Contemporary Mathematics
Volume 28, 1984
haMIITONIAN PERTURBATIOM THEORY AND WATER WAVES

Peter Olver ${ }^{1}$

Abstract

A general theory of noncanonical pertiurbations of Hamiltonian systems, both finite dimensional and continuous, is proposed. The results determine a general formula for the deformation of a Poisson structure on a manifold. The theory is applied to the Boussinesq expansion for the free boundary problem for water waves, which leads to the Korteweg-de Vries equation. New Hemiltonian model equations for both uni- and bi-directional propagation of long waves in shallow water are found. An explanation of the complete integrability (soliton property) of the KdV equation, as a consequence of the expansion, is determined.

1. INTRODUCTION. In 1895 Korteweg and deVries first derived their celebrated equation as a model for the unidirectional propagation of long waves in shallow water. Their method proceeded by first applying the perturbation expansion introduced by Boussinesq, and then restricting the resulting bidirectional Boussinesq system to a "submanifold" of approximately unidirectional waves. Hamiltonian methods entered the subject when Zakharov found the Hamiltonian form of the water wave problem. Subsequently, the Kortewegde Vrics equation was shown to be Hamiltonian, in fact in two distinct ways.

In earlier work with Benjamin, [2], [12], symmetry group techniques used in conjunction with Zakharov's Hamiltonian structure proved that the twodimensional water wave problem without surface tension has precisely eight nontrivial conservation laws. The present work arose in an ongoing investigation as to how these laws behave under the perturbation expansion leading to the KdV equation. This project came to a temporary halt, however, with the surprising discovery that the Hamilitonian structures of these two equations do not match up in any natural way. Indeed, this is first evidenced by the fact that almost all versions of the Boussinesq system, which is the essential halfway point in the derivation, are not Hamiltonian, in particular do not conserve energy. Even more striking is the elementary, but apparently unnoticed observation that the perturbation expansion of the energy for the water wave

[^0]problem does not agree to the requisite order with either of the Hamiltonians for the KdV equation. Alternative models such as ine BEM or Regularised Long Wave equation, [1], suffer from the same probiem.

In order to better understand this state of afiairs, a general theory of noncanonical perturbation expansions of Hamiltonian systems must be developed. In outline, the theory proceeds as follows. Consider a Hamiltonian system

$$
\begin{equation*}
\dot{\dot{x}}=J(x, \epsilon) \nabla H(x, c) \tag{1.1}
\end{equation*}
$$

in which c is a small parameter, $H(x, \varepsilon)$ is the fimiltonian function and $J(x, \varepsilon)$ the skew-adjoint Hamiltonian (or cosymplec:ic) operator. Since the operator J appears in the cosymplectic two-vector $\theta=\frac{i}{2} \partial_{x}^{T} \wedge J \partial_{x}$, defining a Poisson structure, we call (1.1) the cosymplectic form of Hamilton's equations, to be distinguished from the symplectic form

$$
\begin{equation*}
K(x, \varepsilon) \dot{x}=\nabla H(x, c), \tag{1.2}
\end{equation*}
$$

corresponding to the symplectic two-form $\Omega=-\frac{1}{2} d x^{T} \wedge K d x, K=J^{-1}$. (At first sight, this distinction appears trivial, but the two forms lead to very different types of perturbation equations.)

Consider a perturbation expansion

$$
\begin{equation*}
x=y+c \oplus(y)+\ldots \tag{1.3}
\end{equation*}
$$

In standard perturbation theory, one substitutes (1.3) into (1.1) or (1.2), expands in powers of ε and truncates to some required order. The resulting system, as simple examples easily show, is not in generai Hamiltonian. In orier to preserve the Hamiltcnian structure we must expand both the Hamiltonian

$$
H(x, \varepsilon)=H_{0}(y)+\varepsilon H_{1}(y)+\varepsilon^{2} H_{2}(y)+\ldots
$$

and the sosymplectic operator

$$
J(x, \varepsilon)+J_{0}(y)+\varepsilon J_{1}(y)+\epsilon^{2} J_{2}(y)+\ldots
$$

and truncate at the required order. (We ignore for the moment the additional complication that the truncated series for J is not in general a true cosymplectic operator - see section $2 B$.$) To first order.$

$$
\begin{align*}
\dot{y} & =\left(J_{0}(y)+\epsilon J_{1}(y)\right)\left(\nabla H_{0}(y)+\epsilon \nabla H_{1}(y)\right) \\
& =J_{0} \nabla H_{0}+\epsilon\left(J_{2} \nabla H_{0}+J_{0} \nabla H_{1}\right)+\epsilon{ }^{2} J_{1} \nabla H_{1}, \tag{1.4}
\end{align*}
$$

called the cosymplectic perturtation of (1.1). It agrees with the ordinary perturbation expansion

$$
\begin{equation*}
\dot{y}=J_{0} \nabla H_{0}+\varepsilon\left(J_{2} \nabla H_{0}+J_{0} \nabla H_{1}\right) \tag{1.5}
\end{equation*}
$$

to first order but includes same additional terms in ε^{2} so as to maintain the Hamiltonian structure. ivte that (1.4) is not the second order ordinary
perturbation of (1.1) - this would include the terms $e^{2}\left(J_{0} \nabla H_{2}+J_{2} \nabla H_{0}\right)$, which would again destroy the Hamiltonian form of the system. The symplectic perturbation proceeds along the same lines, leading to

$$
\begin{equation*}
\left(K_{0}(y)+\varepsilon K_{1}(y)\right) \dot{y}=\nabla H_{0}(y)+e \nabla H_{1}(y), \tag{1.6}
\end{equation*}
$$

which is always Hamiltonian. For evolution equations, as the examples in section 4 bear out, the cosymplectic form is usualiy the more desirable because in (1.6) the symplectic operator, which may very well be nonlinear, is applied to temporal derivatives of y.

