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HAMILTONIAN PERTURBATION THEORY AND WATER WAVES

Peter Olverl

ABSTRACT. A general theory of noncanonical perturbatims of

Hamiltonian systems, both finite dimensional and continuous, is

proposed. The results determine a general formula for the deform-

ation of a Poisson structure on a manifold. The theory is applied

to the Boussinesq expansion for the free boundary problem for water

waves, which leads to the Korteweg-de Vries equation. New Hamilton-

ian model equations for both uni- and bi-directional propagation

of long waves in shallow water are found. An explanation of the

complete integrability (soliton property) of the Kdv equation,as a

consequence of the expansion,is determined.
1. INTRODUCTIQN. In 1895 Korteweg and deVries first derived their celebrated
equation as a model for the unidirectional pPropagation of long waves in
shallow water. Their method proceeded by first applying the perturbation
expangion introduced by Boussinesq, and then restricting the resulting bi-
directional Boussinesq system to a "submanifold” of approximately unidirect-
ional waves. Hamiltonian methods entered the subject when Zakharov found the
Hamiltonian form of the water wave problem. Subsequently, the Korteweg-
de Vries equation was shown to be Hamiltonian, in fact in two distinet ways.

In earlier work with Benjamin, (2], {12), symmetry group techniques uged
in conjunction with Zakharov's Hamiltonian structure proved that the two-
dimensional water wave problem without surface tension has precisely eight
nontrivial conservation laws. The present work arose in an ongoing invesgt-
igation ag to how these laws behave under the perturbation expansion leading
to the KdV equation. This project came to a temporary halt, however, with the
surprising discovery that the Hamiltonian structures of these two equations do
not match up in any natural way. Indeed, this is first evidenced by the fact
that almost all versions of the Boussinesq system, which is the essential half-
way point in the derivation, are not Hamiltonian, in particular do not conserve
energy. Even more striking is the elementary, but apparently unnoticea
observation that the perturbation expansion of the energy for the water wave
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problem does not agree to the requisite order with either of the Hamiltonians
for the KAV equation. Alternative models such as the BEM or Regularised
Long Wave equation, (1], suffer from the same probiem.

In order to better understand this state of afiairs, a general theory of
noncanonical perturbation expansions of Hamiltonian systems must be developed.
In outline, the theory proceeds as follows. Consider a Hamiltonian system

% = J(x,e)VH(x,e) , (1.1)

in which ¢ is a small parameter, H(x,6) is the kamiltonian function and
J(x,e) the skew-adjoint Hamiltonian (or cosymplec:ic) operator. Since the
operator J appears in the cosymplectic two-vector 9 = g'h: A be , defining
a Poisson structure, we call (1.1) the cosymplectic form of Hamilton's

equations, to be distinguished from the symplectic form

K{x,e)x = 9H(x,¢) , (1.2)

1.7

corresponding to the symplectic two-form Q=- 3 dx 1

AKdx , K=J =~ . (At
first sight, this distinction appears trivial, but the two forms lead to very
different types of perturbation equations.)

Consider a perturbation expansion
x=y+€ o{y)+... . (1.3)
In standard perturbation theory, oune substitutes (1.3) into (1.1) or (1.2),
expands in powers of ¢ and truncates to some required order. The resulting
system, as simple examples easily show, is not in general Hamiltonian. 1In
order to preserve the Hamiltcnian structure we must expand both the Hamiltonian
Hix,¢) = H (¥) +eH () + ¢THy(y) + ...
and the cosymplectic operator
J(xye) vo J{y)re I (y)+ eI (y)+ ...

and truncate at the required order. (We ignore for the moment the additional
complication that the truncated series for J &is not in general a true

cosymplectic operator - see section 2B.) To first order,

]

¥ = (I (y)+e I (y))(VH (¥) + € vH,(¥))

2
JOVH°+ ‘(JLVH0+ JQVHl) +€ J1VH1 ,
called the cosymblectic perturtation of (1.1). It agrees with the ordinary

(1.8)

perturbation expansion
yo=JH + s(JlVH°+ JOVHl) (1.5)

£o first order but includes some additional terms in ca so as to maintain
the Hamiltonian structure. Note that (l.4) is not the second order ordinary
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2
perturbation of (1.1l) - this would include the terms ¢ (JOVH2+ J2VH°) ,

which would again destroy the Hamiltonian form of the system. The symplectic
perturbation proceeds along the same lines, leading to

(Ko(¥) + € K (y))F = VH (y) + ¢ vH,(y) , (1.6)

which is always Hamiltonian. For evolution equations, as the examples in
section 4 bear out, the cosymplectic form is usually the more desirable because
in (1.6) the symplectic operator, which may very well be nonlinear, is applied
to temporal derivatives of y .

This Hamiltonian perturbation theory falls between the two main schools of
perturbation theory - on the one hand standard perturbation methods, [6], pay
no regard to any Hanmiltonian structure in the systems under investigation,
whereas in classical and celestial mechanics, [15), all perturbations are
cancnical and the problems discussed here never arise. Nevertheless, the
present theory should prove to be of importance in a wide range of physical
applications in which the perturbations are more or less prescribed, but oae
still wishes to maintain some form of Hamiltonian structure.

