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ABSTRACT. In this paper, we investigate the formation of singularities and the existence
of peaked traveling-wave solutions for a modified Camassa-Holm equation with cubic non-
linearity. The equation is known to be integrable, and is shown to admit a single peaked
soliton and multi-peakon solutions, of a different character than those of the Camassa-Holm
equation. Singularities of the solutions can occur only in the form of wave-breaking, and
a new wave-breaking mechanism for solutions with certain initial profiles is described in
detail.
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1. INTRODUCTION

This paper is concerned with the following nonlinear partial differential equation1

mt +
(

(u2 − u2x)m
)

x
+ γ ux = 0, (1.1)

for the functionu(t, x) of time t and a single spatial variablex, in which γ is a constant,
and

m = u− uxx. (1.2)

The equation (1.1) has the form of a modified Camassa-Holm equation with cubic nonlinear-
ity. It was proposed as a new integrable system by Fuchssteiner [23] and Olver and Rosenau
[48] by applying the general method of tri-Hamiltonian duality to the bi-Hamiltonian rep-
resentation of the modified Korteweg-deVries equation. Later, it was obtained by Qiao [50]
from the two-dimensional Euler equations, where the variablesu(t, x) andm(t, x) repre-
sent, respectively, the velocity of the fluid and its potential density. In [51] it was shown
that equation (1.1) admits a Lax pair, and hence can be solvedby the method of inverse
scattering. See Section 2 for details.

Applying the scaling transformation

x 7−→ ǫ x, t 7−→ ǫ−1t, u 7−→ ǫ2u

to equation (1.1) produces

(ǫ2u− uxx)t +
[

(ǫ2u2 − u2x)(ǫ
2u− uxx)

]

x
+ γux = 0. (1.3)

Expanding
u(t, x) = u0(t, x) + ǫ u1(t, x) + ǫ2 u2(t, x) + · · ·

in powers of the small parameterǫ, the leading order termu0(t, x) satisfies

−u0,xxt + (u20,xu0,xx)x + γu0,x = 0.

Date: March 26, 2012.
1We use subscripts to denote partial derivatives throughout.
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We conclude thatv = u0,x satisfies the short pulse equation

vxt =
1
3 (v

3)xx + γv. (1.4)

This equation was derived by Schäfer and Wayne [54] as a modelfor the propagation of
ultra-short light pulses in silica optical fibers, which is also an approximation of nonlin-
ear wave packets in dispersive media in the limit of few cycles on the ultra-short pulse
scale [9]. Numerical simulations [9] show that the short pulse equation approximation to
Maxwell’s equations in the case when the pulse spectrum is not narrowly localized around
the carrier frequency is better than that obtained from the nonlinear Schrödinger equation.
Well-posedness and wave breaking for the short pulse equation have been studied in [54]
and [43], respectively. It was shown in [5] that the short pulse equation and the WKI equa-
tion [58]

ut =

(

uxx

(1 + u2x)
3

2

)

x

belong to the same hierarchy. The WKI equation is gauge equivalent to the mKdV equation,
while the short pulse equation is gauge equivalent to the sine-Gordon equation [53]. Solitons
of the mKdV equation and the sine-Gordon equation correspond to loop solitons of the WKI
equation and the short pulse equation, respectively.

The original Camassa-Holm (CH) equation

mt + umx + 2uxm+ γux = 0, (1.5)

wherem is as above, (1.2), can itself be derived from the Korteweg–deVries equation by
tri-Hamiltonian duality. The Camassa-Holm (CH) equation [6, 24] (see also [17, 36]) was
originally proposed as a model for surface waves, and has been studied extensively in the
last twenty years because of its many remarkable properties: infinity of conservation laws
and complete integrability [6, 19, 24], with action angle variables constructed using inverse
scattering [3, 4, 14, 18], existence of peaked solitons and multi-peakons [1, 6, 7], geometric
formulations [8, 37, 44], well-posedness and breaking waves, meaning solutions that remain
bounded while their slope becomes unbounded in finite time [10, 11, 12, 13, 40]. Note that
the nonlinearity in the CH equation is quadratic. Two integrable CH-type equations with
cubic nonlinearity have been discovered: One is the equation (1.1), and the second is the
Novikov equation [45]

mt + u2mx +
3
2(u

2)xm = 0. (1.6)

The integrability, peaked solitons, well-posedness and blow up phenomena to the Novikov
equation have been studied extensively [34, 35, 45, 56, 57].An alternative modified CH
equation was introduced in [26]. Multi-component versionsof the CH equation have been
introduced and studied in [15, 21, 27, 31, 32, 33, 48].

Dual integrable nonlinear systems, such as the CH and modified CH equations, are en-
dowed with nonlinear dispersion, which, in most cases, enables them to support non-smooth
soliton-like structures. A number of additional examples of dual integrable systems derived
using the method of tri-Hamiltonian duality can be found in [20, 48]. Dual equations sup-
port a remarkable variety of non-analytic solutions [42], including peakons, compactons,
tipons, rampons, mesaons, and so on. Convergence of analytic solutions to non-analytic
compactons and peakons was proved in [39, 41].

The aim of this paper is to investigate whether the modified CHequation (1.1) has sim-
ilar remarkable properties as the CH equation (1.5). Since the modified CH equation has
a cubic nonlinearity which the CH equation is only quadratic, one expects that the modi-
fied CH equation should also have peaked solitons and wave-breaking. The following two
sections review the bi-Hamiltonian structure and geometric formulations of the modified
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CH equation. In Section 4, detailed blow-up criteria for strong solutions are established;
see Theorem 4.2. It is shown that the solutions of the modifiedCH equation can only have
singularities which correspond to wave breaking. A sufficient condition for wave breaking
of strong solutions in finite time is specified in Section 5; see Theorem 5.2. Finally, the
existence of single peakon and multi-peakon solutions is demonstrated in Section 6. Inter-
estingly, in contrast to the CH equation, withγ = 0, we find that multi-peakon solutions of
(1.1) have only constant amplitudes.

2. GEOMETRIC FORMULATION AND INTEGRABILITY

The CH equation (1.5) has the three distinct geometric formulations. First, it describes
the geodesic flows, respectively, on the Bott-Virasoro group for the caseγ 6= 0 [44, 55]
and on the diffeomorphism group of the unit circle underH1 metric for the caseγ =
0 [37]. Note that the two geometric descriptions are not analogous: forγ = 0 (on the
diffeomorphism group) the Riemannian exponential map is a local chart, but this is not the
case forγ 6= 0 (on the Bott-Virasoro group) cf. the discussion in the paper[16]. Second,
it describes families of pseudo-spherical surfaces [26, 52]. Furthermore, it arises from a
non-stretching invariant planar curve flow in the centro-equiaffine geometry [8]. While
it is not clear whether the modified CH equation (1.1) also describes geodesic flows on
diffeomorphism groups, we can show that it arises from an intrinsic (arc-length preserving)
invariant planar curve flow in Euclidean geometry. Indeed, the modified KdV and KdV
equations arise naturally from non-stretching invariant planar curve flows in Euclidean and
centro-equiaffine geometry, respectively [8, 25, 49].

According to the theory of moving frames, [28, 47], any Euclidean-invariant plane curve
flow for C ⊆ R

2 has the form
∂C

∂t
= f n+ g t, (2.1)

wheret andn are the Euclidean tangent and normal vectors, while the normal and tangent
velocities,f andg, are arbitrary Euclidean differential invariants, meaning that they depend
on the curvature and its derivatives with respect to the arc-length s of the curveC. Ac-
cording to equation (4.13) in [47], which is a consequence ofthe moving frame calculus
developed for curve and submanifold flows invariant under general Lie group actions, the
curve flow (2.1) isintrinsic or non-stretching, meaning that it preserves arc length, if and
only if

gs − κf = 0. (2.2)

In condition (2.2), the operator producing multiplicationby −κ is particular to Euclidean
geometry, and other transformation groups lead to alternative criteria for arc length preser-
vation of the flow. Furthermore, according to Example 5.5 in [47] (see also [25]) when
the curve evolves intrinsically according to (2.1) with theconstraint (2.2), the curvature
invariant satisfies

κt = R[f ], where R = ∂2s + κ2 + κs∂
−1
s κ (2.3)

is the well known recursion operator, [46], of the modified KdV equation

κt = κsss +
3
2κ

2κs, (2.4)

which corresponds to the particular flow (2.1) withf = κs, g = 1
2 κ

2.

