweel gsr) — (4.27)
< C(llmlZee + YDllmll s,

where we used the fact that

[tae Lo < CImllzee + [lp * mllL>) < Cllm| Lo~ (4.18)

in the last inequality. Using (4.10), (4.16), and (4.17)4n6), and combining with (4.11),
we conclude that, for < s < 2, (4.11) holds.
Repeating the same argument as in Step 1, we see that The@awids forl < s < 2.

Step 3.Suppose < k € N. By induction, we assume that (4.4) holds witen1 < s < k,
and prove that it holds fok < s < k + 1. To this end, we differentiate (3.%)times with
respect tar, producing

k—1
005 m + (u® — u2)0,(0%m) = — Z CLOE=t(u® — )05 m — 208 (uym?) — 0k O, u.
=0
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Lemma 4.1 applied to the above again implies that

t
05 ()| o=t < |05 m0l| 7o +C/0 105 (T) || grs=s [ mBpu(T)[| oo dr
dr.
Hsfk

0

Using the first Moser-type estimate in (4.1) and the Sobatelexiding inequality, we have

k—1
<Z CLOE =t (u® — u2)D0,m + 208 (uym?) + 78'5%u> (1)
(=0

1205 (tgm?) + 7 350 s

< O (llusllzoellm? |l zs + Iz |2 llm®|| 2o + ][0zl 2r+)

, (4.20)
< C (el llmllzoe [l + oo s e + 11105l
< C(Imll + ) limil e
and
k—1
> ik — )0k
=0 Hs—k
k—1
< O (Il? = w2l e |l + 05 (= )| oo [l gocisenr )
(=0
k-1 (4.21)

14
<C) G [(Hullm + luall o) (lull grs—err + lluallms—ee)lIml] Ler14e
=0

~

2 2
O g 0 gl
< Ck‘|m||2k—%+50 ||mHH57

where the genius constanf € (0, 1) so thatH2+=0(R) — L>°(R) holds. Substituting
(4.20) and (4.21) into (4.19), we derive from (4.11) (W§Ih< s < 1) in Step 1 that

t
[m(&)|[gs < [lmollzs + C/O (I iy 1oy + DI 2 dr, (4.22)

where we used the Sobolev embedding theoFgfnz <0 (R) — L*>*(R) with & > 2.
Applying Gronwall’s inequality then gives

gk 3+<0

t
(&)l < lmollze exp{C /0 ImP s +hDdry.  (423)

In consequence, if the maximal existence tifife < oo satisfies

TSO
/ Hm(T)H%oo dr < oo,
0

thanks to the uniqueness of solution in Theorem 4.1, we thrxehtlfiath(zt)HH,C?%H0 is
uniformly bounded it € (0,7}, ) by the induction assumption, which along with (4.23)
implies

lim sup [[m (t)] s+ < oo,

t—Tx

mo

which leads to a contradiction.
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Therefore, Steps 1 to 3 complete the proof of Theorem 4.2. O

Remark 4.2. For a strong solutionn = u — u,, in Theorem 4.1, the Hamiltonian func-
tionals (2.7) are conserved, that is

d d 4 20 1

I == I 2 - 2 .

; (u +u?)dx =0, ; (u* + 2uu 3 ub + yu)d =0, (4.24)
forall ¢t € [0, 7).

The following blow-up criterion demonstrates that wavedking depends only on the
infimum ofm u,,.

Theorem 4.3. Letmg € H*(R) be as in Theorem 4.1 with> % Then the corresponding
solutionm to (3.1) blows up in finite tim&7;, > 0 if and only if

t_l)l;n 1n1fé{(mux)(t x)} = —00 (4.25)

Proof. Since, in view of Remark 4.1, the existence tiffig, is independent of the choice
of s, we need only to consider the case- 3, which relies on a simple density argument.