In the water wave problem, there are two small parameters « and B but
the expansions take the same form. If (1.1) represents the original free
boundary problen, then the non-Hamiltonian Boussinesq systems are of the form
(1.5). To make these Hamiltonian, we must add certain quadratic terms in

2,08 B~ , as in (1.4); see (4.15) for the resulting system. Similar remarks
apply to the subsequent derivative of the KdV equation (coming from the
cosymplectic form of the expansion) or the BEM equation (coming from the
symplectic form). In terms of the surface elevation M(x,t) , the non-
Hamiltonian perturbation equation (1.5) is the familiar Kdv equation

3 1 =
N+ + gaM+ ZBO, =0 . (1.7)
To retain the correct Hamiltonian structure according to the general theory,

one mustinclude quadratic terms as in (1.4), leading to the "Hamiltonian
version" of the KdV equation

teone Fame don et mif) e Bt -0, o
This model has Hamiltonian functional
M) = [ (5 1%+ 2andax, (1.9)

which is the correct first order expansion of the energy (Hamiltonian) of the
water wave problem, and cosymplectic operator

J=-[p+ %a(n D, +D1) + % B D;:'] . (1.20)

Note that (1.9) does not agree with either of the usual Hamiltonians for the
KdV equation. (Segur, [14], gives a completely different derivation of the
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KdV cquation using two time scales. His expansion of the energy leads to a
linear combination of the two KAV Hamiltonians. It remains to be seen how
the two methods can be reconciled.)

There remains the question of why, in spite of the general theory, the
KAV equation is Hamiltonian. ‘ote that the operator (1.10) appearing in the
Hamiltonian perturbation rese::. s a linear combination of the two cosymplectic
operators for the KdV equation. Under special circumstances, the non-
Hamiltonian perturbation (1.5) can inherit two compatible Hamiltonian structures
(corresponding to J, and Jy ), and hence, by a theorem of Magri, (9], is
automatically completely integrable. This may offer an explanation for the
remarkable fact that completely integrable Hamiltonian systems (soliton
equations) such as the KdV, sine-Gordon, and nonlinear Schr&dinger equations
appear so often as model equations in the perturbation expansions to a wide
variety of physical systems.

I wish to thank T. Brooke Benjamin and Jerry Bona for valuable comments
on the results, and Jerry Marsden for organizing a superb conference.

2. FINITE DIMENSICNAL HAMILTONIAN PERTURBATION THEORY. The aim is to set up

a Hamiltonian perturbation theory for evolution equations, but to keep things
simple we begin with the finite dimensional case. One lesson gleaned from the
avolutionary case is that one should not rely on the existence of Darboux
coordinates in general, so we take a Hamiltonian structure to be defined by
either a symplectic two-form, or, more generally, a cosymplectic two-vector
field % la Lichnerowicz. To perturb the Hamiltonian structure, it then suffices
to perturb either the symplectic form (which is straight forward ) or the
cosymplectic two-vector (which is less so); in fact, the correct form of the
perturbation of the cosymplectic two-vector requires the full theory of Poisson
manifolds, which we develop in a form amenable to be immediately generalized to
the infinite-dimensional case of evolution equations.

A. POISSON STRUCTURES. In the usual theory, Hamiltonian mechanics takes place
on a manifold M equipped with a symplectic two-form {3 . One immediate
complication is that in local {non-Darboux) coordinates, if

1.7 1
Q:—‘--J-'- [ =
> ax” A K(x)ax 2 z Kijdxi A de R
then both Hamilton's equations
% = J QH(x) , (2.1)

and the Poisson bracket

{F,G} = VFLJ G ,

require the inverse J = K'l of the matrix appearing in {1 . In the infinite-

dimensional version, J is a differential operator, so trying to use the
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symplectic rorm usually introduces unnecessary complications.

These can be avoided by introducing a Poisson structure, as detailed in the
paper by Weinstein in these proceedings. For our purposes, however, it is
expadient to adopt the viewpoint of Lichnerowicz, [8], and regard the
cosymplectic two-vector field

= 1,7 = 2 D A0
8 = E'Ox A J(x)b:‘t = 3 L Ji.j bxi A bxj (2.2)
as the fundamental object determing a Poisson structure, rather than the
Poisson bracket, which is easily reccvered from 9 :

{F,c} = (dF A dG,) . (2.3)

The requirement that the Poisson bracket satisfy the Jacobi identity translates

into a system of nonlinear differential equations for the coefficients Jy J(x)

of 8 . These are most easily expressed using the Schouten-Nijenhuis bracket.
We begin by describing a new invariant definition of this important bracket

between multi-vector fields which will readily generalize to the case o

evolution equations. A k-vector field is a section of /\t'm > the bundle of

contravariant alternating k-tensors. Note that if « is a k-vector fie ld

and w a differential (k-1)-form, then the interior product v=w_lqa is an

ordinary vector field. Thus v(8) = (w 1 Q)6 , will denote the Lie derivative

of another differentiul form 6 with respect to this vector field.