Remark 2.1. The operatorR is a particular instance, for Euclidean-invariant plane curve
flows, of the general moving frame calculus for invariant submanifold flows that has been
developed in[47]. For example, the evolution of centro-equiaffine curvatureunder an in-
variant curve flow in centro-equiaffine geometry is governedby the KdV recursion operator.
In a similar fashion, the operator governing the evolution of curvature and torsion under the
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Euclidean-invariant flow of a space curve is the recursion operator for vortex filament flow,
which can be mapped to the integrable nonlinear Schrödingerequation under the Hasimoto
transformation,[29, 38]. Many, but not all, Klein geometries produce recursion operators
and integrable systems for the evolution of differential invariants under group-invariant
flow. It remains an intriguing and unresolved mystery as to why integrable systems arise so
often in this geometric context.

In particular, if we set

f = −2us, κ = m ≡ u− uss,

then by (2.2),

g = −(u2 − u2s) + b,

whereb is a constant. Therefore,u(t, s) satisfies the equation

mt +
(

(u2 − u2s)m
)

s
+ (b+ 2)usss − bus = 0. (2.5)

Settingx = s+ (b+ 2)t, (2.5) becomes

mt +
(

(u2 − u2x)m
)

x
+ 2ux = 0, m = u− uxx, (2.6)

which is equivalent, up to rescaling, to the modified CH equation (1.1). The preceding
derivation implies that the modified CH equation can be regarded as a Euclidean-invariant
version of the CH equation, just as the mKdV equation is a Euclidean-invariant counterpart
to the KdV equation from the viewpoint of curve flows in Klein geometries.

Since it possesses a recursion operator, the modified CH equation (1.1) is formally com-
pletely integrable. Indeed, it can be written in the bi-Hamiltonian form [48, 51]

mt = −
(

(u2 − u2x)m
)

x
− γux = J

δH0

δm
= K

δH1

δm
,

where

J = − ∂xm∂−1
x m∂x − 1

2 γ ∂x and K = ∂3x − ∂x

are compatible Hamiltonian operators, while

H0 =

∫

R

mudx, H1 =
1

4

∫

R

(

u4 + 2u2u2x − 1
3u

4
x + 2γ u2

)

dx. (2.7)

are the corresponding Hamiltonian functionals. Accordingto the Theorem of Magri, [46],
the associated recursion operatorR = J ·K−1 produces a hierarchy of commuting Hamil-
tonian functionals and bi-Hamiltonian flows — although in this case most are non-local.

The modified CH equation (1.1) also admits the following Lax formulation [51]:
(

ψ1

ψ2

)

x

= U(m,λ)

(

ψ1

ψ2

)

,

(

ψ1

ψ2

)

t

= V (m,u, λ)

(

ψ1

ψ2

)

,

where

U(m,λ) =
1

2

(

−Q λm
−λm Q

)

, Q = Q(λ, γ) =
√

1− 1
2λ

2γ ,

and

V (m,u,λ) =
(

λ−2Q+ 1
2Q(u2 − u2x) −λ−1(u−Qux)− 1

2λ(u
2 − u2x)m

λ−1(u+Qux) +
1
2λ(u

2 − u2x)m −λ−2Q− 1
2Q(u2 − u2x)

)

.
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3. ANALYTIC PRELIMINARIES

In this paper, we will study the Cauchy problem for the modified Camassa-Holm equation
on the entire line:











mt +
(

(u2 − u2x)m
)

x
+ γ ux = 0, m = u− uxx t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u,m −→ 0 as |x| → ∞.

(3.1)

Throughout, various positive constants will be uniformly denoted by a common letter
C. The norm of a Banach spaceZ is denoted by‖ · ‖Z . Let S(R) be the space of rapidly
decayingC∞ functions onR, andS ′(R) its dual space containing all tempered distributions.
GivenT > 0, let C∞

c ([0, T ) × R) denote the space of all smooth functions with compact
support on[0, T ) × R, which may be obtained as the restriction to[0, T ) × R of smooth
functions onR2 with compact support contained in(−T, T )× R.

We will require the notions of strong (or classical) and weaksolutions.

Definition 3.1. If m ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1) with s > 1
2 and someT > 0

satisfies(3.1), thenm is called a strong solution on[0, T ]. If m is a strong solution on
[0, T ] for everyT > 0, then it is called a global strong solution.

Substituting the formula form in terms ofu into the partial differential equation (3.1)
results in the following fully nonlinear partial differential equation:

ut +
(

u2 − 1
3u

2
x

)

ux + ∂x(1− ∂2x)
−1
(

2
3u

3 + uu2x + γ u
)

+ 1
3 (1− ∂2x)

−1u3x = 0. (3.2)

Recall that

u = (1− ∂2x)
−1m = p ∗m, where p(x) = 1

2 e
−|x|, (3.3)

and∗ denotes the convolution product onR, defined by

(f ∗ g)(x) =
∫

R

f(y)g(x− y)dy.

This formulation allows us to define a weak solution as follows.

Definition 3.2. Given initial datau0 ∈ W 1,3(R), the functionu ∈ L∞
loc([0, T ),W

1,3
loc (R))

is said to be a weak solution to the initial-value problem(3.1) if it satisfies the following
identity:
∫ T

0

∫

R

[

uϕt +
1
3 u

3ϕx+
1
3u

3
x ϕ+ p ∗ (23 u

3 + uu2x + γ u) ∂xϕ− 1
3(p ∗ u

3
x)ϕ

]

dx dt

+

∫

R

u0(x)ϕ(0, x) dx = 0,

(3.4)

for any smooth test functionϕ(t, x) ∈ C∞
c ([0, T ) × R). If u is a weak solution on[0, T )

for everyT > 0, then it is called a global weak solution.

Remark 3.1. Since the Sobolev spaceW 1,3
loc (R) can be embedded in the Hölder space

Cα(R) with 0 ≤ α ≤ 2
3 , Definition 3.2 precludes the admissibility of discontinuous shock

waves as weak solutions.

Wave breaking relies crucially on strong nonlinear dispersion, which, however, makes
the analysis more challenging. The conservation of theH1-norm allows us to control the
solutions to the CH equation. For transport equations, a solution blows up in finite time
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when its slopeux is unbounded from below. To apply this idea, let us rewrite the modified
CH equation (1.1) as a transport equation in terms ofm along the flow generated byu2−u2x

mt + (u2 − u2x)mx = −2uxm
2 − γux. (3.5)

Roughly speaking, the transport equation theory ensures that, if the slope

(u2 − u2x)x = 2uxm (3.6)

is bounded, the solution will remain regular, and can’t blowup in finite time. More precisely,
the solution blows up at some finite timeT > 0 only if ‖m(t, ·)‖2L∞ becomes unbounded
on [0, T ). From this, together with the Sobolev embedding theorem, one can see that the
solution blows up in finite time if and only if the slope (3.6) is unbounded from below.
Thus to obtain a global solution, the main problem is that it is impossible to be bound
(3.6) in terms of theH1-norm of the solution unless a higher, positive conserved quantity
involved inH3-norm of the solution can be found. To overcome this difficulty, we may
regard the evolution equation (3.5) in terms of the quantity(3.6) being transported along
the flow generated byu2 − u2x. Then wave breaking can be established by using the global
conservative property of the potential densitym along the characteristics; see (5.1) below.
We expect this new method can be found more applications to deal with wave breaking of
the nonlinear dispersive equations with higher nonlinearities.

4. BLOW-UP CRITERIA

In this section, we study the well-posedness and establish criteria for the blow up of
solutions to the Cauchy problem for the modified CH equation (3.1). We first recall some
1-D Moser-type estimates, [27].

Proposition 4.1. For s ≥ 0, the following estimates hold:

‖fg‖Hs(R) ≤ C
(

‖f‖Hs(R)‖g‖L∞(R) + ‖f‖L∞(R)‖g‖Hs(R)

)

,

‖f∂xg‖Hs(R) ≤ C
(

‖f‖Hs+1(R)‖g‖L∞(R) + ‖f‖L∞(R)‖∂xg‖Hs(R)

)

,
(4.1)

where theC ’s are constants independent off andg.