Multiplying equation (3.5) byn and integrating oveR with respect tar, and then inte-
gration by parts, produces

/m dr = — /(u —uz)mmxdw—2/uxm3dx—’y/uxmdx
:—/(uz—ug)xm2d:ﬂ—2/ummgdaz—z/(uz—ug)xdw
2 Jr R 2 Jr

= —/(mu%)m2 dz.
R
We next expand out (4.14):

2

_ 2 2
Mgt = —2Uypem” — 6uymmy — (U — uZ) Mgy — Yoy

= —2um? + 2m? — 6u,mm, — (u2 — u?c)mm — YUz

Multiplying by m, and integrating oveR with respect tor, leads to

/m d:n——/(u —u2)mxmm d$—2/um2mx dx
2dt R
—G/memi da:—|—2/m3mm d:n—v/ummm dx
R R R
1 2 2 2 2 3
=— [ (u” —uf)ems dx+ = | uym’ dx
2 Jr 3 Jr
— 6/Ruxmmi dx — % /R(ui —u2,), dx

2
:—S/uzmmi da:—l——/uwm?’d:z:.
R 3 Jr
d

— (m2 +m?2) dx = —10/(muz)mi dx — 2 / (mug)m? dz.
dt s 3 Je

If mu, is bounded from below oft), T}y, ) x R, i.e., there exists a positive constant > 0
such thatnu, > —Cy on[0, T}y, ) x R, then the above estimate implies

d

d—/(m +m )dx<1001/(m2+mi)dw.
t R

Therefore,
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Applying Gronwall’s inequality then yields
2 2 2 10Cq t 2
Im(®lp < [ (m® +m2) do < gy (4.26)

fort € [0, T};,,), which ensures that the solution(t, z) does not blow up in finite time.
On the other hand, if

lim inf | inf (1, = —00,
i in [;relR(mu ( a:))} 00
by Theorem 4.1 for the existence of local strong solutiond #re Sobolev embedding
theorem, we infer that the solution will blow-up in finite #8nThe proof of Theorem 4.3 is
then complete. O

5. WAVE-BREAKING MECHANISM IN THE CASE~vy =0

In this section, we derive some sufficient conditions for ineaking of waves for the
initial-value problem (3.1) with the parameter= 0, an assumption that, we emphasize,
will hold for the remainder of the paper.

For this purpose, a conservative property of the potentialill be crucial in the proofs
of our blow-up results. Consider the ordinary differengglation

dq(t,z) _
T = (u2 - ui)(t,q(t,x)), x € R’ t € [O,T), (5-1)
Q(OVx) =z,

for the flow generated by? — u2.

Lemma 5.1. Letuy € H*(R), s > 2, and letT > 0 be the maximal existence time

of the corresponding strong solutian to (3.1). Then(5.1) has a unique solutioy €
C'([0,T) x R,R) such that the map(t, -) is an increasing diffeomorphism Bfwith

Gz (t,r) = exp <2/0 (muﬁ(s,q(s,x))ds) >0, forall (t,z)e0,7)xR. (5.2)

Furthermore,
m(t,q(t,x))q.(t, ) = mo(x), forall (t,x)€[0,T) xR. (5.3)

Proof. Sinceu € C! ([0,T), H*~'(R)) and H*(R) < C'(R), bothu(t, ) andu,(t, z)
are bounded, Lipschitz in the space variableand of clasC! in time. Therefore, by
well-known classical results in the theory of ordinary éitntial equations, the initial value
problem (5.1) has a unique solutigtt, z) € C' ([0,7) x R).

Differentiating (5.1) with respect to and using (3.6) yields

2o = 2(mug)(t, 9) gz
q(0,7) =1,
The solution to (5.4) is given by

(t,z) € [0,T) x R. (5.4)

qz(t, ) = exp <2/0 (muﬁ(s,q(s,x))ds) ,  (t,x) €[0,T) x R. (5.5)

For everyT” < T, it follows from the Sobolev embedding theorem that

sup |(mug) (s, z)| < oo.
(s,2)€[0,T") xR
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We infer from (5.5) that there exists a const&t> 0 such thaty, (t,z) > e Xt (t,2) €
[0,T) x R, which implies that the mag(¢, -) is an increasing diffeomorphism &f before
blow-up with

¢z(t,x) = exp <2/0 (muﬁ(s,q(s,w))ds) >0, forall (t,z)€[0,T)xR.