DEFINITIN 2.1 Let « be a k-vector field and B an &¢-vector fileld. The

Schouten-Nijenhuis bracket [a,8] is the following uniquely determined

(k+4 -1) - vector field: For every k+4 -1 closed differential one-forms

b R L "R O I )

([a’ﬁ]’“’lA"'Awk+-L-l) = ('i" }I: sign I(a,(wI.l B)wI,)

‘ (2.4)
&
+ %L?x sign J(a,(wJ_la)wJ.> .

In this formula, the first sum is over all multi-indices I=(il’°"’i&-l) R
14, <... <i, ;<k+2-1, with complement I'= (i:'L"" ,il'() such that
lSij_<"° <il'<5k+""l and (il""’i«t-l’ii""’ilzt) = n(l,...,k+&-1) for
some permutation n , and sign I = sign r . Similarly, the second sum is over
all J = (‘jl"""jk-l) R lj:,jl<... <Jk_15k+u!.-l with J' , sign J defined
similarly.

In the special case k=1, so a=v is an ordinary vector field, (2.k)
still holds with the understanding that in the second summation there is one
term, corresponding to I=g , wy =1 (constant). It is easily seen that in
this case the Schouten-¥ijenhuis bracket (vyB) is just the Lie derivative of
A with respect to v . Checking that definition 2.1 agrees with both that of
Nijenhuis, [10],and the invariant definition favored by Lichnerowicz, (8], is
a useful exercise. We have chosen this definition because it appears to be
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the only one that readily generalizes to the infirn: e dimensional formulation
needed to treat evolution equations.

Let a,a be k-vector fields, B an &-vector field and Y an m-vector
field. The basic properties of the bracket follow from (2.4):

a) Bilinearity

[ca+ cq,p) = cla,pl+c[a,B) , c,c€ER, (2.5)
b) Super-symmetry

fa,8) = (-1)*18,a] (2.6)
¢) Jacobi identity

(-1 ®[0,8],¥)+ (1Pl {v,a1,81+ (-1)¥[[8,¥),a) = 0, (2.7)

d) Pseudo-derivation

im+m

(a8 A Y] = {a,B] A v+ (-1) B A [a,y] . (2.8)

These properties, especially (2.8) which does not appear to be as well known,

are vital for determining the local coordinate formulae for this bracket.
DEFINITION 2.2 A two-vector field © is cosymplectic if

@8] =0 . (2.9)

A cosymplectic two-vector © determines a Poisson structure on M in
the sense of Weinstein, [16], via (Z2.3) and conversely. For a Hamiltonian
function H:M = R, the associated Hamiltonian vector field is

vy = Fg(d}{) = dH1® , (2.10)

with flow given by (2.1) in local coordinates.

THEOREM 2.3 Let © have constant rank 2n<n . Then there is a foliation of
M with 2m-dimensional leaves so that on each leaf L ,o]xg/\z'rqx and is of
maximal rank for each xeL . Thus O defines a symplectic structure on L .

Each leaf is invariant under the flow of any Hamiltonian vector field onif, in fact
*
TL|, = Fo(T'Mf) -
for any x €ELC M.
See Lichnerowicz, [8], for a proof and Weinstein, [16]), for a discussion

of the non-constant rank case. The cosymplectic two-vector @ sets up a

complex
B = B AT " AT

with 8(a) = [9,ax] . The conditicn (2.9) implies, using the Jacobi identity
(2.7), that the complex is closed: 50 8=0 . However, unless 2 is ot
maximal rank, this complex is not locally exact .

THEOREM 2.4 Ilet O be cosymplectic, of constant rank. Let & be a k-vector
field on M . Then [0,a) = 0 if and only if in any coordinate cube
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0 for 8 a (k-l)-vector field and oy a k-vector field which, in
the given coordinates, is constant on the leaves of the symplectic foliation induced

a = [0,3) +a

by 9. (ao will in general depend on the choice of local coordinates.)

The proof of this result, as well as a discussion of the global cohomology,
can be found in Lichnerowicz, (8].

B. PERTURBATION THEORY.

We now consider perturbation theory for a system of ordinary differential
equations in Hamiltonian form. Throughout this seetion ¢ will be & emall
parameter, and we allow the Possibility of both the Hamiltonian and the
cosymplectic form depending on ¢ . The basic system is

% = J(x,e)VH(x,€) = F(x,e) . (2.11)
Given a perturbation expansion
2
x=y+ep(y)+eg(y)+... , (2.12)

following standard perturbation methods, we substitute (2.12) into (2.11} and
expand the series in ¢ to first order:

(L+ewp)y = F (y)+e Fy(y) . (2.23)
Here Fo,Fl can easily be evaluated from (2.11) using the chain rule:

Foly) = F(y,0) = 3 (NVH(y) , Fy(¥) = F,(y,0) + F(y,0)(y) .
We can also invert l+eVp in (2.13) to obtain the alternative system

y=F (Y +eF (v, (2.14)
where Fl =F; - % - F . Unless the expansion (2.12) happens to be
canonical, neither (2.13) nor (2.1k) will be in general Hamiltonian. If we
expand the Hamiltonian

H(x,e) = Ho(y)+ € Hl(y)+e2}i2(y) +eee (2.15)

we Find that the first order truncation H°+ € Hl is not in general a constant
of the motion.