The following estimates for solutions to the one-dimensional transport equation have
been used in [2, 27]. The following result is Theorem 3.14 in [2].

Lemma 4.1. Consider the one-dimensional linear transport equation

∂tf + v ∂xf = g, f |t=0 = f0. (4.2)

Let0 ≤ σ < 1, and suppose that

f0 ∈ Hσ(R), g ∈ L1([0, T ];Hσ(R)),

vx ∈ L1([0, T ];L∞(R)), f ∈ L∞([0, T ];Hσ(R)) ∩ C([0, T ];S ′(R)).

Thenf ∈ C([0, T ];Hσ(R)). More precisely, there exists a constantC depending only onσ
such that, for every0 < t ≤ T ,

‖f(t)‖Hσ ≤‖f0‖Hσ + C

∫ t

0
‖g(τ)‖Hσdτ +C

∫ t

0
‖f(τ)‖HσV ′(τ)dτ (4.3)

and hence,

‖f(t)‖Hσ ≤eCV (t)
(

‖f0‖Hσ + C

∫ t

0
‖g(τ)‖Hσdτ

)

with V (t) =

∫ t

0
‖∂xv(τ)‖L∞ dτ.

In [22], the following local well-posedness result was obtained (with a slight modifica-
tion).
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Theorem 4.1. Letm0 = (1− ∂2x)u0 ∈ Hs(R) with s > 1
2 . Then there exists a timeT > 0

such that the initial-value problem(3.1)has a unique strong solutionm ∈ C([0, T ];Hs) ∩
C1([0, T ];Hs−1) and the mapm0 7→ m is continuous from a neighborhood ofm0 in Hs

into C([0, T ];Hs) ∩ C1([0, T ];Hs−1).

We are now in a position to state a blow-up criterion for the modified CH equation.

Theorem 4.2. Letm0 = (1 − ∂2x)u0 ∈ Hs(R) be as in Theorem 4.1 withs > 1
2 . Letm

be the corresponding solution to(3.1). AssumeT ∗
m0

> 0 is the maximum time of existence.
Then

T ∗
m0

<∞ ⇒
∫ T ∗

m0

0
‖m(τ)‖2L∞ dτ = ∞. (4.4)

Remark 4.1. The blow-up criterion(4.4) implies that the lifespanT ∗
m0

does not depend
on the regularity indexs of the initial datam0. Indeed, letm0 be inHs for somes > 1

2

and consider somes′ ∈ (12 , s). Denote byms (resp.,ms′ ) the corresponding maximalHs

(resp.,Hs′ ) solution given by the above theorem. Denote byT ∗
s (resp.,T ∗

s′) the lifespan of
ms (resp.,ms′). SinceHs →֒ Hs′ , uniqueness ensures thatT ∗

s ≤ T ∗
s′ and thatms ≡ ms′

on [0, T ∗
s ). Now, ifT ∗

s < T ∗
s′ , then we must havems′ in C([0, T ∗

s ];H
s′). Hence,ms′ ∈

L2([0, T ∗
s ];L

∞), which contradicts the above blow-up criterion(4.4). Therefore,T ∗
s = T ∗

s′ .

Proof of Theorem 4.2.We shall prove Theorem 4.2 by an inductive argument with respect
to the indexs. This can be achieved as follows.

Step 1. For s ∈ (12 , 1), applying Lemma 4.1 to equation (3.5), thought of as a transport
equation form, we obtain

‖m(t)‖Hs ≤ ‖m0‖Hs + C

∫ t

0
‖(u2 − u2x)x(τ)‖L∞‖m(τ)‖Hs dτ

+ C

∫ t

0
‖(uxm2)(τ)‖Hs dτ + C|γ|

∫ t

0
‖ux(τ)‖Hs dτ

(4.5)

for all 0 < t < T ∗
m0

. Owing to the first Moser-type estimate in (4.1), one has

‖uxm2‖Hs ≤ C(‖ux‖Hs‖m2‖L∞ + ‖ux‖L∞‖m2‖Hs)

≤ C(‖ux‖Hs‖m‖2L∞ + ‖ux‖L∞‖m‖L∞‖m‖Hs).
(4.6)

According to (3.3),

ux = ∂x(1− ∂2x)
−1m = ∂xp ∗m, where ∂xp(x) = −1

2 sign(x) e
−|x|. (4.7)

Young’s inequality implies

‖ux‖L∞ ≤ ‖∂xp‖L1‖m‖L∞ ≤ ‖m‖L∞ , (4.8)

which, together with the fact‖ux‖Hs ≤ C‖m‖Hs and (4.6), gives rise to

‖uxm2‖Hs ≤ C‖m‖Hs‖m‖2L∞ (4.9)

and

‖(u2 − u2x)x‖L∞ = 2‖mux‖L∞ ≤ C‖m‖L∞‖ux‖L∞ ≤ C‖m‖2L∞ . (4.10)

Plugging (4.9) into (4.5) leads to

‖m(t)‖Hs ≤ ‖m0‖Hs + C

∫ t

0
(‖m(τ)‖2L∞ + |γ|)‖m(τ)‖Hs dτ, (4.11)
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which, by Gronwall’s inequality, yields

‖m(t)‖Hs ≤ ‖m0‖HseC
∫ t

0
(‖m(τ)‖2

L∞+|γ|) dτ . (4.12)

Therefore, if the maximal existence timeT ∗
m0

<∞ satisfies

∫ T ∗

m0

0
‖m(τ)‖2L∞ dτ <∞,

the inequality (4.12) implies that

lim sup
t→T ∗

m0

‖m(t)‖Hs <∞, (4.13)

which contradicts the assumption on the maximal existence timeT ⋆
u0
<∞. This completes

the proof of Theorem 4.2 fors ∈ (12 , 1).

Step 2.Fors ∈ [1, 2), by differentiating (3.5) once with respect tox, we have

∂t(mx) + (u2 − u2x)∂x(mx) = −3ux(m
2)x − 2uxxm

2 − γ uxx. (4.14)

Applying Lemma 4.1 to (4.14) yields

‖∂xm(t, ·)‖Hs−1 ≤ ‖∂xm0‖Hs−1 + C

∫ t

0
‖(u2 − u2x)x‖L∞‖∂xm‖Hs−1dτ

+ C

∫ t

0

(

‖ux(m2)x‖Hs−1 + ‖uxxm2‖Hs−1 + |γ|‖uxx‖Hs−1

)

dτ.

(4.15)

Thanks to the Moser-type estimates (4.1) along with (4.8), one deduces

‖ux∂x(m2)‖Hs−1 ≤ C(‖ux‖Hs‖m2‖L∞ + ‖ux‖L∞‖∂x(m2)‖Hs−1)

≤ C(‖mx‖Hs−1‖m‖2L∞ + ‖ux‖L∞‖m‖L∞‖m‖Hs)

≤ C‖m‖2L∞‖m‖Hs .

(4.16)

Using the Moser-type estimates (4.1) again leads to

‖uxxm2‖Hs−1 + |γ|‖uxx‖Hs−1

≤ C(‖uxx‖L∞‖m2‖Hs−1 + ‖uxx‖Hs−1‖m2‖L∞ + |γ|‖uxx‖Hs−1)

≤ C(‖m‖2L∞ + |γ|)‖m‖Hs−1 ,

(4.17)

where we used the fact that

‖uxx‖L∞ ≤ C(‖m‖L∞ + ‖p ∗m‖L∞) ≤ C‖m‖L∞ (4.18)

in the last inequality. Using (4.10), (4.16), and (4.17) in (4.15), and combining with (4.11),
we conclude that, for1 ≤ s < 2, (4.11) holds.

Repeating the same argument as in Step 1, we see that Theorem 4.2 holds for1 ≤ s < 2.