This Hamiltonian perturbation theory falls between the two main schools of perturbation theory - on the one hand standard perturbation methods, [6], pay no regard to any Haailitonian structure in the systems under investigation, whereas in classical and celestial mechanics, [15], all perturbations are canonical and the problems discussed here never arise. Nevertheless, the present theory should prove to be of importance in a wide range of physical applications in which the perturbations are more or less prescribed, but one still wishes to maintain some form of Hamiltonian structure.

In the water wave problem, there are two small parameters α and β but the expansions take the same form. If (1.1) represents the original free boundary problew, then the non-Hamiltonian Boussinesq systems are of the form (1.5). To make these Hamiltonian, we must add certain quadratic terms in $\alpha^{2}, \alpha \beta, \beta^{2}$, as in (1.4); see (4.15) for the resulting system. Similar remarks apply to the subsequent derivative of the KdV equation (coming from the cosymplectic form of the expansion) or the BEM equation (coming from the symplectic form). In terms of the surface elevation $\eta(x, t)$, the nonHamiltonian perturbation equation (1.5) is the familiar KdV equation

$$
\begin{equation*}
\eta_{t}+\pi_{x}+\frac{3}{2} \alpha \pi \pi_{x}+\frac{1}{6} \beta \eta_{x x x}=0 \tag{1.7}
\end{equation*}
$$

To retain the correct Hamiltonian structure according to the general theory, one mustinclude quadratic terms as in (1.4), leading to the "Hamiltonian version" of the KdV equation

$$
\begin{equation*}
\eta_{t}+\eta_{x}+\frac{3}{2} \alpha \eta_{x}+\frac{1}{6} \beta \eta_{x x x}+\frac{1}{16} 2 \beta\left(\eta^{2}\right)_{x x x}+\frac{15}{32} \alpha^{2} \eta^{2} \eta_{x}=0 \tag{1.8}
\end{equation*}
$$

This model has Hamiltonian functional

$$
\begin{equation*}
H[\eta]=\int_{-\infty}^{\infty}\left(\frac{1}{2} \eta^{2}+\frac{1}{8} \alpha \eta^{3}\right) d x, \tag{1.9}
\end{equation*}
$$

which is the correct first order expansion of the energy (Hamiltonian) of the water wave problem, and cosymplectic operator

$$
\begin{equation*}
J=-\left[D_{x}+\frac{1}{4} \alpha\left(\eta D_{x}+D_{x} \eta\right)+\frac{1}{6} \beta D_{x}^{3}\right] \tag{1.10}
\end{equation*}
$$

Note that (1.9) does not agree with either of the usual Hamiltonians for the $K d V$ equation. (Segur, [14], gives a completely different derivation of the

KdV equation using two time scales. His expansion of the energy leads to a linear combination of the two KdV Hamiltonians. It remains to be seen how the two methods can be reconciled.)

There remains the question of why, in spite of the general theory, the KdV equation is Homiltonian. \because ite that the operator (1.10) appearing in the Hamiltonian perturbation rese:-: a linear combination of the two cosymplectic operators for the KdV equation. Under special circumstances, the nonHamiltonian perturbation (1.5) can inherit two compatible Hamiltonian structures (corresponding to J_{0} and J_{1}), and hence, by a theorem of Magri, [9], is automatically completely integrable. This may offer an explanation for the remarkaile fact that cmpletely integrable Hamiltonian systems (soliton equations) such as the KdV, sine-Gordon, and nonlinear Schrodinger equations appear so often as model equations in the perturbation expansions to a wide variety of physical systems.

I wish to thank T. Brooke Benjamin and Jerry Bona for valuable cowments on the results, and Jerry Marsden for organizing a superb conference.
2. FINITE DIMENSIONAL HAMILTONIAN FERTURBATION THEORY. The aim is to set up a Hamiltonian perturbation theory for evolution equations, but to keep things simple we begin with the finite dimensional case. One lesson gleaned from the evolutionary case is that one should not rely on the existence of Darboux coordinates in general, so we take a Hamiltonian structure to be defined by either a symplectic two-form, or, more generally, a cosymplectic two-vector field a la Lichnerowicz. To perturb the Hamiltonian structure, it then suffices to perturb either the symplectic form (which is straight forward) or the cosymplectic two-vector (which is less so); in fact, the correct form of the perturbation of the cosymplectic two-vector requires the full theory of Poisson manifolds, which we develop in a form amenable to be inmediately generalized to the infinite-dimensional case or evolution equations.
A. POISSON STRUCTURES. In the usual theory, Hamiltonian mechanics takes place on a manifold M equipped with a symplectic two-form Ω. One immediate complication is that in local (non-Darboux) coordinates, if

$$
\Omega=-\frac{i}{2} d x^{T} \wedge K(x) d x=-\frac{1}{2} \Sigma K_{i j} d x_{i} \wedge d x_{j},
$$

then both Hamilton's equations

$$
\begin{equation*}
\dot{x}=J \nabla H(x), \tag{2.1}
\end{equation*}
$$

and the Poisson bracket

$$
\{F, G\}=\nabla \mathrm{F}_{\mathrm{J}} \nabla \mathrm{GG},
$$

require the inverse $J=K^{-1}$ of the matrix appearing in Ω. In the infinitedimensional version, J is a differential operator, so trying to use the
symplectic form usually introduces unnecessary complications.
These can be avoided by introducing a Poisson structure, as detailed in the paper by Weinstein in these proceedings. For our Furposes, however, it is expedient to adopt the viewpoint of Lichnerowicz, [8], and regard the cosymplectic two-vector field

$$
\begin{equation*}
\theta=\frac{1}{2} \partial_{x}^{T} \wedge J(x) \partial_{x}=\frac{1}{2} \sum J_{i j} \frac{\partial}{\partial x_{i}} \wedge \frac{\partial}{\partial x_{j}} \tag{2.2}
\end{equation*}
$$

as the fundamental object determing a Poisson structure, rather than the Poisson bracket, which is easily reccuered from θ :

$$
\{F, G]=\langle d F \wedge d G, \theta\rangle
$$

The requirement that the Poisson bracket satisfy the Jacobi identity translates into a system of nonlinear differential equations for the coefficients $J_{i j}(x)$ of 9 . These are most easily expressed using the Schouten-Nijenhuis bracket.