In order to maintain some form of Hamiltonian structure under perturbation,
we must investigate how the symplectic or cosymplectic forms themselves are
being perturbed. First we look at the easier case when the system is in
symplectic form

K(x,e)% = 9H(x,e) .
The symplectic two-form has the perturbation expansion
Q(x,e) = Oo(y)-l-e Ql(y)+e‘r12(y)+ ey (2.16)

or, in coordinates,

- ax’ AKGne)ax = - LayT A k(D6 K+ gy,
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using (2.12). Since the closure ccndition d3 =0 for a symplectic two form

is linear, we can truncate the expansion (2.16) at any order and {provided ¢
is sufficiently small to ensurs nondegeneracy) be assured the truncated form,
Q,+€ O, say, remains symplectic. This, together with (2.15), yields the
first order symplectic perturbvation

(K (y)+e K (¥))F = vH (v) + € VH (¥) , (2.17)

which is a Hamiltonian system. Ilote that (2.17) is not the same as (2.13) or
(2.14), but does agree with them up to terms of first order in € .

This is because to lowest order ¥ = Fo(y)+ O(e) , 30 whenever we see a term
like €y we can replace it by er-‘o(y) and still maintain first order
agreement. [ote also that it is not permissible to invert K°+ € Kl in (2.17)
and truncate and expect to have a Hamiltonian system.

As for the cosymplectic form (2.11), we can similarly expand the two-vector
field

9(x,e) =3 (y)+¢ 9,(y) +eB (y) * ... (2.18)
or
-Ié: b:f: A J(x,e)bx = % §§ A (Jo(y)-H: Jl(y)+ eQJE(y)+ ...)by .

However, owing to the basic nonlinearity of the cosymplectic condition (2.9)
one cannot expect in general t3 te able to truncate the series (2.18) and
have the resulting two-vector rizld be cosymplectic. Thus the first order
perturbation

o= (J (¥)+e I (7)) (9H () + € oH,(¥))
¥ oy +e 3 (v o)+ , (v (2.19)

2
JOVHo—x- e(JlVHO+ aoVHl) +€°J

i}

1"y

will not in general be Hamiltonian. However, since Jote Jl is still skew-
symmetric, the perturbed Hamil:icnian H0+ € Hl «ill always be a constant of
the motion of (2.19).

LEMMA 2.5 The perturbed two-vector 90+ ¢ s cosymplectic if and only if

1l
91 itself is:

(8,91 = 0 . (2.20)
TFROCF,
The full series (2.18) is certainly cosymplectic. (Indeed, the perturbation
expansion (2.12) is in essence just a change of coordinates.) Expanding (2.9)
in powers of € , and using (2.5,%), we find the infinite series of relations
[0,,3,)1=0 , 2(8 ,8,1=0 , 2(8,8,1+ [8,,2,1=0,... , (2.21)

resulting from the fact that (2.18) is cosymplectic for all e . On the other
hand, the conditions that 3°+ € 91 be cosymplectic are the first two of
(2.21), which are automatically rulfilled, plus (2.20). This proves the
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lemma. (Note, by (2.21) we can replace (2.20) by 8,:8,1=0.)

More generally, if (2.20) fails to hold, yet we still wish to retain the
Hamiltonian property of the perturbation, we are required to include certain
higher order terms in ¢ in the cosymplectic two-vector agreeing with (2.15)
to first order, i.e. of the form

2o
92+ oo n

To accamplish this, we simplify matters by working locally to avoid global
integrability conditions.

THEOREM 2.6 Let 90,91 be two-vector fields satisfying (2.21) for some
92 + Then there exists a vector fiéld v. and a two-vector field Y

1 1l
constant on the leaves of the foliation induced by 80 such that

9°+e 014- ¢

Gl = [vl,GO] + ¥ . (2.22)
Moreover, the two-vector field
*
8 = exp(evl)*(@°+ e Yl) (2.23)
is cosymplectic, with expansion
8" =9 +¢ 0, +0(?) . (2.24)
o 1
PROOF
The existence of vl,‘i'l follows directly from theorem 2.%. In (2.23)

the * refers to the action of the one-parameter (local) group of
diffeomorphisms exp(e vl) on the space of two-vector fields. Since the
Schouten- Nijenhuis bracket is invariant under diffecmorphisms it suffices to
check that Go-!-e Yl is cosymplectic. Clearly [Go,Yl] =0 , 5O we need only
check that [Yl,‘fll =0 . Using the Jacobi identity (2.7), and the third
equation in (2.21),

‘2[90’92] = [el’el]
{[v. 9901 P [Vl)go}]*' 2( [vl’eo]’wl]*’ [?l’yl]

[eoj = [vl’ [Vl’eoll - 2["1)?1]]"" [Yl’Yl] .