Step 3.Suppose2 ≤ k ∈ N. By induction, we assume that (4.4) holds whenk−1 ≤ s < k,
and prove that it holds fork ≤ s < k + 1. To this end, we differentiate (3.5)k times with
respect tox, producing

∂t∂
k
xm+ (u2 − u2x)∂x(∂

k
xm) = −

k−1
∑

ℓ=0

Cℓ
k∂

k−ℓ
x (u2 − u2x)∂

ℓ+1
x m− 2∂kx(uxm

2)− γ∂kx∂xu.
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Lemma 4.1 applied to the above again implies that

‖∂kxm(t)‖Hs−k ≤ ‖∂kxm0‖Hs−k + C

∫ t

0
‖∂kxm(τ)‖Hs−k‖m∂xu(τ)‖L∞ dτ

+ C

∫ t

0

∥

∥

∥

∥

∥

(

k−1
∑

ℓ=0

Cℓ
k∂

k−ℓ
x (u2 − u2x)∂

ℓ
x∂xm+ 2∂kx(uxm

2) + γ∂kx∂xu

)

(τ)

∥

∥

∥

∥

∥

Hs−k

dτ.

(4.19)

Using the first Moser-type estimate in (4.1) and the Sobolev embedding inequality, we have

‖2∂kx(uxm2) + γ ∂kx∂xu‖Hs−k

≤ C
(

‖ux‖L∞‖m2‖Hs + ‖ux‖Hs‖m2‖L∞ + |γ|‖∂xu‖Hs

)

≤ C
(

‖ux‖L∞‖m‖L∞‖m‖Hs + ‖ux‖Hs‖m‖2L∞ + |γ|‖∂xu‖Hs

)

≤ C
(

‖m‖2L∞ + |γ|
)

‖m‖Hs

(4.20)

and
∥

∥

∥

∥

∥

k−1
∑

ℓ=0

Cℓ
k∂

k−ℓ
x (u2 − u2x)∂

ℓ+1
x m

∥

∥

∥

∥

∥

Hs−k

≤ C

k−1
∑

ℓ=0

Cℓ
k

(

‖u2 − u2x‖Hs−ℓ+1‖∂ℓxm‖L∞ + ‖∂k−ℓ
x (u2 − u2x)‖L∞‖m‖Hs−k+ℓ+1

)

≤ C

k−1
∑

ℓ=0

Cℓ
k

[

(‖u‖L∞ + ‖ux‖L∞)(‖u‖Hs−ℓ+1 + ‖ux‖Hs−ℓ+1)‖m‖
H

ℓ+1
2
+ε0

+ (‖u‖2
H

k−ℓ+1
2
+ε0

+ ‖ux‖2
H

k−ℓ+1
2
+ε0

)‖m‖Hs−k+ℓ+1

]

≤ Ck‖m‖2
H

k− 1
2
+ε0

‖m‖Hs ,

(4.21)

where the genius constantε0 ∈ (0, 1
4) so thatH

1

2
+ε0(R) →֒ L∞(R) holds. Substituting

(4.20) and (4.21) into (4.19), we derive from (4.11) (with1
2 < s < 1) in Step 1 that

‖m(t)‖Hs ≤ ‖m0‖Hs + C

∫ t

0
(‖m(τ)‖2

Hk− 1
2
+ε0

+ |γ|)‖m(τ)‖Hs dτ, (4.22)

where we used the Sobolev embedding theoremHk− 1

2
+ε0(R) →֒ L∞(R) with k ≥ 2.

Applying Gronwall’s inequality then gives

‖m(t)‖Hs ≤ ‖m0‖Hs exp{C
∫ t

0
(‖m(τ)‖2

Hk− 1
2
+ε0

+ |γ|) dτ}. (4.23)

In consequence, if the maximal existence timeT ⋆
u0
<∞ satisfies

∫ T ⋆
u0

0
‖m(τ)‖2L∞ dτ <∞,

thanks to the uniqueness of solution in Theorem 4.1, we then find that‖m(t)‖
H

k− 1
2
+ε0

is

uniformly bounded int ∈ (0, T ∗
m0

) by the induction assumption, which along with (4.23)
implies

lim sup
t→T ∗

m0

‖m(t)‖Hs <∞,

which leads to a contradiction.
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Therefore, Steps 1 to 3 complete the proof of Theorem 4.2. �

Remark 4.2. For a strong solutionm = u − uxx in Theorem 4.1, the Hamiltonian func-
tionals (2.7)are conserved, that is

d

dt

∫

R

(u2 + u2x) dx = 0,
d

dt

∫

R

(

u4 + 2u2u2x −
1

3
u4x + 2γ u2

)

dx = 0, (4.24)

for all t ∈ [0, T ).

The following blow-up criterion demonstrates that wave-breaking depends only on the
infimum ofmux.

Theorem 4.3. Letm0 ∈ Hs(R) be as in Theorem 4.1 withs > 1
2 . Then the corresponding

solutionm to (3.1)blows up in finite timeT ∗
m0

> 0 if and only if

lim
t→T ∗

m0

inf
x∈R

{(mux)(t, x)} = −∞ (4.25)

Proof. Since, in view of Remark 4.1, the existence timeT ∗
m0

is independent of the choice
of s, we need only to consider the cases = 3, which relies on a simple density argument.

Multiplying equation (3.5) bym and integrating overR with respect tox, and then inte-
gration by parts, produces

1

2

d

dt

∫

R

m2 dx = −
∫

R

(

u2 − u2x
)

mmx dx− 2

∫

R

uxm
3 dx− γ

∫

R

uxm dx

=
1

2

∫

R

(

u2 − u2x
)

x
m2 dx− 2

∫

R

uxm
3 dx− γ

2

∫

R

(u2 − u2x)x dx

= −
∫

R

(mux)m
2 dx.

We next expand out (4.14):

mxt = −2uxxm
2 − 6uxmmx − (u2 − u2x)mxx − γuxx

= −2um2 + 2m3 − 6uxmmx − (u2 − u2x)mxx − γuxx.

Multiplying by mx and integrating overR with respect tox, leads to

1

2

d

dt

∫

R

m2
x dx =−

∫

R

(u2 − u2x)mxmxx dx− 2

∫

R

um2mx dx

− 6

∫

R

uxmm
2
x dx+ 2

∫

R

m3mx dx− γ

∫

R

uxxmx dx

=
1

2

∫

R

(u2 − u2x)xm
2
x dx+

2

3

∫

R

uxm
3 dx

− 6

∫

R

uxmm
2
x dx− γ

2

∫

R

(u2x − u2xx)x dx

=− 5

∫

R

uxmm
2
x dx+

2

3

∫

R

uxm
3 dx.

Therefore,
d

dt

∫

R

(m2 +m2
x) dx = −10

∫

R

(mux)m
2
x dx− 2

3

∫

R

(mux)m
2 dx.

If mux is bounded from below on[0, T ∗
m0

)×R, i.e., there exists a positive constantC1 > 0
such thatmux ≥ −C1 on [0, T ∗

m0
)× R, then the above estimate implies

d

dt

∫

R

(m2 +m2
x) dx ≤ 10C1

∫

R

(m2 +m2
x) dx.
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Applying Gronwall’s inequality then yields

‖m(t)‖2H1 ≤
∫

R

(m2 +m2
x) dx ≤ e10C1t‖m0‖2H1 (4.26)

for t ∈ [0, T ∗
m0

), which ensures that the solutionm(t, x) does not blow up in finite time.
On the other hand, if

lim inf
t↑T

[

inf
x∈R

(mux(t, x))

]

= −∞,

by Theorem 4.1 for the existence of local strong solutions and the Sobolev embedding
theorem, we infer that the solution will blow-up in finite time. The proof of Theorem 4.3 is
then complete. �

5. WAVE-BREAKING MECHANISM IN THE CASEγ = 0

In this section, we derive some sufficient conditions for thebreaking of waves for the
initial-value problem (3.1) with the parameterγ = 0, an assumption that, we emphasize,
will hold for the remainder of the paper.

For this purpose, a conservative property of the potentialm will be crucial in the proofs
of our blow-up results. Consider the ordinary differentialequation







d q(t, x)

d t
= (u2 − u2x)(t, q(t, x)),

q(0, x) = x,
x ∈ R, t ∈ [0, T ), (5.1)

for the flow generated byu2 − u2x.