On the other hand, combining (5.4) with (1.1), we have

. a(t,2)ae (1, 2)] = malt,0) + ma(t aila +

? = up)ma(t, Q)] + 2uam®qq

= qu[m(t,q) + (u
= qu[my + (u? — u)my 4 2u,m? = 0.
Thereforem(t, q(t, z))g. (¢, z) is independent of the time variableThat is
m(t,q(t,z))q.(t,x) = m(0,z) = ug(z) — vz ().
This completes the proof of Lemma 5.1. O

Remark 5.1. Lemma 5.1 shows that,ify = (1—02)u, does not change sign, them(t, =)
will not change sign for any € [0, 7).

Remark 5.2. Sinceq(t,-): R — R is a diffeomorphism of the line for evene [0, 7T'), the
L°°-norm of any function(¢,-) € L is preserved under the family of diffeomorphisms
q(t,-), that s,

o, )L = llv(t,q(t, )z, ¢ €[0,T).
Proposition 5.1. Letmy € H*(R),s > 3 andT > 0 be the maximal time of existence

of the corresponding solutiom(¢, x) to (3.1) with the initial datam,. ThenM := u,m
satisfies

My + (u? —u2)M, = —2M? — 2m(1 — 92) " (uim) — 2ma, (1 — 9%) " (uuy,m) (5.6)
forall (t,z) € [0,T) x R.
Proof. From (1.1), we have
(1—02) [ue + (v — u2)uy]
= — (u® —u)my — 2upm® + (1 — 02) [(u® — ul)uy,)
=— (u® —u)my — 2uym® + (v — ul)uy — 02 [(u? — ul)uy) (5.7)
= — (u? —u2)my — 2u,m?® + (u? — u)my — 6uglgem — 2uim,
=— 2uwm2 — BULUge™ — 2u§mw,
which implies
up + (u2 - ui)ur =—(1- 8:%)_1 [Qummz + 6Uy Ugym + 2u:20mw]
= —(1-97)7" [(u®)om + 2(uim)s] .
Taking the derivative to (5.8) with respecttoyields
Ugt + 202 + (u? — Ul g = —0p(1 — 02)7F [(u?)m + 2(uZm),] . (5.9)

Notice thatm; = —(u? — u2)m, — 2u,m?. We deduce from (5.9) that

T

(5.8)

MUy = —2ugzcm2 —( 2 ui)umm —m0y(1 — 8%)_1 [(u2)xm + 2(u:20m)x] .

Clearly,

ugmy = —(u? — u2)uymy, — 2uim?.
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Hence, we obtain the following equation fof = mu,:
M + (u® — u2)M, = —4M? =m0, (1 — 92) 7 [(u?),m + 2(u m)g]

= —4M? - m0ox (1 — 8%)_1 (( 2)xm) — 2m82 (u m)
2 2\—1 2 2\—1 2 (5'10)
=—4AM?* — mdy(1 — 07)~ " ((u*)em) + m(2umm) — ( —02)" " (2uzm)
= —2M? — 2m0,(1 — 02) " (uugm) — 2m(1 — 07) " (uZm).
This completes the proof of Proposition 5.1. O

Lemma 5.2. LetT > 0 be the maximal time of existence of the solutiofY, =) to the
initial value problem(3.1) with initial datamy € H*(R) for s > 3. Assumeng > 0 for all
z € R. Then

lug (t, z)| < ul(t,z), M; 4 (u? — u2)M, < —2M? +2Cy m, (5.11)

forall (t,z) € [0,T) x R, withC; = ﬁ”“(J”Hl
Proof. Sincemg(z) > 0 for all z € R, (5.3) and (5.2) imply that
m(t,z) > 0, (5.12)
forallt € [0,7T), z € R, and hence
(m(l - Q%)‘%uim)) (t,z) > 0. (5.13)

According to (3.3),
u(t.o) = (prm)(t.a) = 5 [ (e, y) dy,
R

hence

e—.ﬁE

T T +o0
uta) = G [ emenay+ G [ rmi

e . (5.14)
wita) == [ emepdy+ G [ i)y
which, along with (5.12), leads to
—+00
u(t.o) +u(tr) = e [ ity dy > 0
Yo (5.15)

u(t,x) —ug(t, ) = e_m/ e!m(t,y)dy > 0.