1]

Therefore
[Yl’yl] = [Go,l']

for some well defined I' . But since ?l is constant on the leaves induced by
@o , this latter identity is impossible unless both sides vanish. Finally, to

establish (2.24) we need only notice that
exp(e v))y(@) = @+ elvy,a] +0(¢?)

for any k-vector field « , using the identification of the bracket with the
Lie derivative in this case.
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C. SOME QUALITATIVE COMPA..SONS. What are scme of the advantages of the
Hamiltonian theory over standard perturbation methods? The most important is
certainly that the Hamiltcnian perturbation equations conserves energy, whereas
the standard perturbation equation does not in general. (This is also true
when one truncates the cosymplectic form without worrying about the bracket
condition; however in this case there is no Poisson bracket.) It is easy to
find two-dimensional examples in which the orbits of the unperturbed system
are closed curves surrounding a fixed point. The Hamiltonian perturbation has
the same orbit structure, its orbits just being perturbations of the closed
curves, whereas the solutions of the standard perturbation equations slowly
spiral iato or away from the fixed point. In higher dimensions, KAM theory
shows that "most" solutions of a small Hamiltonian perturbation of a completely
integrable system remain quasi-periodic, whereas the standard perturbation can
agaln result in spiralling behavior. At the other extreme, only Hamiltonian
perturbations of an ergodic system stand a chance of being ergodic in the right
way ag the standard perturbation will mix up the different energy levels.

Of course, both the Hamiltonian and non-Hamiltonian expansions are valid to
the same order, and hence give equally valid approximations to the short-time
behavior of the system. Based on the above observations., the Hamiltonian
perturbation appears to do a better job modelling long-time and qualitative
behavior of the system. It remains to see whether any rigorous theorem to
this effect can be proved.

3. EVOLUTICH EQUATIONS. The Hamiltonian theory of evolution equations is most
easily developed using the formal variational calculus introduced in {5], [11}.
Here we present a brief outline of the theory, including an extended discussion
of multi-vectors and the Schouten-Nijenhuis bracket, the latter being new. For
simplicity, we work in Euclidean space, with x = (x ,...,x ) EX ™ RP ana

(u yeeeyll ) €U~ RY denoting independent and dependent: variables. The
infinite jet space J_ =X X U, 1is the inverse limit of the spaces

J = XX U with coordinates (x,u(n)) = (x,...,u},...) s where u;'. represents

the pa.rt:.al derivative ? u = bJ bJ u"L , m<n , bj =b/be . Let
{

G. denote the space of smooth :unctions P(x,u‘n ) , n arbitrary, and

= AkT J, ‘the space of vertical k-forms, i.e. finite sums of the form

(n), .. "1 *x
w=Z PJ(x,u )duJ.lA... A dqu .

Vector fields are formal infinite sums
v=£ij%+2Q§—bf ,
J duy
with QJ. ,Q§ € @ . The standard formulae relating Lie derivatives, exterior
derivatives and interior products extend readily to this set-up. In particular
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k

the total derivatives D, can be viewed as vector fields, hence act on A

by Lie derivatives.

J

The space of functionals F is the quotient space of G by the image of
the total divergence, Div Q = D1Q1+ vead Dpr Q € G . The projection
G = 3F is denoted by an integral sign: [de €73 for P€G . sSimilarly, the

space of functional k-forms is /\k = A /Div(/\ } 5 with projectiocn Im dx ,
k+l

w € I\ . The deRham complex d: A - A projects to a locally exact complex
d:/\lf - Af"l + The dual space to /\. is the space T of evolutionary

vector fields

v=ad, =207 2, q= (a0
duy
uniquely characterized (except for the trivial translational fields »/ bx )
by the fact that they commute with all total derivatives. Hence they act by
Lie derivatives on A* and again the standard differential-geametric formulae
can be readily established. The exponential exp(ev) of an evolutionary
vector field can be found by solving the system of evolution equations

du _
b—c—Q

u(x,0) = u (x) ,
with flow u(x,e) = exp(ev) (u,] , in some appropriate space of functions.

The spaces of multi-vectors, dual to functional forms, are more interesting;
they are not images of the spaces /\t'r J, under any pro,jection. Part of the
problem is that there is no well-defined exterior product on /\*

Jwax A [6ax # [(wA6)dx . 1In particular, /\((A ) # A . We are interested
in multi-linear, alternating maps on A, . First, recall that every functional

one form is uniquely equivalent to one of the form
ap = [(P-du)ax = j‘(zpidul)dx s

(Just integrate by parts). Moreover » by the exactness of the d-complex on

/\1' » @ function one-form w, 1is closed: day, = O, if and only if ap = A faax)
for some functional, which means that P= E(Q) where E is the Euler
operator, or variational derivative, [11].

