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In this note I would like to discuss some new perspectives on the construction of
model equations for physical systems, with particular emphasis on the role of Hamiltonian
structure and solitary waves. The ideas, which have a wide applicability, will be presented
in the specific context of higher order model equations for water waves, valid in the
shallow water regime. Details can be found in the references [5], [8], [9].

We begin with the standard free boundary problem for incompressible, irrotational
fluid flow in a channel. We restrict attention to two-dimensional motions, taking x as the
horizontal and y as the vertical coordinate, the (flat — for simplicity) bottom at y =0,
and the free surface at y = h + 1(x,t), where h is the undisturbed fluid depth. In terms of
the velocity potential @(x, y, t), the full water wave problem takes the well-known form
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where g is the gravitational constant. For simplicity, I have omitted surface tension,
although this can be readily incorporated in both the full equations as well as the models
discussed below. In the standard Boussinesq (shallow water) approximation to the water
wave problem, one begins by introducing the small parameters
2
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where a is the wave amplitude, [ the wave length. The equations (1-3) are rescaled
according to (x, y, t, M, ®) —> ({x,hy,amn, ¢ lgal@), where ¢ = Ygh is the
(linearized) wave speed. The boundary value problem (1-2) (in the rescaled variables) is
then solved for the potential, and the resulting series expansion substituted into the free
surface conditions (3). The resulting bidirectional system of equations is typically
expressed in terms of the surface elevation 7m(x,t) and the horizontal velocity u(x, t) =
¢, (x, 0 h, t) atafraction 0 <6 <1 of the undisturbed depth. Truncating to some
specified order, one finds a variety of Boussinesg-type systems of model equations for
waves propagating in both directions. To specialize to waves moving in a single direction,
one resticts to an “approximate” unidirectional function surface, and re-expands the system.
The result, to first order, is the celebrated Korteweg-de Vries approximation
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which we have written in terms of 1, although the horizontal velocity u satisfies the same
equation to first order. (The higher order approximations, though, are different, [8], [9].)

The water wave problem was shown by Zakharov, [11], to be a Hamiltonian
system with the total energy serving as the required Hamiltonian functional. Also, as is
well known, [10; Chapter 7], the Korteweg-deVries equation (4) has two distinct
Hamiltonian structures — indeed, the fact that it is a biHamiltonian system implies, by
Magri’s theorem, that it is, in fact, a completely integrable Hamiltonian system in the sense
that it has an infinite sequence of independent conservation laws and associated
(generalized) symmetries. On the other hand, in collaboration with Benjamin, [2], [7], the
full water wave problem (1-3) was shown to possess precisely eight (seven if surface
tension is included) local conservation laws, corresponding to nine (eight if surface tension
is included) independent one-parameter symmetry groups. (The “extra” scaling group is
not being “canonical”, and thus does not lead to a conserved quantity.) In the course of
trying to understand which of the Korteweg-deVries conservation laws correspond to true
water wave laws, I found, much to my surprise, that neither of the Hamiltonian structures
for the Korteweg-de Vries equation arises directly from the Hamiltonian structure for the
full water wave problem. The crucial feature is that the Boussinesq expansion is not
canonical, and so cannot lead to a first order Hamiltonian approximation. Indeed, the first
order truncation of the water wave energy functional is not one of the conserved quantities
for the Korteweg-deVries model (4).

The easiest way to appreciate this phenomenon is through an appeal to a simple
form of “noncanonical perturbation theory”. Consider a Hamiltonian system ‘

¥~ Jv) VHW), (5)
which, in our application, would represent the full water wave problem. In standard
perturbation theory, which ignores any additional structure the model may possess — such
as Hamiltonian structure, conservation laws, etc., one derives approximate models by sub-
stituting the physically motivated perturbation expansion v =u + € ¢(u) + g2 y(u) + ...
into the system, and then truncating the resulting system to some desired order in €.
However, this procedure must now be correlated with the Hamiltonian structure of (5).
Indeed, if the expansion is not canonical then we must not only expand the Hamiltonian
function(al) H(v) = Hp(w) + € Hy(u) + g2 H,(u) + ..., but also the Hamiltonian operator
J(v) F— Jp(u) + e T (w) + g2 Jo(u) +.... If we truncate to just first order, the resulting
perturbed system