—00

From this, we have
luz (t, )| < u(t,x) for all (t,x) € [0,T) x R. (5.16)
On the other hand, by (4.7),
Dp(1 — 02) Huugm)(t, z) = Opp * (uuym)(t, x)

+o0o
5 [ st = pe wnm) ) do,
which, together with (5.16), implies
1 [T
0.1 - ) ) t,2)| < 5 [ e uafum) . 9) dy
. “’joo (5.17)
< §Ilu(t)||%oo/ e m(t,y) dy < [u(t)||F .
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From this, together with the Sobolev inequaljty|| ;. ®) < %HuHHl(R) and (4.24), we
find

1 3

0.0~ &) wnam)(t.0)| < 5 Ol ) = 57

Therefore, plugging (5.13) and (5.18) in (5.6) leads to #moad inequality in (5.11), which
ends the proof of Lemma 5.2. O

[uoll3p == Cr. (5.18)

In view of Theorem 4.3, we find that the solution blows up inténiime if and only
if the slopeu,m is unbounded blow. The next theorem shows that if the ing@kential
0 # mo(x) is non-negative, then the slopgm has an uniform upper bound, independent
of the timet, as long asn(t, z) exists.

Theorem 5.1. Letmy € H*(R),s > 1/2 andT" > 0 be the maximal time of existence of
the corresponding solutiom(t, x) to (3.1) with the initial datam,. Assume that(z) =
(1 —0%)ug > 0forall x € R, andmg(zo) > 0 at some pointy € R. Then

sup (moyu)(t,z) < L||uoHHl supmo( ) (5.19)

zeR \/_
forall ¢t € [0, 7).

To prove Theorem 5.1, we need the following lemma due to @mitist and Escher [11].

Lemma 5.3. [11] LetT > 0 andv € C'([0,T); H*(R)). Then for every € [0,T), there
exists at least one poi{t) € R with

I(t) == inIfé(vx(t,x)) = vz (t,&(1)).

re
The function/ (¢) is absolutely continuous of), 7") with

dIt)
— = vz (t,€(t)), a.e.on(0,T).

Proof of Theorem 5.1As in the proof of Theorem 4.3, we only need to show Theorem 5.1
holds whens = 3. First, Theorem 4.1 implies that’ € C([0,T); H*) N C ([0, T); H*™1).
Givent € [0, 7)), letxy(t) € R be such that

M(t,xzo(t)) = sup M(t,z), whichimplies M,(t,zo(t)) =0, a.e.on(0,T). (5.20)
z€eR

Sinces > £, we havel/*(R) — Co(R), the space of all continuous functions Brvanish-
ing as|z| — oco. Theorem 4.1 implies that

M(t,zo(t)) >0 for all tel0,T). (5.21)

Thanks to Lemma 5.1, the mafx, -) is an increasing diffeomorphism &, which implies
that there igjy = yo(t) € R satisfying

q(t, yo(t)) = wo(?). (5.22)
Hence, in view of Lemma 5.3, it follows from (5.6) and (5.20t
M (b m0(t)) = —2012( (1) — 2[m(1 — 02) )] (120 (1) 629

—2[mdy(1 — 8%)_1(uuxm)] (t,z0(t)), a.e.on(0,T)
which, together with (5.13) and (5.18), leads to

%M(t 2o(t)) < —2M2(t, 20(t)) + 2Cim(t, z0(t)), a.e. on (0,7).  (5.24)



WAVE BREAKING AND PEAKONS FOR A MODIFIED CAMASSA-HOLM EQUATON 15

On the other hand, at the poiftt (¢, yo)) = (¢, z0(t)), we have

%m(t,ajo(t)) = —2(mM)(t,zo(t)), a.e. on (0,7). (5.25)
It then follows from (5.21) that for all € [0, T")
m(t, zo(t)) = mo(wo(0))e 2o ME# T < i (20(0)) < sup mo(x), (5.26)
zeR

which along with (5.11), (4.24) and (5.26) implies
M(t,20(t)) = ua(t, zo(t))m(t, zo(t)) < [Juz(t)||Loem(t, zo(t))

< u(t)||peem(t, zo(t)) < %HUOHHl 2lé£m0($)' (5.27)

This completes the proof of Theorem 5.1. O

We are now in a position to state the following wave-breakigplt.