EXAMPLE 3.1. A functional one-vector will be determined by q-tuple of
differential operators s = (85+8.) , 8, =T Q 0’ (finite sums,

o = D, D ) with QJ €qG . Given s, consider the linear map

dyeeed
&’bu =% aibui : /\_ -3

3

given by 8-, ([(P-du)ax] = [ 8P ax=[ (£ #,P,]dx . A simple integraticon by
parts shows that 7

80, [0, =80 [w,) , w, € AL

where T4
= E('D) QJ ]
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*
so the space N of functional one-vectors can be identified with T, » the

space of evolutionary vector fields. (Note that in the above notation we are

*
regarding {a i] as the basis of A dual to the "basis" {dui} of A& )
u

DEFINITION 3.2 A functional k-vector is a finite, constant coefficient linear
combination of the basic k-vectors, defined as follows. Given differential

operators sl,...,sk s
a=8; —°m1/~-.-/~§k—°m , 1<n,<aq , (3-1)
du du K J

is defined so that for any
wy = [(P awax = [ (F Plaw)ox € AL, S=l,e..k,
we have
alw) Ao Awy) = { det[siPi']dx ,
i

the determinant being of a kXk matrix with the (i,j) - entry indicated.
EXAMPLE 3.3 Suppose q=1 . A functional two vector ig of the form

a = 3lbu A Oabu ’
with
ofay, Awy) = [(8,P 8,Q - 8,P 81Q)ax = [(PBQ)ax ,

*
where 8§ = 9192

two vector is uniquely equivalent to one of the form % bu ABD bu for &

skew-adjoint. This integration by parts argument casily generalizes to

»*
- s?sl is skew adjoint (8‘ = -8) . Thus every functional

functional k-vectors.

Once the basic definition of a runctional multi-vector has been properly
presented, the definition and properties of a Poisson structure readily adapt
to this infinite dimensional situation. In particular, the definition 2.1
of the Schouten-Nijenhuis bracket carries over with no change, as it does not
rely on the exterior derivative d . (This is the definition used by Gel'fand
and Dorfman, (5], in the special case k=4=2 , although they appear to omit
the vital assumption that the one-forms “ﬁ be closed.) Thus a skew-adjoint
differential operator § is cosymplectic if and only if the two-vector
9= bu As.bu satisfies [9,8) = O . 1In particular, if £ does not depend on
u , it is automatically cosymplectic.

EXAMPLE 3.4 Consider the KdV equation in the form

in which v denotes the variational derivative with respect to u
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H = [ %uadx, Hle.]'(%u3- 1 w?yax ,

2 X
and
3,2 1
J°=Dx , J1=Dx+3qu+3ux.

The first operator isg cosymplectic since it does not depend on u 3 the proof
that J, is cosymplectic is not difficult and can be found ian (5], [9], (11].

The only part of the theory that has not so far been adapted to this
context is the exactness result of the 6-complex in theorem 2.4. We still
have 5086 =0, and I strongly suspect that some version of this theorem ig
true, but do not have a proof. Thus in the perturbation theorem 2.6, one
cannot at present be guaranteed the existence of a vector field vy and two-
vector ?l » but in all the simple examples I have looked at, vy is easy to
find and Yl is invariably zero.

Finally, we need to discuss change of variables. For simplicity, assume
p=q=1 , but the result readily generalizes. Given a change of variables
u =F(v,vx,...) (e.g. the Miura transformation u=v2+vm for the KdV) define
the differential operator

*_OF [ O , 2 aF
Dp = v onvx+°x v,

so D; is the adjoint of the Frechet derivative of F . Then the functional
multi-vectors transform according to the basic rule
d * D

ov F du (3-2)
applied to (3.1). For example,

T eee

* »* *
bv/\ﬂbv=DFbuAsDFhu=buADl_.ﬂDF o, -
To see this, a one-form clearly transforms by

wp = J(Pluu,...)du)ax = Jte(r,D.F,...)aF)ax

= jp(g—f;dv+ g—f;dvxa,...)dx . [[D;(P)dv]dx .

From this, (3.2) follows by duality. (Often, as D; depends on v , (3.2)
is not directly useful except in conjuction with some perturbation expansion!)

L. WATER WAVES. The water wave problem means the free boundary problem of
irrotational, inviscid, incompressible, ideal fluid flow with gravity. We also
anit surface tension effects, although this is not essential - see [13]). The
model equations are for long, small amplitude, two-dimensional waves over a
shallow horizontal bottom. The basic equations, and subsequent derivation of
the KdV equation, are given in Whitham, (17, pp. 464-6), whose notation we use
here. After rescaling, the problem takes the form

-] (P?O!“P.W =0, O<y<l+an , {L.1)



244 PETER OLVER

Py = 0, y=0, (+.2)
|V¢l -0, le Se, (4.3)
1 2 1 -1 2
e+ = ao_+ = of ¢ +MN=0 (4.4)
t 2 x 2 y ’ y=1l+al
-1
M, =B @, -, - (4.5)

Here x is the horizontal and y the vertical coordinate, ®(x,y,t) the
velocity potential, 1+ oM(x,t) the surface elevation. The two small
parameters are Q= a / h , the ratio of wave amplitude to undisturbed water
depth, and B = h2 / 42 , the square of the ratio between depth and wave
length.