d
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is not Hamiltonian in any obvious way. Indeed, as was remarked above in the context of
the water wave problem, the first order truncation of the Hamiltonian, He(u) + & Hy(u), is
not a conserved quantity for (6). A Hamiltonian first order approximation to (5) can be
given by retaining some (but not all) of the second order terms:
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= JoVHy+ € { J; VHy +J, VH, } + €*J; VH, .
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(Technically, since the Jacobi identity imposes a quadratic constraint on the Hamiltonian
operator, the combination Jotel is not guaranteed to be Hamiltonian; however, in
many cases, including the Korteweg-deVries approximation, this is not a problem.)

In certain situations, the first order model (6) may turn out to be Hamiltonian “by
accident”. One way in which this can occur is if the two terms in braces are constant
multiples of each other, so J; VH, =\ J, VH;. If this happens, the associated first order
approximation (6) is in fact biHamiltonian, and hence completely integrable. This
observation, which does apply to the Korteweg-deVries equation, can be offered as an
explanation of the surprising prevalence of completely integrable soliton equations
appearing as models for a wide variety of complicated nonlinear physical systems — it is
because they arise from non-canonical perturbation expansions of Hamiltonian systems,
while, at the same time, retaining some form of Hamiltonian structure.

Both the Hamiltonian models constructed using the preceding non-canonical
perturbation theory, as well as the complete second order models for unidirectional shallow
water waves, are evolution equations of the general form
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Such models arise in a wide variety of other physical situations, including wave
interactions, elastic media with microstructure, and soliton. The precise formulas for the
coefficients vary, and I refer the reader to [5] for a survey of (most of the) models of this
form in current use, including all water wave models, both first order Hamiltonian, and
second order, with and without surface tension. Some analytical results are known for
such fifth order models, although much remains unknown. In particular, numerical
solutions have not, as far as I know, been implemented. Here I would like to comment on
some recent results concerning the existence of solitary wave solutions. For small &,
equation (8) should be regarded as a perturbation of the Korteweg-deVries model, cf. [4],
obtained by omitting the 0(8 ) terms entirely. Therefore, one would expect that the model
admits a one-parameter family of solitary wave solutions which would look like small
perturbations of the standard sech? solitons of the Korteweg-deVries equation. This point
of view would be additionally bolstered by the fact that the full water wave model also
admits a family of solitary wave solutions, up to a wave of maximal height which satisfies
the Stokes’ phenomena of exhibiting a 120° corner. Indeed, Kunin, [6], introduces
models, using only g Buu,,, in the second order terms, which do have solitary waves
of maximal height, although these waves have a 0° cusp. Remarkably, the expectation of
solitary wave solutions is not correct, and, indeed, most of the fifth order models (8) do
not have the expected property. Indeed, in joint work with S. Kichenassamy, [5], it was
proved that, subject to a technical analyticity hypothesis, the only models (8) which admit a
one-parameter family of solitary wave solutions which, in the e—— 0 limit, reduce to
Korteweg -deVries solitons, are the models which admit a one-parameter family of exact
sech? solitary wave solutions!



In the case of the water wave models, only at the “magic depth” 0 = i; i T

do the higher order models possess solitary wave solutions. In this case, the Hamiltonian
model is, in fact a fifth order Korteweg-deVries equation, having soliton solutions. (The
many remakable properties of the models at this depth has been noted before, [8], [9], but
no explanation is as yet forthcoming.) This fact brings into sharp focus our preconceived
notions concerning the construction of model equations for solitary wave phenomena.
According to work of Friedrichs and Hyers, [4], and Amick and Toland, [1], the full water
wave problem possesses a one-parameter family of exact solitary wave solutions, up to a
wave of max1ma1 height. The Korteweg-deVries equation also has a one-parameter family
of exact sech? solitary wave solutions (of all amplitudes), which, for small amplitudes,
are fairly good approximations to the exact solitary water waves, [3]. However, if one
tries to improve the approximation by including higher order terms, or maintaining
Hamiltonian structure, one in fact does much worse, destroying the solitary wave solutions
entirely. At first glance, this is very surprising. However, what should really be
surprising is that the models to a physical system have solitary wave solutlons in the first
place! Indeed, since the O(z-: ) model is (presumably) only valid for time O(g™ ) the fact
that it has a solitary wave solution valid for all time is certainly not guaranteed, even if the
full physical system has solitary wave solutions. In fact, all we have a right to expect is a
solution which looks like a solitary wave for a long time, but then, possibly, has some
completely different behavior, e.g. dissipation, break-up, blow-up, or something else,
which is irrelevant for the physical system being modelled. The fact that almost all popular
models for wave phenomean do have solitary wave solutions is, therefore, an accident that
has lulled us into a false sense of security.