Lemma 5.1. Let u0 ∈ Hs(R), s > 5
2 , and letT > 0 be the maximal existence time

of the corresponding strong solutionu to (3.1). Then(5.1) has a unique solutionq ∈
C1([0, T ) × R,R) such that the mapq(t, ·) is an increasing diffeomorphism ofR with

qx(t, x) = exp

(

2

∫ t

0
(mux)(s, q(s, x))ds

)

> 0, for all (t, x) ∈ [0, T )× R. (5.2)

Furthermore,

m(t, q(t, x))qx(t, x) = m0(x), for all (t, x) ∈ [0, T )× R. (5.3)

Proof. Sinceu ∈ C1
(

[0, T ),Hs−1(R)
)

andHs(R) →֒ C1(R), bothu(t, x) andux(t, x)
are bounded, Lipschitz in the space variablex, and of classC1 in time. Therefore, by
well-known classical results in the theory of ordinary differential equations, the initial value
problem (5.1) has a unique solutionq(t, x) ∈ C1 ([0, T ) ×R) .

Differentiating (5.1) with respect tox and using (3.6) yields
{

d
dt
qx = 2(mux)(t, q)qx,

qx(0, x) = 1,
(t, x) ∈ [0, T )× R. (5.4)

The solution to (5.4) is given by

qx(t, x) = exp

(

2

∫ t

0
(mux)(s, q(s, x))ds

)

, (t, x) ∈ [0, T ) × R. (5.5)

For everyT ′ < T, it follows from the Sobolev embedding theorem that

sup
(s, x)∈[0,T ′)×R

|(mux)(s, x)| <∞.
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We infer from (5.5) that there exists a constantK > 0 such thatqx(t, x) ≥ e−Kt, (t, x) ∈
[0, T ) × R, which implies that the mapq(t, ·) is an increasing diffeomorphism ofR before
blow-up with

qx(t, x) = exp

(

2

∫ t

0
(mux)(s, q(s, x))ds

)

> 0, for all (t, x) ∈ [0, T )× R.

On the other hand, combining (5.4) with (1.1), we have

∂

∂t
[m(t, q(t, x))qx(t, x)] = [mt(t, q) +mx(t, q)qt]qx +mqxt

= qx[mt(t, q) + (u2 − u2x)mx(t, q)] + 2uxm
2qx

= qx[mt + (u2 − u2x)mx + 2uxm
2] = 0.

Therefore,m(t, q(t, x))qx(t, x) is independent of the time variablet. That is

m(t, q(t, x))qx(t, x) = m(0, x) = u0(x)− u0xx(x).

This completes the proof of Lemma 5.1. �

Remark 5.1. Lemma 5.1 shows that, ifm0 = (1−∂2x)u0 does not change sign, thenm(t, x)
will not change sign for anyt ∈ [0, T ).

Remark 5.2. Sinceq(t, ·) : R → R is a diffeomorphism of the line for everyt ∈ [0, T ), the
L∞-norm of any functionv(t, ·) ∈ L∞ is preserved under the family of diffeomorphisms
q(t, ·), that is,

‖v(t, ·)‖L∞ = ‖v(t, q(t, ·))‖L∞ , t ∈ [0, T ).

Proposition 5.1. Letm0 ∈ Hs(R), s ≥ 3 and T > 0 be the maximal time of existence
of the corresponding solutionm(t, x) to (3.1) with the initial datam0. ThenM := uxm
satisfies

Mt + (u2 − u2x)Mx = −2M2 − 2m(1 − ∂2x)
−1(u2xm)− 2m∂x(1− ∂2x)

−1(uuxm) (5.6)

for all (t, x) ∈ [0, T ) × R.

Proof. From (1.1), we have

(1− ∂2x)
[

ut + (u2 − u2x)ux
]

=− (u2 − u2x)mx − 2uxm
2 + (1− ∂2x)

[

(u2 − u2x)ux
]

=− (u2 − u2x)mx − 2uxm
2 + (u2 − u2x)ux − ∂2x

[

(u2 − u2x)ux
]

=− (u2 − u2x)mx − 2uxm
2 + (u2 − u2x)mx − 6uxuxxm− 2u2xmx

=− 2uxm
2 − 6uxuxxm− 2u2xmx,

(5.7)

which implies

ut + (u2 − u2x)ux = −(1− ∂2x)
−1
[

2uxm
2 + 6uxuxxm+ 2u2xmx

]

= −(1− ∂2x)
−1
[

(u2)xm+ 2(u2xm)x
]

.
(5.8)

Taking the derivative to (5.8) with respect tox yields

uxt + 2u2xm+ (u2 − u2x)uxx = −∂x(1− ∂2x)
−1
[

(u2)xm+ 2(u2xm)x
]

. (5.9)

Notice thatmt = −(u2 − u2x)mx − 2uxm
2. We deduce from (5.9) that

muxt = −2u2xm
2 − (u2 − u2x)uxxm−m∂x(1− ∂2x)

−1
[

(u2)xm+ 2(u2xm)x
]

.

Clearly,

uxmt = −(u2 − u2x)uxmx − 2u2xm
2.
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Hence, we obtain the following equation forM = mux:

Mt + (u2 − u2x)Mx = −4M2 −m∂x(1− ∂2x)
−1
[

(u2)xm+ 2(u2xm)x
]

=− 4M2 −m∂x(1− ∂2x)
−1
(

(u2)xm
)

− 2m∂2x(1− ∂2x)
−1
(

u2xm
)

=− 4M2 −m∂x(1− ∂2x)
−1
(

(u2)xm
)

+m(2u2xm)−m(1− ∂2x)
−1
(

2u2xm
)

=− 2M2 − 2m∂x(1− ∂2x)
−1
(

uuxm
)

− 2m(1 − ∂2x)
−1
(

u2xm
)

.

(5.10)

This completes the proof of Proposition 5.1. �

Lemma 5.2. Let T > 0 be the maximal time of existence of the solutionm(t, x) to the
initial value problem(3.1)with initial datam0 ∈ Hs(R) for s ≥ 3. Assumem0 ≥ 0 for all
x ∈ R. Then

|ux(t, x)| ≤ u(t, x), Mt + (u2 − u2x)Mx ≤ −2M2 + 2C1m, (5.11)

for all (t, x) ∈ [0, T ) × R, withC1 =
1√
2
‖u0‖3H1 .

Proof. Sincem0(x) ≥ 0 for all x ∈ R, (5.3) and (5.2) imply that

m(t, x) ≥ 0, (5.12)

for all t ∈ [0, T ), x ∈ R, and hence
(

m(1− ∂2x)
−1(u2xm)

)

(t, x) ≥ 0. (5.13)

According to (3.3),

u(t, x) = (p ∗m)(t, x) =
1

2

∫

R

e−|x−y|m(t, y) dy,

hence

u(t, x) =
e−x

2

∫ x

−∞
eym(t, y) dy +

ex

2

∫ +∞

x

e−ym(t, y) dy,

ux(t, x) = −e
−x

2

∫ x

−∞
eym(t, y) dy +

ex

2

∫ +∞

x

e−ym(t, y) dy,

(5.14)

which, along with (5.12), leads to

u(t, x) + ux(t, x) = ex
∫ +∞

x

e−ym(t, y) dy ≥ 0,

u(t, x) − ux(t, x) = e−x

∫ x

−∞
eym(t, y) dy ≥ 0.

(5.15)

From this, we have

|ux(t, x)| ≤ u(t, x) for all (t, x) ∈ [0, T )× R. (5.16)

On the other hand, by (4.7),

∂x(1− ∂2x)
−1(uuxm)(t, x) = ∂xp ∗ (uuxm)(t, x)

= −1

2

∫ +∞

−∞
sign(x− y)e−|x−y|(uuxm)(t, y) dy,

which, together with (5.16), implies

|∂x(1− ∂2x)
−1(uuxm)(t, x)| ≤ 1

2

∫ +∞

−∞
e−|x−y|(|ux|um)(t, y) dy

≤ 1

2
‖u(t)‖2L∞

∫ +∞

−∞
e−|x−y|m(t, y) dy ≤ ‖u(t)‖3L∞ .