A. NON-HAMILTONIAN PERTURBATIONS. In Boussinesq's method, the first step is to
solve the elliptic boundary value problem (4.1-3) in terms of the potential

] =¢e(x,t) = o(x,0,t) at depth 0<6<1l , giving the series solution
o1 2 2 1 .2, 4 22 U
P=t+ 3 B(6° -y )vxx+—2h— pe(s6 -66y"+y )qm+... . (4.6)

(We will not worry about problems concerning the precise domainsg of
definition of the functions - see Lebovitz, [7].) Substituting the series
(4.6) into (4.4,5), differentiating the former with respect to x and
truncating to first order leads to the following version of the Boussinesq
system:

O=u, +M +auu + -32:5(92-1)uxxt ) (5.7)

O=TM_+u +cx(T|u)x+ %5(392 - l)um N )
in which u=ug(x,t) = cpx(x,e,t) is the horizontal velocity at depth & . The
basic system (4.7) can be modified by resubstituting, expanding and truncating
again; for instance since to leading order u, = -Tlx ; the term Ut in the

first equation can be replaced by -1 to yield a purely evolutionary

system. See Bona and Smith, (3], forx:xccmplete discussion of the
possibilities, and the companion paper [13] for the second order terms in the
expansion.

To specialize to unidirectional waves, one looks for an expansion of the
form T = u+CA+BB+ ... such that the two equations in (%.7) become the
same up to the requisite order. To first order,

cus Lau?s Lp(363-
M=u+ gau+ -6.8(39 du (4.8)
leading to the KdV equation
3 1 = k.
Boru ot 2 owm t Zpu 0, (4.9)
independent of depth 6 . Alternatively, one can express u in terms of
7 , leading to the same equation for 1 , (1.7). Again one can play the same

games as with the Boussinesq system, so, for instance, since u, =-u to
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leading order, we can replace L by e s yielding the BEM equation,
[1), whose dispersion relation offers scme advantages over the KdV model.

B. HAMILTCNIAN MCDELS. 1In Zakharov's Hemiltonian formulation of the water
wave problem, the basic varisbles are the surface elevation 7 and the
potential on the surface q:s(x,t) = o(x,1+aM(x,t),t) , the values of P
within the fluid being determined from :ps by solving the auxilliary boundary
value problem (4.1-3), cf. (2]. The Hamiltonian is the energy

- 2
He[lge6 0 ame)s 2107 Jax . (4.10)

(The S on the integral means aii terms are evaluated on the free surface
y = 1l+0M .) The water wave probelm (4.1-5) is now in canonical form

Ps..m o _om (6.12)
ot 1| ? dt 'c'xps ‘ :

First consider bidirectional Boussinesg systems. Substituting (4.6) into
(4.10), and truncating, we get the first order expansion

(1) _rpl2, 1.2, 1 2 1 2, 2
H -L[ 2Ur ETH zan s 28(2-30%)uTJax  (b.12)
for the energy. For the symplectic version of the Boussinesq system, we

expand the two form 0 = df| A &9, appropriate to (4.11), leading to

oD < an A (ay+ 2861w ) = an (0 3 8(6%-2)D Jau . (k.17)

(We omit the integral sign from O(l) for simplicity.) This yields
o]

]

1 2
ut+nx+a uu + 3 B(e 'l)uxxt R (L.13)

o]

n, + ux+a(u'n)x+ %a(ee-l)nxxt+ 5(62- % )um .
(We have differentiated both equations with respect to «x here.). Note that
the "symplectic Boussinesq” system (k.13) agrees to first order with (4.7)
after manipulations similar to those discussed earlier.

Alternatively, we can perturb the cosymplectic two-vector 9 =b_n Ab(p .

Using (4.6) again, fram (3.2) we find s
(1) _ 1 ar1-62vp3
9 =0y Alp + $8(2-6%D300 (4.1)
which is cosymplectic since the underlying operator is constant coefficient.

Thls yields the "cosymplectic Boussinesq" system

1 2 1 2y,.2
O=u, + 0 +ouu + 5 B(1-65)N__ + Za8(1-6%)(u?) (4.15)

xxx ’
bl

1 L
0=Ny+u oM, + 3a(30%2u, + Ja8(1-0%) () - T 6(36%-56%4 2)u

differing from (L.7) by the inclusion of quadratic terms. The special case
9=1 1is of special note. as remarked by Breoer M1, simpe ¢2 fivze order the
expansion (4.6) is equivalent to a canonical expansion in the variables ‘n,qps <
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the Hamiltonian systems (4.13,1h4) reduce to versions of the usual system
(4.7). The more general (9 #1) Hamiltonian Boussinesq systems are new.