The details of the proof of this result are to be found in [5]. The method is to first
determine which of the models have exact sech? solitary wave solutions. Substituting the
explicit formula u(x,t)=a sech? A(x —ct) into the model (8), we find that the coefficients
a, A, ¢, must satisfy the compatibility conditions

ocp2+up + (p-¢) =0, I5apc+2P+y)p +3pc+2q =0,
150c02+(3[3+27)o+2p = 0,

®

where p =4 A%, 6=-42%/a. Notethat 6 <0 gives a wave of elevation, 6 >0 a
wave of depression. Analys1s of the algebraic system (9) proves that a general fifth order
model (8) possesses either 0, 1, 2, o, or o+ 1 explicit sech” solitary wave solutions,
where e¢o denotes a one-parameter famﬂy of such solutions. In particular, the model
admits a one-parameter family of explicit sech? solitary wave solutions if and only if the
coefficients satisfy the two algebraic relations

B+Yp = 5qa, 15ar = BB +y). (10)

It should be remarked that these are not enough to guarantee that the model is completely
integrable! Interestingly, there may be more than one sech? solitary wave solution for
subcritical wave speeds if o L <0.

In order to prove non-existence, we first construct a suitable solitary wave tail (i.e.
for |x| — =) by proving the convergence of the appropriate formal series solution. On



the other hand, there exists a formal expansion of any solitary wave solutions in a series in
power of sech, which, if it converged, would actually give a solitary wave solution.
However, except when the coefficients of the equation satisfy the algebraic constraints (10)
guaranteeing a family of sech® solitary wave solutions, the recurrence relations for the
formal series solutions introduce poles in the coefficients in the complex e-plane
converging to € =0, which serve to violate our underlying analyticity hypothesis. This
gives a brief outline of the essence of the proof — the reader can find the full details in [5].

[1]

[2]

[3]

[4]

[3]

(6]

[7]

(8]

[9]

[10]

[11]

References

Amick, C.J. and Toland, J.F., On solitary water waves of finite amplitude, Arch.
Rat. Mech. Anal. 76 (1981), 9-95.

Benjamin, T.B. and Olver, P.J., Hamiltonian structure, symmetries and
conservation laws for water waves, J. Fluid Mech. 125 (1982), 137-185.

Craig, W., An existence theory for water wave, and the Boussinesq and Korteweg-
deVries scaling limits, Commun. Partial Diff. Eq. 10 (1985), 787-1003.

Frierichs, K.O., and Hyers, D.H., The existence of solitary waves, Commun.
Pure Appl. Math. 7 (1954), 517-550.

Kichenassamy, S., and Olver, P.J., Existence and non-existence of solitary wave
solutions to higher order model evolution equations, SIAM J. Math. Anal.
23 (1992), 1141-1166.

Kunin, LA, Elastic Media with Micro&tructure I, Springer-Verlag, New York,
1982.

Olver, P.J., Conservation laws of free boundary problems and the classification of
conservation laws for water waves, Trans. Amer. Math. Soc. 277 (1983),
353-380.

Olver, P.J., Hamiltonian perturbation theory and water waves, Contemp. Math. 28
(1984), 231-249.

Olver, P.J., Hamiltonian and non-Hamiltonian models for water waves, in: Trends
and Applications of Pure Mathematics to Mechanics, P.G. Ciarlet and M.
Roseau, eds., Lecture Notes in Physics No. 195, Springer-Verlag, New
York, 1984, pp. 273-290.

Olver, P.J., Applications of Lie Groups to Differential Equations, Second Edition,
Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York,
1993,

Zakharov, V.E., Stability of periodic waves of finite amplitude on the surface of a
deep fluid, J. Appl. Math. Tech. Physics 2 (1968), 190-194.