Theorem 5.2. Supposeny € H*(R) with s > 1/2. LetT > 0 be the maximal time of
existence of the corresponding solutior(t, z) to (3.1) with the initial datamgy. Assume
mo(z) = (1 — 8%)up > 0 for all x € R andmo(z) > 0 for somer, € R, and that

1
2 3 2
am’LL(](l’o) < — % . (528)
mo(xo)
Then the solutiomn(t, =) blows up at a time
2
T < 1= 2t0l@) 1 V20uuo(wo) ) V2 (g5
V2luolfy 2 [[uollz [[uo|l 7 mo (o)
Moreover wherl = t*, the following estimate of the blow-up rate holds
lim inf <(T0 —t) inf M(t,a:)) < -—1. (5.30)
t—Ty z€R
Proof. Thanks to (5.11) and (5.1), we have
d
EM(t’ q(t,z0)) < —2M>(t, q(t, o)) + 2C1m(t, q(t, x0)). (5.31)
Similarly, one can see from the equation in (3.1) that
d
—m(t,q(t,xg)) = —2mM (t, q(t, xq)). (5.32)

dt

DenotingM (t) := 2M (t, q(t, o)) andm(t) := 2m(t, q(t, zo)), we reformulate (5.31) and
(5.32) as

—M(t) < —M(t)? + 2C,m(t) (5.33)
and

—m(t) = —m(t)M(t). (5.34)
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Combining this with (5.12), we deduce that

i (e @) = i (70

_ m(lt)g < m(t)—M(t) —I—M(t)%m(t)>
> m(lt)g <m(t)(M(t)2 —2Cym(t)) — m(t)ﬁ(t)2> _ _acy

—_
S

—m(t) > Cy — 2Ct,

with ) o
m(0) ~ M(0)

Co = ks =~y = ~(@eo)an).

— 1 d
e — < — —
M(t) 0 (1) < () (Co — 2C1t)
Integrating (5.36) again of, t] implies
1 1 )
- < _
m(t)  m(0) ¢it” = Cot,

and hence

1 Co 1 Co 1
oo (oD L ) _c <t2__t+7>.
’I’)’L(t) ! < 01 C’lm(O) ! 01 201’1’)10(1’0)

The guadratic equation

has two roots:

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

pooCo LGN 2 G 1[G\ 2
T 2C1 2 Cl Clmo(x()) ’ T 201 2 Cl Clmo(l'o) ’

Assumption (5.28) implies

00>2 2 Co
— ) >=—), hence 0<t* < — <t,.
<01 ClmO(l’o) 201
Thus,
1
0< ——= < Ci(t —t")(t — ta).

3

(t)
From this, we may find a time < Ty < t* such that
m(t) — 400, as t— Ty <t",
which, by (5.37), implies that
M(t) — —o0, as t— Ty <t".
Therefore,
irel]%M(t,m) < M(t) — —o0, as t— Ty <t",

2

(5.40)

(5.41)

(5.42)

which, in view of Theorem 4.3, implies that the solutietit, x) blows up at the tim&}.
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Having established wave breaking results for (3.1) as gladtention is given to blow-up
rate for the solution. In fact, owing to (5.37) and (5.41),aezive that for alb < t < Tj

(To —t) ifellf%M(tyﬂf) < (To —t) M(t) < —(To — t)m(t)(Co — 2C1t)

1
=g

2(T0 — t) Cy
ST-mi-t) (t 201>

which leads to (5.30) whely = t*. Therefore, we end the proof of Theorem 5.2. [

(ZClt — Co) (5'43)

Remark 5.3. The equation ir{3.1)is invariant under the inverse transformation, that is, if
u(t, z) solves(3.1) with initial data ug(x), so does-u(t, z) with initial data —ug(z).