We begin by describing a new invariant definition of this important bracket between multi-vector fields which will readily generalize to the case of evolution equations. A k-vector field is a section of $\hat{K}^{T M}$, the bundie of contravariant alternating k-tensors. Note that if α is a k-vector field and ω a differential ($k-1$)-form, then the interior product $v=\omega+\alpha$ is an ordinary vector f\&ld. Thus $v(\theta)=(\omega\lrcorner \alpha) \theta$, will denote the Lie derivative of another differential form θ with respect to this vector field. DEFINITION 2.1 Let α be a k-vector field and β an ℓ-vector field. The Schouten-Ni,jenhuis bracket $[\alpha, \beta]$ is the following uniquely determined ($k+\ell-1$)-vector field: For every $k+\ell-1$ closed differential one-forms $u_{1}, \ldots, \mu_{k+\ell-1}$,

$$
\begin{align*}
\left\langle[\alpha, \beta], \omega_{1} \wedge \ldots \wedge \omega_{k+l-1}\right\rangle & \left.=\frac{\left(-1 j^{k \ell+l}\right.}{l} \sum_{I} \operatorname{sign} I\left\langle\alpha,\left(\omega_{I}\right\lrcorner \beta\right) \omega_{I^{\prime}}\right\rangle \\
& \left.\left.+\frac{(-1)^{k}}{k} \sum_{J} \operatorname{sign} J\left(\beta,\left(\omega_{J}\right\lrcorner \alpha\right) \omega_{J}\right\rangle\right) \tag{2.4}
\end{align*}
$$

In this formula, the first sum is over all multi-indices $I=\left(i_{2}, \ldots, i_{\ell-1}\right)$, $1 \leq i_{1}<\ldots<i_{\ell-1} \leq k+\ell-1$, with complement $I^{\prime}=\left(i_{1}, \ldots, i_{k}^{\prime}\right)$ such that $1 \leq i_{i}<\ldots<i_{k}^{\prime} \leq k+\ell-1$ and $\left(i_{1}, \ldots, i_{\ell-1}, i_{j}^{\prime}, \ldots, i_{k}^{\prime}\right)=\pi(l, \ldots, k+\ell-1)$ for some permutation π, and $\operatorname{sign} I \equiv \operatorname{sign} \pi \cdot$ similarly, the second sum is over all $J=\left(j_{1}, \ldots, j_{k-1}\right), 1 \leq j_{1}<\ldots<j_{k-1} \leq k+\ell-1$ with J^{\prime}, sign J defined similarly.

In the special case $k=1$, so $\alpha=v$ is an ordinary vector field, (2.4) still holds with the understanding that in the second summation there is one term, corresponding to $I=\varnothing, \omega_{I}=I$ (constant). It is easily seen that in this case the Schouten-Nijenhuis bracket $[v, \beta]$ is just the Lie derivative of B with respect to v. Checking that definition 2.1 agrees with both that of Nijenhuis, [10], and the invariant definition favored by Lichnerowicz, [8], is a useful exercise. We have chosen this definition because it appears to be
the only one that readily eneralizes to the infir: -e dimensional formulation needed to treat evolution equations.

Let $\alpha, \tilde{\alpha}$ be k-vector fields, B an ℓ-vector field and γ an m-vector fleld. The basic properties of the bracket follow from (2.4):
a) Bilinearity

$$
\begin{equation*}
[c \alpha+\widetilde{c} \alpha, \beta]=c[\alpha, \beta]+\tilde{c}[\tilde{\alpha}, \tilde{\beta}], c, \tilde{c} \in \mathbb{R}, \tag{2.5}
\end{equation*}
$$

b) Super-symmetry

$$
\begin{equation*}
[\alpha, \beta]=(-1)^{k \ell \ell}[\beta, \alpha], \tag{2.6}
\end{equation*}
$$

c) Jacobi identity

$$
(-1)^{k m}[[\alpha, \beta], \gamma]+(-1)^{\ell m}[[\gamma, \alpha], \beta]+(-1)^{k \ell}[[\beta, \gamma], \alpha]=0, \quad(2.7)
$$

d) Pseudo-derivation

$$
\begin{equation*}
[\alpha, \beta \wedge \gamma]=[\alpha, \beta] \wedge \gamma+(-1)^{l m+m} \beta \wedge[\alpha, \gamma] \tag{2.8}
\end{equation*}
$$

These properties, especially (2.8) which does not appear to be as well know, are vital for determining the local coordinate formulae for this bracket. DEFINITION 2.2 A two-vector field θ is cosymplectic if

$$
\begin{equation*}
[\theta, \theta]=0 . \tag{2.9}
\end{equation*}
$$

A cosymplectic two-vector © determines a Poisson structure on M in the sense of Weinstein, [16], via (2.3) and conversely. For a Hamiltonian function $H: M \rightarrow R$, the associated Hamiltonian vector field is

$$
\begin{equation*}
\left.v_{H}=F_{3}(d H) \equiv d H\right\lrcorner \theta, \tag{2.10}
\end{equation*}
$$

with flow given by (2.1) in local coordinates.
THEOREM 2.3 Let θ heve constant rank $2 \mathrm{~m} \leq \mathrm{n}$. Then there is a foliation of M with $2 m$-dimensional leaves so that on each leaf $L,\left.\left.0\right|_{x} \in \wedge_{2} T L\right|_{x}$ and is of maximal rank for each xel. Thus 0 defines a symplectic structure on L. Each leaf is invariant under the flow of any hamiltonian vector field on il, in fact

$$
\left.T L\right|_{x}=F_{9}\left(\left.T^{*} M\right|_{x}\right)
$$

for any $x \in L \subset M$.
See Lichnerowicz, [8], for a proor and Weinstein, [16], for a discussion of the non-constant rank case. The cosymplectic two-vector θ sets up a complex

$$
\delta_{9}=\delta: \wedge_{k}^{T M}-\lambda_{k+1} 1^{T M}
$$

with $\delta(\alpha)=[9, \alpha]$. The condition (2.9) implies, using the Jacobi identity (2.7), that the complex is closed: $\delta 0 \delta=0$. However, unless θ is of maximal rank, this complex is not locally exact.
THEOREM 2.4 Let Θ be cosymplectic, of constanc rank. Let α be a k-vector field on M. Then $[\theta, \alpha]=0$ if and only if in any coordinate cube the given coordinates, is constant on the leaves of the symplectic foliation induced by ϑ. (α_{0} will in general depend on the choice of local coordinates.)