(5.17)
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From this, together with the Sobolev inequality‖u‖L∞(R) ≤ 1√
2
‖u‖H1(R) and (4.24), we

find

|∂x(1− ∂2x)
−1(uuxm)(t, x)| ≤

(

1√
2
‖u(t)‖H1

)3

=
1

2
√
2
‖u0‖3H1 := C1. (5.18)

Therefore, plugging (5.13) and (5.18) in (5.6) leads to the second inequality in (5.11), which
ends the proof of Lemma 5.2. �

In view of Theorem 4.3, we find that the solution blows up in finite time if and only
if the slopeuxm is unbounded blow. The next theorem shows that if the initialpotential
0 6≡ m0(x) is non-negative, then the slopeuxm has an uniform upper bound, independent
of the timet, as long asm(t, x) exists.

Theorem 5.1. Letm0 ∈ Hs(R), s > 1/2 andT > 0 be the maximal time of existence of
the corresponding solutionm(t, x) to (3.1)with the initial datam0. Assume thatm0(x) =
(1− ∂2x)u0 ≥ 0 for all x ∈ R, andm0(x0) > 0 at some pointx0 ∈ R. Then

sup
x∈R

(m∂xu)(t, x) ≤
1√
2
‖u0‖H1 sup

x∈R
m0(x) (5.19)

for all t ∈ [0, T ).

To prove Theorem 5.1, we need the following lemma due to Constantin and Escher [11].

Lemma 5.3. [11] LetT > 0 andv ∈ C1([0, T );H2(R)). Then for everyt ∈ [0, T ), there
exists at least one pointξ(t) ∈ R with

I(t) := inf
x∈R

(vx(t, x)) = vx(t, ξ(t)).

The functionI(t) is absolutely continuous on(0, T ) with

dI(t)

dt
= vtx(t, ξ(t)), a. e.on (0, T ).

Proof of Theorem 5.1.As in the proof of Theorem 4.3, we only need to show Theorem 5.1
holds whens = 3. First, Theorem 4.1 implies thatM ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1).
Givent ∈ [0, T ), letx0(t) ∈ R be such that

M(t, x0(t)) = sup
x∈R

M(t, x), which implies Mx(t, x0(t)) = 0, a. e. on (0, T ). (5.20)

Sinces > 1
2 , we haveHs(R) →֒ C0(R), the space of all continuous functions onR vanish-

ing as|x| → ∞. Theorem 4.1 implies that

M(t, x0(t)) ≥ 0 for all t ∈ [0, T ). (5.21)

Thanks to Lemma 5.1, the mapq(t, ·) is an increasing diffeomorphism ofR, which implies
that there isy0 = y0(t) ∈ R satisfying

q(t, y0(t)) = x0(t). (5.22)

Hence, in view of Lemma 5.3, it follows from (5.6) and (5.20) that

d

dt
M(t, x0(t)) = −2M2(t, x0(t))− 2

[

m(1− ∂2x)
−1(u2xm)

]

(t, x0(t))

− 2
[

m∂x(1− ∂2x)
−1(uuxm)

]

(t, x0(t)), a. e.on (0, T )
(5.23)

which, together with (5.13) and (5.18), leads to

d

dt
M(t, x0(t)) ≤ −2M2(t, x0(t)) + 2C1m(t, x0(t)), a. e. on (0, T ). (5.24)
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On the other hand, at the point(t, q(t, y0)) = (t, x0(t)), we have

d

dt
m(t, x0(t)) = −2(mM)(t, x0(t)), a. e. on (0, T ). (5.25)

It then follows from (5.21) that for allt ∈ [0, T )

m(t, x0(t)) = m0(x0(0))e
−2

∫ t

0
M(τ,x0(τ)) dτ ≤ m0(x0(0)) ≤ sup

x∈R
m0(x), (5.26)

which along with (5.11), (4.24) and (5.26) implies

M(t, x0(t)) = ux(t, x0(t))m(t, x0(t)) ≤ ‖ux(t)‖L∞m(t, x0(t))

≤ ‖u(t)‖L∞m(t, x0(t)) ≤
1√
2
‖u0‖H1 sup

x∈R
m0(x).

(5.27)

This completes the proof of Theorem 5.1. �

We are now in a position to state the following wave-breakingresult.

Theorem 5.2. Supposem0 ∈ Hs(R) with s > 1/2. Let T > 0 be the maximal time of
existence of the corresponding solutionm(t, x) to (3.1) with the initial datam0. Assume
m0(x) = (1− ∂2x)u0 ≥ 0 for all x ∈ R andm0(x0) > 0 for somex0 ∈ R, and that

∂xu0(x0) < −
(√

2 ‖u0‖3H1

m0(x0)

) 1

2

. (5.28)

Then the solutionm(t, x) blows up at a time

T0 ≤ t∗ :=
−∂xu0(x0)√
2 ‖u0‖3H1

− 1

2

√

√

√

√

(√
2 ∂xu0(x0)

‖u0‖3H1

)2

− 2
√
2

‖u0‖3H1 m0(x0)
. (5.29)

Moreover whenT0 = t∗, the following estimate of the blow-up rate holds

lim inf
t→T−

0

(

(T0 − t) inf
x∈R

M(t, x)

)

≤ −1. (5.30)

Proof. Thanks to (5.11) and (5.1), we have

d

dt
M(t, q(t, x0)) ≤ −2M2(t, q(t, x0)) + 2C1m(t, q(t, x0)). (5.31)

Similarly, one can see from the equation in (3.1) that

d

dt
m(t, q(t, x0)) = −2mM(t, q(t, x0)). (5.32)

DenotingM(t) := 2M(t, q(t, x0)) andm(t) := 2m(t, q(t, x0)), we reformulate (5.31) and
(5.32) as

d

dt
M(t) ≤ −M(t)2 + 2C1m(t) (5.33)

and
d

dt
m(t) = −m(t)M(t). (5.34)
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Combining this with (5.12), we deduce that

d

dt

(

1

m(t)2
d

dt
m(t)

)

=
d

dt

(

− 1

m(t)
M(t)

)

=
1

m(t)2

(

−m(t)
d

dt
M(t) +M(t)

d

dt
m(t)

)

≥ 1

m(t)2

(

m(t)
(

M (t)2 − 2C1m(t)
)

−m(t)M (t)2
)

= −2C1.

(5.35)

Integrating from0 to t leads to

1

m(t)2
d

dt
m(t) ≥ C0 − 2C1t, (5.36)

with

C0 :=
m(0)

′

m(0)2
= −M(0)

m(0)
= −(∂xu0)(x0).

Combining this with (5.34) yields

M(t) = − 1

m(t)

d

dt
m(t) ≤ −m(t)

(

C0 − 2C1t
)

. (5.37)

Integrating (5.36) again on[0, t] implies

1

m(t)
− 1

m(0)
≤ C1t

2 − C0t, (5.38)

and hence
1

m(t)
≤ C1

(

t2 − C0

C1
t+

1

C1m(0)

)

= C1

(

t2 − C0

C1
t+

1

2C1m0(x0)

)

. (5.39)

The quadratic equation

t2 − C0

C1
t+

1

2C1m0(x0)
= 0

has two roots:

t∗ :=
C0

2C1
− 1

2

√

(

C0

C1

)2

− 2

C1m0(x0)
, t∗ :=

C0

2C1
+

1

2

√

(

C0

C1

)2

− 2

C1m0(x0)
,

Assumption (5.28) implies
(

C0

C1

)2

>
2

C1m0(x0)
, hence 0 < t∗ <

C0

2C1
< t∗. (5.40)

Thus,

0 ≤ 1

m(t)
≤ C1(t− t∗)(t− t∗). (5.41)

From this, we may find a time0 < T0 ≤ t∗ such that

m(t) −→ +∞, as t −→ T0 ≤ t∗,

which, by (5.37), implies that

M(t) −→ −∞, as t −→ T0 ≤ t∗.