Thanks to Remarks 5.3, 5.1 and the proof of Theorem 5.2, weresily derive the
following wave-breaking result.

Theorem 5.3. Letm € H*(R),s > 1/2 andT > 0 be the maximal time of existence of
the corresponding solutiom(¢, ) to (3.1) with the initial datam,. Assume thatny(z) =
(1 —02)up < 0forall z € R, andmg(xg) < 0 for somer, € R, and

1
V2 ||UOH?])'{1> ’

T o(@o) (5.44)

avuO (CL'(]) > (

Then the solutiomn (¢, z) blows up at some tim#&, with

2
1y < v Setolio) L (VR0mm(m)) VR )
V2§ 2 l[uollz [[wol[ 1 ™o (o)

Moreover wheriy = t*, the following estimate of the blow-up rate holds
lim inf <(T0 —t) inf M(t,x)) < —1. (5.46)
t—Ty z€R

Remark 5.4. Itis well known[10] that if the initial datauy € H3(R) andmg = (1—0%)ug
does not change sign, then the corresponding solution t&€Cthequation exists globally.
While Theorem 5.2 and Remark 5.3 show that, even if the lipggential 1y does not
change sign, equatio¢8.1) may blow-up in finite time.

6. PEAKED SOLUTIONS IN THE CASEYy =0

In this section, we discuss the existence of single and fpakikon solutions to the mod-
ified CH equation (1.1) withy = 0. Recall first that the single peakon of the CH equation
(1.5) with = 0 is given by

u(t,z) = ce l*= ¢ eR.

Multi-peakon solutions have the form

Z pi(t)e lemail] (6.1)



18 GUILONG GUI, YUE LIU, PETER J. OLVER, AND CHANGZHENG QU

wherep;(t) andg;(t), 7 = 1,2,--- , N satisfy the following Hamiltonian system of ordinary
differential equations:

N
q;(t) = ije_‘qi_qj‘7 1= 1727 e 7N7
j=1

N (6.2)
pi(t) = pipjsign(gi — gj)e” %%,
7=1
which has the canonical symplectic structure and Hamatofinction
1 N
H=3 % piltp;(t)e” 1000, 6.3)

i,j=1

A rigorous analysis of the Hamiltonian system (6.2) can hentbin [30]. It is worth men-
tioning that the Novikov equation also admits multi-peak$®4, 35]. The amplitudes of
the multi-peakons of both the CH equation and the Novikovaéiqn depend on time. In-
terestingly, as we now show, the amplitudes of multi-peakfom (3.1) withy = 0 are
independent of time.

Theorem 6.1. For anya # 0, the peaked functions of the form
ug(t, ) = ae”l*=cl where ¢= %a2, (6.4)
is a global weak solution t(3.1) with v = 0, in the sense of Definition 3.2.

Remark 6.1. Note that all peakon$6.4) move with positive wave speed,> 0. Each
positive wave speed has a peakon and anti-peakon of opposjittudes:a = + /3c¢/2.

Remark 6.2. At each time > 0, the peaked solutions, (¢, -) belong to the Lipschitz space
Whee(R). However, we do not know whether general initial data in thace W!>°(R)
produces a global weak solution. It's also not clear whettiere is a global weak so-
lution belonging to the spacﬁ/’lf)f’(]R{) but not inTW1°°(R), even for special initial data.
Resolving these questions is a goal of our future work.