The proof of this result, as well as a discussion of the global conomology, can be found in Lichnerowicz, [8].
B. PERTURBATION THEORY.

We now consider perturbation theory for a system of ordinary differential equations in Hamiltonian form. Throughout this section e will be a amall parameter, and we allow the possibility of both the Hamiltonian and the cosymplectic form depending on ε. The basic system is

$$
\begin{equation*}
\dot{x}=J(x, \varepsilon) \nabla H(x, \varepsilon)=F(x, \varepsilon) . \tag{2.11}
\end{equation*}
$$

Given a perturbation expansion

$$
\begin{equation*}
x=y+\varepsilon \varphi(y)+\varepsilon^{2} \varphi(y)+\ldots, \tag{2.12}
\end{equation*}
$$

following standard perturbation methods, we substitute (2.12) into (2.11) and expand the series in ε to first order:

$$
\begin{equation*}
(1+\varepsilon \nabla \varphi) \dot{y}=F_{0}(y)+\varepsilon F_{1}(y) \tag{2.13}
\end{equation*}
$$

Here F_{0}, F_{1} can easily be evaluated from (2.11) using the chain rule:

$$
F_{0}(y)=F(y, 0)=J_{0}(y) \nabla H_{0}(y), F_{1}(y)=F_{e}(y, 0)+\nabla F(y, 0) \varphi(y)
$$

We can also invert $1+\epsilon \nabla \varphi$ in (2.13) to obtain the alternative system

$$
\begin{equation*}
\dot{y}=F_{0}(y)+e \bar{F}_{1}(y) \tag{2.14}
\end{equation*}
$$

where $\tilde{F}_{1}=F_{1}-\nabla \varphi \cdot F_{0}$. Unless the expansion (2.12) happens to be canonical, neither (2.13) nor (2.14) will be in general Hamiltonian. If we expand the Hamiltonian

$$
\begin{equation*}
H(x, \varepsilon)=H_{0}(y)+\varepsilon H_{1}(y)+\varepsilon^{2} H_{2}(y)+\ldots, \tag{2.15}
\end{equation*}
$$

we find that the first order truncation $H_{o}+\varepsilon H_{1}$ is not in general a constant of the motion.

In order to maintain some form of Hamiltonian structure under perturbation, we must investigate how the symplectic or cosymplectic forms themselves are being perturbed. First we look at the easier case when the system is in symplectic form

$$
K(x, \varepsilon) \dot{x}=\nabla H(x, e)
$$

The symplectic two-form has the perturbation expansion

$$
\begin{equation*}
\Omega(x, \varepsilon)=\Omega_{0}(y)+\varepsilon \Omega_{2}(y)+e \hat{\varepsilon}^{\Omega_{2}}(y)+\ldots, \tag{2.16}
\end{equation*}
$$

or, in coordinates,

$$
-\frac{1}{2} d x^{T} \wedge K(x, \varepsilon) d x=-\frac{1}{\frac{e}{2}} d y^{T} \wedge\left(K_{0}(y)+\varepsilon K_{1}(y)+\ldots\right) d y,
$$

using (2.12). Since the closure condition $d \Omega=0$ for a symplectic two form is linear, we can truncate the expansion (2.16) at any orier and (provided ϵ is sufficiently small to ensure nondegeneracy) be assured the truncated form, $\Omega_{0}+\varepsilon \Omega_{1}$ say, remains symplectic. This, together with (2.15), yields the first order symplectic perturiarion

$$
\begin{equation*}
\left(K_{0}(y)+\varepsilon K_{1}(y)\right) \dot{y}=\nabla H_{0}(y)+c \nabla H_{1}(y), \tag{2.17}
\end{equation*}
$$

which is a Hamiltonian system. :Sote that (2.17) is not the same as (2.13) or (2.14), but does agree with them up to terms of first order in c.

This is tecause to lowest order $\dot{y}=F_{0}(y)+U(\varepsilon)$, so whenever we see a term like $\epsilon \dot{y}$ we can replace it by $\varepsilon F_{0}(y)$ and still maintain first order agreement. : iote also that it is not permissible to invert $K_{0}+\varepsilon K_{2}$ in (2.17) and truncate and expect to have a Hamiltonian system.

As for the cosymplectic form (2.11), we can similarly expand the two-vector field

$$
\begin{equation*}
\theta(x, \varepsilon)=\vartheta_{0}(y)+\varepsilon \theta_{1}(y)+\varepsilon^{2} \vartheta_{2}(y)+\ldots, \tag{2.18}
\end{equation*}
$$

or

$$
\frac{1}{2} \partial_{X}^{T} \wedge J(x, \varepsilon) \partial_{X}=\frac{1}{2} \partial_{Y}^{T} \wedge\left(J_{0}(y)+\varepsilon J_{1}(y)+\varepsilon^{2} J_{2}(y)+\ldots\right) \partial_{y}
$$

However, owing to the basic nonlinearity of the cosymplectic condition (2.9) one cannot expect in general to be able to truncate the series (2.18) and have the resulting two-vector field be cosymplectic. Thus the first order perturbation

$$
\begin{align*}
\dot{y} & =\left(J_{0}(y)+\varepsilon J_{1}(y)\right)\left(\nabla H_{0}(y)+\varepsilon \nabla H_{1}(y)\right) \tag{2.19}\\
& =J_{0} \nabla H_{0}+\varepsilon\left(J_{1} \nabla H_{0}+J_{0} \nabla H_{1}\right)+\varepsilon \varepsilon^{2} J_{1} \nabla H_{1}
\end{align*}
$$

will not in general be Hamiltonian. However, since $J_{0}+\epsilon J_{1}$ is still skewsymmetric, the perturbed hamiltonian $H_{0}+\epsilon H_{1}$ cill always be a constant of the motion of (2.19).
LEMA 2.5 The perturbed two-vector $\rho_{0}+\varepsilon \vartheta_{1}:=$ cosjmplectic if and only if Θ_{1} itself is:

$$
\begin{equation*}
\left[\Theta_{I}, \theta_{I}\right]=0 . \tag{2.20}
\end{equation*}
$$