Therefore,
inf
x∈R

M(t, x) ≤M(t) −→ −∞, as t −→ T0 ≤ t∗, (5.42)

which, in view of Theorem 4.3, implies that the solutionm(t, x) blows up at the timeT0.
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Having established wave breaking results for (3.1) as above, attention is given to blow-up
rate for the solution. In fact, owing to (5.37) and (5.41), wederive that for all0 < t < T0

(T0 − t) inf
x∈R

M(t, x) ≤ (T0 − t)M(t) ≤ −(T0 − t)m(t)(C0 − 2C1t)

≤ (T0 − t)
1

C1(t− t∗)(t− t∗)
(2C1t− C0)

≤ 2(T0 − t)

(t− t∗)(t− t∗)

(

t− C0

2C1

)

,

(5.43)

which leads to (5.30) whenT0 = t∗. Therefore, we end the proof of Theorem 5.2. �

Remark 5.3. The equation in(3.1) is invariant under the inverse transformation, that is, if
u(t, x) solves(3.1)with initial datau0(x), so does−u(t, x) with initial data−u0(x).

Thanks to Remarks 5.3, 5.1 and the proof of Theorem 5.2, we mayreadily derive the
following wave-breaking result.

Theorem 5.3. Letm0 ∈ Hs(R), s > 1/2 andT > 0 be the maximal time of existence of
the corresponding solutionm(t, x) to (3.1)with the initial datam0. Assume thatm0(x) =
(1− ∂2x)u0 ≤ 0 for all x ∈ R, andm0(x0) < 0 for somex0 ∈ R, and

∂xu0(x0) >

(√
2 ‖u0‖3H1

−m0(x0)

)
1

2

. (5.44)

Then the solutionm(t, x) blows up at some timeT0 with

T0 ≤ t∗ :=
∂xu0(x0)√
2 ‖u0‖3H1

− 1

2

√

√

√

√

(√
2 ∂xu0(x0)

‖u0‖3H1

)2

+
2
√
2

‖u0‖3H1 m0(x0)
. (5.45)

Moreover whenT0 = t∗, the following estimate of the blow-up rate holds

lim inf
t→T−

0

(

(T0 − t) inf
x∈R

M(t, x)

)

≤ −1. (5.46)

Remark 5.4. It is well known[10] that if the initial datau0 ∈ H3(R) andm0 = (1−∂2x)u0
does not change sign, then the corresponding solution to theCH equation exists globally.
While Theorem 5.2 and Remark 5.3 show that, even if the initial potential m0 does not
change sign, equation(3.1)may blow-up in finite time.

6. PEAKED SOLUTIONS IN THE CASEγ = 0

In this section, we discuss the existence of single and multi-peakon solutions to the mod-
ified CH equation (1.1) withγ = 0. Recall first that the single peakon of the CH equation
(1.5) withγ = 0 is given by

u(t, x) = c e−|x−ct|, c ∈ R.

Multi-peakon solutions have the form

u(t, x) =

N
∑

i=1

pi(t)e
−|x−qi(t)|, (6.1)
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wherepi(t) andqi(t), i = 1, 2, · · · , N satisfy the following Hamiltonian system of ordinary
differential equations:

q′i(t) =
N
∑

j=1

pje
−|qi−qj |, i = 1, 2, · · · , N,

p′i(t) =
N
∑

j=1

pipjsign(qi − qj)e
−|qi−qj |,

(6.2)

which has the canonical symplectic structure and Hamiltonian function

H =
1

2

N
∑

i,j=1

pi(t)pj(t)e
−|qi(t)−qj(t)|. (6.3)

A rigorous analysis of the Hamiltonian system (6.2) can be found in [30]. It is worth men-
tioning that the Novikov equation also admits multi-peakons [34, 35]. The amplitudes of
the multi-peakons of both the CH equation and the Novikov equation depend on time. In-
terestingly, as we now show, the amplitudes of multi-peakons for (3.1) withγ = 0 are
independent of time.

Theorem 6.1. For anya 6= 0, the peaked functions of the form

ua(t, x) = a e−|x−ct|, where c = 2
3 a

2, (6.4)

is a global weak solution to(3.1)with γ = 0, in the sense of Definition 3.2.

Remark 6.1. Note that all peakons(6.4) move with positive wave speed,c > 0. Each
positive wave speed has a peakon and anti-peakon of oppositeamplitudes:a = ±

√

3c/2.

Remark 6.2. At each timet ≥ 0, the peaked solutionsua(t, ·) belong to the Lipschitz space
W 1,∞(R). However, we do not know whether general initial data in the spaceW 1,∞(R)
produces a global weak solution. It’s also not clear whetherthere is a global weak so-
lution belonging to the spaceW 1,3

loc (R) but not inW 1,∞(R), even for special initial data.
Resolving these questions is a goal of our future work.

Proof of Theorem 6.1.We first claim that, for allt ∈ R
+,

∂xua(t, x) = −sign(x− ct)ua(t, x) (6.5)

in the sense of distributionS ′(R). Clearly (6.5) belongs toL∞(R). Moreover, for any test
functionϕ(·) ∈ C∞

c (R), using integration by parts,
∫

R

sign(y) e−|y| ϕ(y) dy = −
∫ 0

−∞
ey ϕ(y) dy +

∫ +∞

0
e−y ϕ(y) dy

=− ϕ(0) +

∫ 0

−∞
ey ϕ′(y) dy + ϕ(0) +

∫ +∞

0
e−y ϕ′(y) dy =

∫

R

e−|y| ϕ′(y) dy,

which proves the claim.
Let us now setu0,c(x) := ua(0, x) for x ∈ R. Then

lim
t→0+

‖ua(t, ·) − u0,c(·)‖W 1,∞ = 0. (6.6)

As in (6.5), we have

∂tua(t, x) = c sign(x− ct)ua(t, x) ∈ L∞(R) for all t ≥ 0. (6.7)
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Hence, using (6.6), (6.5), (6.7), and integration by parts,we deduce from that, for every test
functionϕ(t, x) ∈ C∞

c ([0,+∞) × R),

∫ +∞

0

∫

R

(

ua ∂tϕ+ 1
3u

3
a ∂xϕ+ 1

3(∂xua)
3 ϕ

)

dx dt+

∫

R

ua(0, x)ϕ(0, x) dx

= −
∫ +∞

0

∫

R

ϕ
(

∂tua + u2a∂xua − 1
3(∂xua)

3
)

dx dt

= −
∫ +∞

0

∫

R

ϕ sign(x− ct)ua
(

c− 2
3u

2
a

)

dx dt.

(6.8)

On the other hand, using (3.3),

∫ +∞

0

∫

R

[

(1− ∂2x)
−1
(

2
3u

3
a + ua(∂xua)

2
)

∂xϕ− 1
3(1− ∂2x)

−1(∂xua)
3 ϕ
]

dx dt

= −
∫ +∞

0

∫

R

[

ϕ∂xp ∗
(

ua(∂xua)
2
)

+ ϕp ∗
(

2u2a∂xua +
1
3(∂xua)

3
) ]

dx dt.

(6.9)

We calculate from (6.5) that

2u2a∂xua +
1
3(∂xua)

3 = −2 sign(x− ct)u3a − 1
3(sign(x− ct))3 u3a = 7

9 ∂x(u
3
a),

which together with (6.9) leads to

∫ +∞

0

∫

R

[

(1− ∂2x)
−1
(

2
3u

3
a + ua(∂xua)

2
)

∂xϕ− 1
3(1− ∂2x)

−1(∂xua)
3 ϕ
]

dx dt

= −
∫ T

0

∫

R

ϕ · ∂xp ∗
(

ua(∂xua)
2 + 7

9 u
3
a

)

dx dt.

(6.10)

Notice from (6.5) that∂xp(x) = −1
2sign(x)e

−|x| for x ∈ R, we have

∂xp ∗
(

ua(∂xua)
2 + 7

9 u
3
a

)

(t, x)

= −1

2

∫ +∞

−∞
sign(x− y)e−|x−y| (7

9 + sign2(y − ct)
) 3c

2

√

3c

2
e−3|y−ct| dy dt.

(6.11)

Whenx > ct, we split the right hand side of (6.11) into the following three parts:

∂xp ∗
(

ua(∂xua)
2 + 7

9 u
3
a

)

(t, x)

= −3c

4

√

3c

2

(∫ ct

−∞
+

∫ x

ct

+

∫ +∞

x

)

sign(x− y)e−|x−y| (7
9 + sign2(y − ct)

)

e−3|y−ct| dy

=: I1 + I2 + I3.
(6.12)

We directly computeI1 as follows:

I1 = −3c

4

√

3c

2

∫ ct

−∞
16
9 e

−(x−y)e3(y−ct) dy

= −4c

3

√

3c

2
e−(x+3ct)

∫ ct

−∞
e4y dy = − c

3

√

3c

2
ect−x.