Proof of Theorem 6.1We first claim that, for alt € R,

Optig(t, ) = —sign(x — ct)uq(t, x) (6.5)
in the sense of distributio§’(R). Clearly (6.5) belongs t@.°°(R). Moreover, for any test
functionp(-) € C2°(R), using integration by parts,

0 +o0o
sign e" | = — e e
/R gn(y) e " p(y) dy /_OO Yo(y) dy+/0 Yo(y)dy

0 +o0o
=—90(0)+/ e’ o' (y) dy+90(0)+/0 eV w’(y)dyz/Re"y ¢'(y) dy,

—0o0
which proves the claim.
Let us now sety .(z) := u,(0,x) for z € R. Then

lim [|ua(t, ) — uo.o(-)|lwiee = 0. (6.6)

t—0+

As in (6.5), we have
Opug(t, x) = csign(z — ct) uq(t,x) € L*(R) forall ¢>0. (6.7)
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Hence, using (6.6), (6.5), (6.7), and integration by pavesdeduce from that, for every test
functionp(t, z) € C°(]0,4+00) x R),

“+oo
/ / (uq Orp + %u‘z O + %(amua)?’ <p> dx dt + / ua(0,2) ¢(0, x) dx
0 R R
“+oo
== / / ¢ (Opuq + uf0zuq — §5(Optig)” ) du dt (6.8)
0 R
+oo
= —/ / psign(z — ct)uq (c — %ug) dzx dt.
0 R
On the other hand, using (3.3),
+oo
/ / [(1 - ai)—l (%ug + ua(axua)2) am(’p - %(1 - ai)_l(amua)g 90] dx dt
0 R

+o0o

(6.9)
We calculate from (6.5) that
2u2 0y + %(amua)?’ = —2sign(z — ct)ud — %(Sign(x —ct))Pud = %%(ug),
which together with (6.9) leads to
—+00
[ 1027 G+ val@r)®) o — 41 = )7 Ouua)? o] dt
o /R (6.10)

T
—— [ [ et (O + ) dr
0 R
Notice from (6.5) tha,p(z) = —3sign(z)e~ Il for 2 € R, we have

Opp * (ua(amua)2 + %ui) (t,x)

| oo (6.11)
=3 / sign(z — y)e~1#7Yl (% + sign®(y — ct)) %\ / %6_3“/_“' dy dt.

Whenz > ct, we split the right hand side of (6.11) into the followingehbrparts:

Opp * (ua(agmua)2 + %ui) (t,z)

3¢ /3c ct T 400

=——\/5 / —I-/ —I-/ sign(z — y)e~1*~Y (% + sign’(y — ct)) e~Blv=etl gy
4 2 —00 ct T

=01+ 1+ Is.

(6.12)
We directly computd; as follows:
ct
s _%1 /% / 16 () =) g
o (6.13)

4c | 3c ct ¢ [3c
_ 2t —(xz+3ct) 4y dy = — =1/ 2= ct—x.
3V72° /_ e A
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In a similar manner,

_§1/§ wm —(z—y) ,—3(y—ct)
1 2/ 9 € e dy

(6.14)
3c v 3c
_ —(z—3ct) —2y _ev ct—x _ 3(ct—zx)
3 2 /Ct e Ydy = 3 0} (e e ) .
and
+o0o
— % /%/ % ex—ye—3(y—ct) dy
’ (6.15)

4c /3c +o00 ¢ [3¢
= — —_ (Z‘+3Ct) _4y — 3(ct—:(:)
3V 72° /x ¢ Tdy=gy\5e '

Plugging (6.13)-(6.15) into (6.12), we deduce thatfas ct

Oz * (ua(azua) + U )(t x) = c\/%(e?v(ct—x) _ ect—w). (6.16)

While for the caser < ct, we split the right hand side of (6.11) into the following elbr
parts:

amp*(ua(a Ug) +%u )(

([ /m)&g”ﬂ o (3 iy — ) =y

=: IIl + IIQ + 113

(6.17)
For II,, a direct computation gives rise to
136/ 16 —(w y) 3(y—ct) dy
(6.18)
3c r c [3c
_ == (x+3ct) 4y O it 3(z—ct)
3 > € /_Ooe dy 3\/ 5 € .
Similarly, one obtains
ct
17, :§‘ /%/ 16 e? Ve =ct) gy
(6.19)
3¢ e 3ct/ 3¢ (e:c—ct_e?)(:c—ct))‘
\/ \/ 2
and
+oo
1T _—\/ 5 / 16 (v=yo=3—ct) g,
(6.20)