PROOF.
The full series (2.18) is certainly cosymplectic. (Indeed, the perturbation expansion (2.12) is in essence just a change of coordinates.) Expanding (2.9) in powers of c, and using ($2.5,6$), we find the infinite series of relations

$$
\begin{equation*}
\left[\vartheta_{0}, \vartheta_{0}\right]=0, \varepsilon\left[\vartheta_{0}, \varepsilon_{1}\right]=0, \varepsilon\left[\vartheta_{0}, \xi_{2}\right]+\left[\varepsilon_{1}, \vartheta_{1}\right]=0, \ldots, \tag{2.21}
\end{equation*}
$$

resulting from the fact that (2.18) is cosymplectic for all e. On the other hand, the conditions that $\vartheta_{0}+\varepsilon \Theta_{1}$ be cosymplectic are the first two of (2.21), which are automatically :ulfilled, plus (2.20). This proves the
lemma. (Note, by (2.21) we can replace (2.20) by $\left[\theta_{0}, \theta_{2}\right]=0$.)
More generally, if (2.20) fails to hold, yet we still wish to retain the Hamiltonian property of the perturbation, we are required to include certain higher order terms in c in the cosymplectic two-vector agreeing with (2.15) to first order, i.e. of the form

$$
\theta_{0}+\varepsilon \theta_{1}+\varepsilon \text { 苟 } \tilde{2}_{2}+\ldots
$$

To accomplish this, we simplify matters by working locally to avoid global integrability conditions.
THEOREM 2.6 Let $\theta_{0, \theta_{1}}$ be two-vector fields satisfying (2.21) for some θ_{2}. Then there exists a vector field v_{1} and a two-vector field ${ }_{1}$ constant on the leaves of the foliation induced by θ_{0} such that

$$
\begin{equation*}
\theta_{1}=\left[v_{1}, \theta_{0}\right]+\psi_{1} \tag{2.22}
\end{equation*}
$$

Moreover, the two-vector field

$$
\begin{equation*}
\Theta^{*}=\exp \left(\varepsilon v_{1}\right)_{*}\left(\Theta_{0}+e Y_{1}\right) \tag{2.23}
\end{equation*}
$$

is cosymplectic, with expansion

$$
\begin{equation*}
\theta^{*}=\theta_{0}+\varepsilon \theta_{1}+o\left(e^{2}\right) \tag{2.24}
\end{equation*}
$$

PROOF
The existence of v_{1}, \bar{Y}_{2} follows directly from theorem 2.1. In (2.23) the * refers to the action of the one-parameter (local) group of diffeomorphisms $\exp \left(\varepsilon v_{1}\right)$ on the space of two-vector fields. Since the Schouten- Nijenhuis bracket is invariant under diffeomorphisms it suffices to check that $\theta_{0}+\varepsilon Y_{1}$ is cosymplectic. Clearly $\left[\theta_{0}, Y_{1}\right]=0$, so we need only check that $\left[{ }_{Y}, Y_{1}\right]=0$. Using the Jacobi identity (2.7), and the third equation in (2.21),

$$
\begin{aligned}
-2\left[\theta_{0}, \theta_{2}\right] & =\left[\theta_{1}, \theta_{1}\right] \\
& =\left[\left[v_{1}, \theta_{0}\right],\left[v_{1}, \theta_{0}\right]\right]+2\left[\left[v_{1}, \theta_{0}\right], \Psi_{1}\right]+\left[\Psi_{1}, \psi_{1}\right] \\
& =\left[\varepsilon_{0},-\left[v_{1},\left[v_{1}, \theta_{0}\right]\right]-2\left[v_{1}, Y_{1}\right]\right]+\left[Y_{1}, Y_{1}\right]
\end{aligned}
$$

Therefore

$$
\left[Y_{1}, Y_{1}\right]=\left[\otimes_{0}, \Gamma\right]
$$

for some well defined Γ. But since Y_{1} is constant on the leaves induced by ${ }_{0}$ o, this latter identity is impossible unless both sides vanish. Finally, to establish (2.24) we need only notice that

$$
\exp \left(\varepsilon v_{1}\right)_{*}(\alpha)=\alpha+e\left[v_{1}, \alpha\right]+o\left(e^{2}\right)
$$