As for unidirectional models, since we are still matching the two
equations to first order in the Boussinesq system, the definition (4.8) of the
submanifold of unidirectional solutions remains the same. Thus we need only
substitute (4L.8) into the energy and the (co-) symplectic form and expand to
first order. The appropriate Hamiltonian is

A - f s Fadde(f -6%p uldax (4.16)

where we have integrated one term by parts. For the cosymplectic model, note
first that from (4.8)

o)
o=t fans o - Pellyy
ef. (3.2), hence to first order
2
Tbﬂ_: (1- %au+(% - %.ez)anx)%- .
Therefore, substituting into (4.14), we find
g1 - d, A (D, -  o(uD +Du)+( % -03)Bd)d,,, (b.27)

which can be proved to be cosymplectic, [5], [9]. Combining (4.16,17) ve
find the following "cosymplectic version" of the Korteweg-de Vries equation.

ug+ o, - Latw g+ (3 -ePpnilius § s (6% - Zopul=0,
or, in detail,

3 1 1 a2(.180% 2_
u tu + 5 ouu + Z aum+_1.3' p<(-189" + 278 - 1L0)u, + (%18

53 _ 1 42 1 g2 o5 220
+ { % T 6 )aauum+( _231.‘2 7: )Oeuxuxx E% > (4]
(In deriving (4.18) we have multiplied by f - this is rigorously Jjustified

since we are restricting the system to & submanifold.)
The symplectic form, which resembles more closely the BEM equation, is
more canplicated. We find

g2 < aqu A [D;l+ %'a(un;lw;l w) + (6% - %)BDi]du ,

hence, formally,
-1 1 -1 -1 2 _ 2 2_2 _
[1)x + .!:a(\mx + Dx u) + (6 %)Dx](ut)+u+ %au + (@ 3 )Bun-o .
To convert this into a bcna-fide differential equation, recall usoxt , and
differentiate:

1 1 2. 2 2_ 2
vxt+ Ed‘qut‘* N wxx°t+ (e % )3°m+'n+ L a vx'xx"‘ (e 3 )ﬁ'm=o°
This example illustrates well the previous remarks that the symplectic
perturbation is easier to handle theoretically, but the resulting equations

are much more unpleasant.
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There are a lot of open questions concerning these models, most of which
are probably only amenable to numerical investigation. What are their

solitary-wave solutions like, and how do they interact? (Only the N-equation
(1.8) can be solved "explicitly” in terms of a hyperelliptic integral.) How
do the solutions compare with those of the K4V or BEM equation? In particular,
do they give any truer indication of the qualitative or long time behavior of
water waves? Does the dependence of (4.18) on the depth 6 have any relevance
to the breaking of water waves, in that solitary waves of the same amplitude
may move a different speeds at different depths, thereby setting up some kind
of chearing instability? (See also [13].) All those questions must await
further research.

5. COMPLETE INTEGRABILITY. We now turn to the question of why the KdV equation
happens to be Hamiltonian. Returning to the general set-up, as summarized in
(1.4,5), we see that one possibility for (1.5) to be Hemiltonian is if the
first order terms are multiples of each other:

J,VH =09 Jole . (5.1)

1
This of course cannot be expected in general, but if it does happen, the
situation can be handled by the theorem of Magri on complete integrability of
bi-Hamiltonian systems, [9], [5].

THEOREM 5.1 Suppose a system X = Kl(x) can be written in Hamiltonian form in
two distinct ways: Kl = JOVHl = J]_VHO - Assume also that the two Hamiltonian
structures are compatible, meaning that J oth Jl is cosymplectic for all
constant & . Then the recursion relation Ky = IV, = JyVH,_y defines an
infinite sequence of commuting bi-Hamiltonian flows % = K n(x) s with mutually
conserved Hamiltonians Hn(x) in involution (with respect to either the J °

or J, Poisson bracket). (One also needs to assure that Jo 1in the

recursion relation always invertible, but this usually holds.)

Thus, in this special case, both the noncanonical perturbation equation
(1.5) and the cosymplectic version (1.6) are linear combinations of the
completely integrable flows K, ¥ » K, , and hence, provided "enocugh” of the
Hamiltonians Hn are independent, are both completely integrable Hamiltonian
systems.

For the water wave expansion, in the Korteweg-de Vries model the 0O(e,B)-
terms are in the right ratio only at the "magic" depth 6 =/Wl_2 , and for
this depth (4.18) is a linear combira tion of a fifth, third and first order
KdV equation. For more general 6 , one must fudge the condition (5.1) slightly
to obtain complete integrability.

Neverthele.ss, this leads to an intriguing speculation. Does condition

(5.1) often hold in the perturbational derivation of model equations from cone
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servative physical systems? If true, it would provide a good explanation of
the common feature of many systems that in the zeroth order perturbation one
has linear equations, and in the first order perturbation the equations are
nonlinear, but campletely integrable soliton equations. Presumably the
second order expansion leads to nonintegrable models with same chaotic com-
ponents. A good place to check this is in Zakharov's derivation of the non-
linear Schrodinger equation as the modulational equation for periodic water
waves, (18].
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