(6.13)
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In a similar manner,

I2 = −3c

4

√

3c

2

∫ x

ct

16
9 e

−(x−y)e−3(y−ct) dy

= −4c

3

√

3c

2
e−(x−3ct)

∫ x

ct

e−2y dy = −2c

3

√

3c

2

(

ect−x − e3(ct−x)
)

.

(6.14)

and

I3 =
3c

4

√

3c

2

∫ +∞

x

16
9 e

x−ye−3(y−ct) dy

=
4c

3

√

3c

2
e(x+3ct)

∫ +∞

x

e−4y dy =
c

3

√

3c

2
e3(ct−x).

(6.15)

Plugging (6.13)-(6.15) into (6.12), we deduce that forx > ct

∂xp ∗
(

ua(∂xua)
2 + 7

9 u
3
a

)

(t, x) = c

√

3c

2

(

e3(ct−x) − ect−x
)

. (6.16)

While for the casex ≤ ct, we split the right hand side of (6.11) into the following three
parts:

∂xp ∗
(

ua(∂xua)
2 + 7

9 u
3
a

)

(t, x)

= −3c

4

√

3c

2

(
∫ x

−∞
+

∫ ct

x

+

∫ +∞

ct

)

sign(x− y)e−|x−y| (7
9 + sign2(y − ct)

)

e−3|y−ct| dy

=: II1 + II2 + II3.
(6.17)

ForII1, a direct computation gives rise to

II1 =− 3c

4

√

3c

2

∫ x

−∞
16
9 e

−(x−y)e3(y−ct) dy

=− 4c

3

√

3c

2
e−(x+3ct)

∫ x

−∞
e4y dy = − c

3

√

3c

2
e3(x−ct).

(6.18)

Similarly, one obtains

II2 =
3c

4

√

3c

2

∫ ct

x

16
9 e

x−ye3(y−ct) dy

=
4c

3

√

3c

2
ex−3ct

∫ ct

x

e2y dy =
2c

3

√

3c

2

(

ex−ct − e3(x−ct)
)

.

(6.19)

and

II3 =
3c

4

√

3c

2

∫ +∞

ct

16
9 e

x−ye−3(y−ct) dy

=
4c

3

√

3c

2
e(x+3ct)

∫ +∞

ct

e−4y dy =
c

3

√

3c

2
ex−ct.

(6.20)

Plugging (6.18)–(6.20) into (6.7), we deduce that forx ≤ ct

∂xp ∗
(

ua(∂xua)
2 + 7

9 u
3
a

)

(t, x) = −c
√

3c

2

(

e3(x−ct) − ex−ct
)

. (6.21)



WAVE BREAKING AND PEAKONS FOR A MODIFIED CAMASSA-HOLM EQUATION 21

On the other hand, using the definition ofua,

sign(x− ct)ua
(

c− 2
3u

2
a

)

(t, x) =











−c
√

3c
2

(

e3(ct−x) − ect−x
)

, for x > ct,

c
√

3c
2

(

e3(x−ct) − ex−ct
)

, for x ≤ ct,

which along with (6.16) and (6.21) yields

∂xp ∗
[

ua(∂xua)
2 + 7

9 u
3
a

]

(t, x) + sign(x− ct)
[

ua(c− 2
3u

2
a)
]

(t, x) = 0, (6.22)

for all (t, x) ∈ R
+ × R. Therefore, in view of (6.8), (6.11) and (6.22), we concludethat

∫ +∞

0

∫

R

(

ua ∂tϕ+
1

3
u3a ∂xϕ+ 1

3(∂xua)
3 ϕ+ (1− ∂2x)

−1
(

2
3u

3
a + u(∂xua)

2
)

∂xϕ

− 1
3(1− ∂2x)

−1(∂xua)
3 ϕ

)

dx dt+

∫

R

ua(0, x)ϕ(0, x) dx = 0

for every test functionϕ(t, x) ∈ C∞
c ([0,+∞)×R), which completes the proof of Theorem

6.1. �

We now derive the multipeakon solutions of equation (3.1). Assume that equation (3.1)
with γ = 0 has anN -peakon solution of the form (6.1). It follows from Definition 3.2 that
for anyϕ(t, x) ∈ C∞

c ([0,∞) × R), the solution (6.1) satisfies
∫ ∞

0

∫

R

[

ut + (u2 − 1
3u

2
x)ux + (1− ∂2x)

−1∂x(
2
3u

3 + uu2x) +
1
3(1− ∂2x)

−1u3x
]

ϕ(x)dxdt = 0,

which is equivalent to the equation
∫ ∞

0

∫

R

[

ut(ψ − ψxx) +
1
3 (u

3ψxxx + u3xψxx)− u(u2 + u2x)ψx

]

dxdt = 0, (6.23)

whereϕ = ψ − ψxx, ψ(x) ∈ C∞
c ([0,∞) × R).

A straightforward computation gives

I1 =

∫ ∞

0

∫

R

ut(ψ − ψxx)dxdt

=
N
∑

j=1

∫ ∞

0

∫ qj(t)

−∞
(p′j − pjq

′
j)e

x−qj (ψ − ψxx)dxdt

+

N
∑

j=1

∫ ∞

0

∫ ∞

qj

(p′j + pjq
′
j)e

−(x−qj)(ψ − ψxx)dxdt

= 2

∫ ∞

0

N
∑

j=1

(

p′jψ(qj) + pjq
′
jψx(qj)

)

dt,

I2 =

∫ ∞

0

∫

R

[

1
3

(

u3ψxxx + u3xψxx

)

− u(u2 + u2x)ψx

]

dxdt

=

∫ ∞

0





∫ q1

−∞
+

N−1
∑

j=1

∫ qj+1

qj

+

∫ ∞

qN





[

1
3

(

u3ψxxx + u3xψxx

)

− u(u2 + u2x)ψx

]

dxdt

= 2

∫ ∞

0

N
∑

j=1

pj



−2
3p

3
j − 2

N
∑

i=1

pjpie
−|qi−qj | − 4

∑

1≤k<j,j<i≤N

pkpie
−|qk−qi|)



ψx(qj)dt.
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Substituting the preceding expressions into (6.23), we obtain the following system

p′j = 0,

q′j =
2

3
p2j + 2

N
∑

i=1

pjpie
−|qi−qj | + 4

∑

1≤k<j,j<i≤N

pkpie
−|qk−qi|.

(6.24)

ForN = 2, the system (6.24) can be easily integrated. In this case, without loss of general-
ity, assumeq1(t) < q2(t), we obtain the general solution of system (6.24) given by

p1 =

√

3

2
c1, p2 =

√

3

2
c2,

q1 = c1t+
3
√
c1c2

c1 − c2
e(c1−c2)(t−t0) + x0,

q2 = c2t+
3
√
c1c2

c1 − c2
e(c1−c2)(t−t0) + x0 + (c2 − c1)t0,

(6.25)

wherec1 < c2, andx0 andt0 are integration constants, which describe translation invariance
for x and t. Settingx0 = t0 = 0, we derive two-peakon solutions of the modified CH
equation in the explicit form

u(t, x) =

√

3

2
c1 exp

{

−
∣

∣

∣

∣

x− c1t−
3
√
c1c2

c1 − c2
e(c1−c2)t

∣

∣

∣

∣

}

+

√

3

2
c2 exp

{

−
∣

∣

∣

∣

x− c2t−
3
√
c1c2

c1 − c2
e(c1−c2)t

∣

∣

∣

∣

}

.

As t→ ∞, the two peakons separate:

u(t, x) ≈
√

3

2
c1 e

−|x−c1t| +

√

3

2
c2 e

−|x−c2t|,

whereas whent → −∞, the peakons separate and go off to∞ at an exponentially increas-
ing rate.

Representative profiles of a single peakon and a double peakon solution are plotted in
Figures 1 and 2, respectively.
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