for any k-vector fifld α, using the identification of the bracket with the Lie derivative in this case.
C. SOME QUALITATIVE CCMPA:. S SONS. What are some of the advantages of the Hamiltonian theory over standard perturbation methods? The most important is certainly that the Hamiltonian perturbation equations conserves energy, whereas the stanciard perturbation equation does not in general. (This is also true when one truncates the cosymplectic form without worrying about the bracket condition; however in this case there is no Poisson bracket.) It is easy to find two-dimensional examples in which the orbits of the unperturbed system are closed curves surrounding a fixed point. The Hamiltonian perturbation has the same orbit structure, its orbits just being perturbations of the closed curves, whereas the solutions of the standard perturbation equations slowly spiral into or away from the fixed point. In higher dimensions, KAM theory shows that "most" solutions of a small Hamiltonian perturbation of a completely integrable system remain quasi-periodic, whereas the standard perturbation can again result in spiralling behavior. At the other extreme, only Hamiltonian perturbations of an ergodic system stand a chance of being ergodic in the right way as the standard perturbation will mix up the different energy levels. Of course, both the Hamiltonian and non-Hamiltonian expansions are valid to the same order, and hence give equally valid approximations to the short-time behavior of the system. Based on the above observations, the Hamiltonian perturbation appears to do a better job modelling long-time and qualitative behavior of the system. It remains to see whether any rigorous theorem to this effect can be proved.
3. EVOLUTICA EQUATIONS. The Hamiltonian theory of evolution equations is most easily developed using the formal variational calculus introduced in [5], [11]. Here we present a brief outline of the theory, including an extended discussion of multi-vectors and the Schouten-Nijenhuis bracket, the latter being new. For simplicity, we work in Euclideen space, with $x=\left(x_{1}, \ldots, x_{p}\right) \in X \approx \mathbb{R}^{p}$ and $u=\left(u^{l}, \ldots, u^{q}\right) \in U \approx \mathbb{R}^{q}$ denoting independent and dependent variables. The infinite jet space $J_{\infty}=X \times U_{\infty}$ is the inverse limit of the spaces $J_{n}=X \times U_{n}$ with coordinates $\left(x, u^{(n)}\right)=\left(x, \ldots, u_{J}^{i}, \ldots\right)$, where u_{J}^{i} represents the partial derivative $\partial_{j} u^{i}=\partial_{j_{1}} \ldots \partial_{j} u^{i}, m \leq n, \partial_{j}=\partial / \partial x_{j}$. Let a denote the space of smooth runctions ${ }^{\prime} P\left(x, u^{(n)}\right), n$ arbitrary, and $\Lambda^{k}=\Lambda^{k} T^{*} J_{\infty}$ the space of vertical k-forms, i.e. finite sums of the form

$$
\omega=\Sigma P_{f}\left(x, u^{(n)}\right) d u_{J_{1}}^{i_{1}} \wedge \ldots \wedge d u_{J_{k}}^{i_{k}}
$$

Vector fields are formal infinite sums

$$
v=\Sigma Q_{j} \frac{\lambda}{\partial x_{j}}+\Sigma Q_{J}^{i} \frac{\partial}{\partial u_{J}^{i}}
$$

with $Q_{j}, Q_{J}^{i} \in G$. The standard formulae relating Lie derivatives, exterior derivatives and interior products extend readily to this set-up. In particular
the total derivatives D_{j} can be viewed as vector fields, hence act on Λ^{k} by Lie derivatives.

The space of functionals \bar{J} is the quotient space of \mathbb{Q} by the image of the total divergence, Div $Q=D_{1} Q_{1}+\cdots+D_{p} Q_{p}, Q_{y} \in Q$. The projection $G \rightarrow \mathbf{F}$ is denoted by an integral sign: $\int P d x \in \underset{F}{f}$ for $P \in G . \quad$ Similarly, the space of functional k-forms is $\Lambda_{*}^{k}=\Lambda^{k} / \operatorname{Div}\left(\Lambda^{k}\right)$, with projection $\int \omega d x$, $\omega \in \Lambda^{k}$. The deRham complex $d: \Lambda^{k} \rightarrow \Lambda^{k+1}$ projects to a locally exact complex $\mathrm{d}: \Lambda_{*}^{k} \rightarrow \Lambda_{*}^{k+1}$. The dual space to Λ_{*}^{1} is the space T_{0} of evolutionary vector fields

$$
v=Q \cdot \partial_{u}=\Sigma D_{Q_{1}} \frac{\partial}{\partial u_{J}^{i}}, Q=\left(Q_{1}, \ldots, Q_{Q}\right),
$$

uniquely characterized (except for the trivial translational fields $\lambda / \partial x_{j}$) by the fact that they commute with all total derivatives. Hence they act by Lie derivatives on Λ_{*}^{k}, and again the standard differential-gecmetric formulae can be readily established. The exponential exp(cv) of an evolutionary vector field can be found by solving the system of evolution equations

$$
\frac{\partial u}{\partial \varepsilon}=Q \quad u(x, 0)=u_{0}(x),
$$

with flow $u(x, \varepsilon)=\exp (e v)\left[u_{0}\right]$, in some appropriate space of functions.
The spaces of multi-vectors, dual to functional forms, are more interesting; they are not images of the spaces $\wedge_{k} T J_{\infty}$ under any projection! Part of the problem is that there is no well-defined exterior product on Λ_{*}^{k} : $\int \omega \mathrm{d} x \wedge \int \theta \mathrm{~d} x \neq \int(\omega \wedge \theta) \mathrm{dx}$. In particular, $\wedge_{k}\left(\wedge_{*}^{1}\right) \neq \Lambda_{*}^{k}$. We are interested in multi-linear, alternating maps on Λ_{*}^{1}. First, recall that every functional one form is uniquely equivalent to one of the form

$$
\omega_{P}=\int(P \cdot d u) d x=\int\left(\Sigma P_{i} d u^{i}\right) d x,
$$

(just integrate by parts). Moreover, by the exactness of the d-complex on Λ_{*}^{1}, a function one-form ω_{P} is closed: $d_{P}=0$, if and only if $\omega_{P}=d\left(\int Q d x\right)$ for some functional, which means that $P=E(Q)$ where E is the Euler operator, or variational derivative, [1]].
EXAMPLE 3.1. A functional one-vector will be determined by q-tuple of differential operators $\theta_{i}=\left(\theta_{1}, \ldots, \theta_{q}\right), \theta_{i}=\Sigma Q_{J}^{i} D^{J}$ (finite sums, $D^{J}=D_{j_{1}} \ldots D_{j_{m}}$) with $Q_{J}^{i} \in Q$. Given θ, consider the linear map

$$
\theta \cdot \theta_{u}=\Sigma \theta_{i} \partial_{u^{1}}: N_{*}^{\perp}-3
$$

given by $0 \cdot d_{u}\left[\int(P \cdot d u) d x\right]=\int D P d x=\int\left[\Sigma Q_{i} P_{i}\right] d x$. A simple integration by parts shows that

$$
\theta \cdot \delta_{u}\left[\omega_{*}\right]=\tilde{Q} \cdot \partial_{u}\left[\omega_{*}\right], \omega_{*} \in \Lambda_{*}^{l}
$$