4c /3¢ e ¢ /3c
_ e 2% (x4-3ct) —4y dy = =1/ = x—ct'
3\V72° /ct © W3V

Plugging (6.18)—(6.20) into (6.7), we deduce that#fox ct

Oup * (ua(0zua)® + Ful) (t,2) = —cy/ %(63@_60 — " ). (6.21)
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On the other hand, using the definitiongf,

3c (63(ct—:c)

—cy /5 —e7r), for x> ct,

sign(z — ct)uq (e — 2ul) (t,z) =
c %(63(I_Ct) — ex_Ct), for z <et,
which along with (6.16) and (6.21) yields
Oup * [Ua(Opua)? + § ug] (t,z) + sign(z — ct) [uq(c — §u2)] (t,x) =0, (6.22)
for all (t,2) € RT x R. Therefore, in view of (6.8), (6.11) and (6.22), we concltiokt

“+00
/ / (ua O + 3ua Oz %(&Cua)g e+ (1- 8:%)_1 (%ug + u((‘)xua)Z) Oz

— 11— 92) 1 (Opuy)? <,0> dx dt + / ua(0,2) p(0,2)dz =0
R

for every test functionp(¢, x) € C2°(]0, +00) x R), which completes the proof of Theorem
6.1. U

We now derive the multipeakon solutions of equation (3.13s#mne that equation (3.1)
with 4+ = 0 has an/V-peakon solution of the form (6.1). It follows from Definiti3.2 that
forany(t,x) € C°([0,00) x R), the solution (6.1) satisfies

//ut—i— u? — Lut)u, + (1 - 02)7'o, (3u + uu?) + (1 - 2) "] p(z)drdt =0,

which is equivalent to the equation
/ / [wi(th — o) + 3 (W Yage + udthae) — u(u® + ul)iby| dzdt =0,  (6.23)
0 R

whereg = 1) — 1), 1(x) € C2°([0,00) x R).
A straightforward computation gives

hz/m/WW—MMMﬁ

qJ(t
:g/ / = pjd;)e" V(Y — Yuy)drdt
[ / 0+ 15 —

—2/ Z Pi(a;) +qu]¢:c(%)>dt

b:A /%w%m+@wﬁ—wﬁ+@W4®ﬁ

- [ (/m /%“ /’) [ (0 + W) — u(u? + u2)0,] dodt

— 2/0 ij (%p;” _ Qijpie—\qi—qy'l 4 Z pkpieqkql)) b (qj)dt.

i=1 1<k<j,j<i<N
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Substituting the preceding expressions into (6.23), wainlihe following system

p; =0,
P20 S —lai—aj] —lar—asl (6.24)
GG =35 +2) e U4 ST ppreT 0,

i=1 1<k<j,j<i<N
For N = 2, the system (6.24) can be easily integrated. In this caskoutiloss of general-
ity, assumey; (t) < g2(t), we obtain the general solution of system (6.24) given by

e me S
p1 = 21, p2 = 22,

3V (e1—er)(t-to) | 0, (6.25)
€1 —C2

3V (e1—ca)(t—to)
€1 —C2

wherec; < ¢, andzy andt are integration constants, which describe translaticariamce
for z andt. Settingzy = to = 0, we derive two-peakon solutions of the modified CH
equation in the explicit form

u(t,xz) =4/ gcl exp {—
3\/ 12 e(c1—02)t

/3
+ 14/ -c2 exp {—
2 C1 — C2

Ast — oo, the two peakons separate:

u(t,z) ~ 4/ gcl e~lrmatl 1 f 202 e~ lz—eatl

whereas when — —oo, the peakons separate and go offtcat an exponentially increas-
ing rate.

Representative profiles of a single peakon and a double pesMation are plotted in
Figures 1 and 2, respectively.

@ =ct+

g2 = ot + +x0 + (c2 — c1)to,

3\/61C2 e(Cl_CQ)t

C1—C2

xr —c1t —

T — cot —

b
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