where

$$
\bar{Q}_{i}=\sum_{J}(-D)^{J_{Q}^{i}},
$$

so the space $\hat{\mathcal{I}}^{*}$ of functional one-vectors can be identified with T_{0}, the space of evolutionary vector fields. (Note that in the ajove notation we are regarding $\left\{\lambda_{u_{i}}\right\}$ as the basis of Λ_{1}^{*} dual to the "basis" $\left\{d u^{i}\right\}$ of Λ_{*}^{1}.) DEFINITION 3.2 A functional k-vector is a finite, constant coefficient linear combination of the basic k-vectors, defined as follows. Given differential operators $A_{1}, \ldots, \theta_{k}$,

$$
\begin{equation*}
\alpha=\theta_{1} \frac{\dot{\partial}}{\partial u^{I \prime}} \wedge \ldots \wedge \theta_{k} \frac{\partial}{\partial u^{m} k}, l \leq m_{j} \leq q, \tag{3.1}
\end{equation*}
$$

is defined so that for any

$$
\omega_{j}=\int\left(P^{j} d u\right) d x=\int\left(\Sigma P_{i}^{j} d u^{i}\right) d x \in \Lambda_{*}^{1}, \quad j=1, \ldots, k,
$$

we have

$$
\alpha\left(\mu_{1} \wedge \ldots \wedge \mu_{k}\right)=\int \operatorname{det}\left[\theta_{i} P_{m_{i}}^{j}\right] d x
$$

the determinant being of a $k \times k$ matrix with the (i, j) -entry indicated. EXAMPLE 3.3 Suppose $q=1$. A functional two vector is of the form

$$
\alpha=\theta_{1} \delta_{u} \wedge \theta_{2} \partial_{u},
$$

with

$$
\alpha\left(\omega_{P} \wedge \omega_{Q}\right)=\int\left(\theta_{1} P \theta_{2} Q-\theta_{2} P \theta_{1} Q\right] d x=\int(P \otimes Q) d x,
$$

where $\theta=\theta_{1}^{*} E_{2}-\theta_{2}^{*} S_{1}$ is skew adjoint $\left(\theta^{*}=-\theta\right)$. ihus every functional two vector is uniquely equivalent to one of the form $\frac{1}{2} \lambda_{u} \wedge \theta \lambda_{u}$ for θ skew-adjoint. This integration by parts argument casily generalizes to functional k-vectors.

Once the basic definition of a runctional multi-vector has been properly presented, the definition and properties of a poisson structure readily adapt to this infinite dimensional situation. In particular, the definition 2.1 of the Schouten-iNijenhuis bracket carries over with no change, as it does not rely on the exterior derivative d. (This is the definition used by Gel'fand and Doriman, [5], in the special case $k=\ell=2$, although they appear to omit the vital assumption that the one-forms ω_{j} be closed.) Thus a skew-adjoint differential operator θ is cosymplectic if and only if the two-vector $\theta=\partial_{u} \wedge \theta \cdot \partial_{u}$ satisfies $[\theta, \theta\}=0$. In particular, if s does not depend on u, it is automatically cosymplectic.
EXAMPLE 3.4 Consider the Kav equatior in the form

$$
u_{t}=u_{x x x}+u u_{x} .
$$

This is Hamiltonian in two ways:

$$
u_{t}=J_{0} \nabla H_{1}=J_{1} \nabla H_{0},
$$

in which ∇ denotes the variational derivative with respect to \mathbf{u},

$$
H_{0}=\int \frac{1}{2} u^{2} d x, \quad H_{1}=\int\left(\frac{1}{6} u^{3}-\frac{1}{2} u_{x}^{2}\right) d x
$$

and

$$
J_{0}=D_{x} \quad, \quad J_{1}=D_{x}^{3}+\frac{2}{3} u D_{x}+\frac{1}{3} u_{x}
$$

The first operator is cosymplectic since it does not depend on u; the proof that J_{1} is cosymplectic is not difficult and can be found in [5], [9], (11].

The only part of the theory that has not so far been adapted to this context is the exactness result of the 6 -complex in theorem 2.4. We still have $\delta 0 \delta=0$, and I strongly suspect that same version of this theorem is true, but do not have a proof. Thus in the perturbation theorem 2.6 , one cannot at present be guaranteed the existence of a vector field v_{1} and twovector Y_{1}, but in all the simple examples I have looked at, v_{1} is easy to find and F_{2} is invariably zero.

Finally, we need to discuss change of variables. For simplicity, assume $\mathrm{p}=\mathrm{q}=1$, but the result readily generalizes. Given a change of variabler $u=F\left(v, v_{x}, \ldots\right)$ (e.g. the Miura transformation $u=v^{2}+v_{v x}$ for the KdV) define the differential operator

$$
D_{F}^{*}=\frac{\partial F}{\partial v}-D_{x} \frac{\partial F}{\partial v_{x}}+D_{x}^{2} \frac{\partial F}{\partial v_{x x}}-\cdots,
$$

so D_{F}^{*} is the adjoint of the Frechet derivative of F. Then the functional multi-vectors transform according to the basic rule

$$
\begin{equation*}
\frac{\partial}{\partial v}=D_{F}^{*} \frac{\partial}{\partial u} \tag{3.2}
\end{equation*}
$$

applied to (3.1). For example,

$$
\partial_{v} \wedge \theta \partial_{v}=D_{F}^{*} \partial_{u} \wedge \theta D_{F}^{*} \partial_{u}=\partial_{u} \wedge D_{F} \otimes D_{F}^{*} \partial_{u}
$$

To see this, a one-form clearly transforms by

$$
\begin{aligned}
w_{p} & =\int\left(P\left(u, u_{x}, \ldots\right) d u\right] d x=\int\left[P\left(F, D_{x}, \ldots\right) d F\right] d x \\
& =\int P\left(\frac{\partial F}{\partial v} d v+\frac{\partial F}{\partial v} d v_{x}+\ldots\right) d x=\int\left[D_{F}^{*}(P) d v\right] d x .
\end{aligned}
$$

From this, (3.2) follows by duality. (Often, as D_{F}^{*} depends on v, (3.2) is not directly useful except in conjuction with some perturbation expansion!)
4. WATER WAVES. The water wave problem means the free boundary problem of irrotational, inviscid, incompressible, ideal fluid flow with gravity. We also anit surface tension effects, although this is not essential - see [13]. The model equations are for long, small amplitude, two-dimensional waves over a shallow horizontal bottom. The basic equations, and subsequent derivation of the KdV equation, are given in Whitham, [17, pp. 464-6], whose notation we use here. After rescaling, the problem takes the form

$$
\begin{equation*}
\beta \varphi_{x x}+\varphi_{y y}=0, \quad 0<y<1+\alpha \pi, \tag{4,1}
\end{equation*}
$$

$$
\left.\begin{array}{lc}
\varphi_{y}=0, & y=0, \\
\mid \nabla_{\varphi} d \rightarrow 0, & |x| \rightarrow \infty, \\
\varphi_{t}+\frac{1}{2} \alpha \varphi_{x}^{2}+\frac{2}{2} \alpha^{-1} \varphi_{y}^{2}+\eta=0, \tag{4.4}\\
\eta_{t}=\beta^{-1} \varphi_{y}-\alpha \eta_{x} \varphi_{x} .
\end{array}\right\} y=1+\alpha \|
$$

Here x is the horizontal and y the vertical coordinate, $\varphi(x, y, t)$ the velocity potential, $1+\alpha \|(x, t)$ the surface elevation. The two small parameters are $\alpha=a / h$, the ratio of wave amplitude to undisturbed water depth, and $B=h^{2} / \ell^{2}$, the square of the ratio between depth and wave length.
A. NON-HAMILTONIAN PERTURBATIONS. In Boussinesq's method, the first step is to solve the elliptic boundary value problem (4.2-3) in terms of the potential $\begin{aligned} \|=\theta^{\theta}(x, t) & =\varphi(x, \theta, t) \text { at depth } 0 \leq \theta \leq 1, \text { giving the series solution } \\ \varphi & =0+\frac{1}{2} B\left(\theta^{2}-y^{2}\right) \theta_{x x}+\frac{1}{24} \beta^{2}\left(5 \theta^{4}-6 \theta^{2} y^{2}+y^{4}\right) \phi_{\gamma 00 x}+\ldots \text { (4.6) }\end{aligned}$
(We will not worry about problems concerning the precise domains of definition of the functions - see Lebovitz, [7].) Substituting the series (4.6) into ($4.4,5$), differentiating the former with respect to x and truncating to first order leads to the following version of the Boussinesq system:

$$
\begin{align*}
& 0=u_{t}+\eta_{x}+\alpha u_{x}+\frac{1}{2} \beta\left(\theta^{2}-1\right) u_{x x t} \tag{4.7}\\
& 0=\eta_{t}+u_{x}+\alpha\left(\eta u_{x}+\frac{1}{3} \beta\left(3 \theta^{2}-1\right) u_{x x o x}\right.
\end{align*}
$$

in which $u=u^{\ominus}(x, t)=\varphi_{x}(x, \theta, t)$ is the horizontal velocity at depth θ. The basic system (4.7) can be modified by resubstituting, expanding and truncating again; for instance since to leading order $u_{t}=-\eta_{x}$, the term $u_{x x t}$ in the first equation can be replaced by $-\eta_{\text {roxx }}$ to yield a purely evolutionary system. See Bona and Smith, [3], for a complete discussion of the possibilities, and the companion paper [13] for the second order terms in the expansion.

To specialize to unidirectional waves, one looks for an expansion of the :orm $7=u+\alpha A+B B+\ldots$ such that the two equations in (4.7) become the same up to the requisite order. To first order,

$$
\begin{equation*}
\eta=u+\frac{1}{4} \alpha u^{2}+\frac{1}{6} B\left(3 \theta^{2}-2\right) u_{x x}, \tag{4.8}
\end{equation*}
$$

leading to the KdV equation

$$
\begin{equation*}
u_{t}+u_{x}+\frac{3}{2} \alpha u_{x}+\frac{1}{6} \beta u_{x x x}=0 \tag{4.9}
\end{equation*}
$$

independent of depth θ. Alternatively, one can express u in terms of i , leading to the same equation for π, (1.7). Again one can play the same games as with the Boussinesq system, so, for inscance, since $u_{t}=-u_{x}$ to
leading order, we can replace $u_{x o x}$ by $-_{x x t}$, yielding the BEM equation, [1], whose dispersion relation offers some advantages over the Kav model.
B. HAMILTONIAN MODELS. In Zakharov's Hamiltonian formulation of the water wave problem, the basic variables are the surface elevation η and the potential on the suriace $\varphi_{S}(x, t)=\varphi(x, 1+\alpha \|(x, t), t)$, the values of φ within the fluid being determined from φ_{S} by solving the auxilliary boundary value problem (4.1-3), cf. [2]. The Hamiltonian is the energy

$$
\begin{equation*}
H=\int_{S}\left\{\frac{1}{2} \varphi\left(\beta^{-1} \varphi_{y}-\alpha \|_{x} \varphi_{x}\right)+\frac{1}{2} \eta^{2}\right\} d x \tag{4.10}
\end{equation*}
$$

(The S on the integral means aLi terms are evaluated on the iree surface $y=1+\alpha \|$.$) The water wave probelm (4.1-5) is now in canonical form$

$$
\begin{equation*}
\frac{\partial \varphi_{S}}{\partial t}=-\frac{\delta H}{\delta T} \quad, \quad \frac{\lambda \eta}{\partial t}=\frac{s H}{\delta \varphi_{S}} \tag{4.11}
\end{equation*}
$$

First consider bidirectional Boussinesq systems. Substituting (4.6) into (4.10), and truncating, we get the first order expansion

$$
\begin{equation*}
H^{(1)}=\int_{-\infty}^{\infty}\left[\frac{1}{2} u^{2}+\frac{1}{2} \eta^{2}+\frac{1}{2} \alpha \eta u^{2}+\frac{1}{6} \beta\left(2-3 \theta^{2}\right) u_{x}^{2}\right] d x \tag{4.12}
\end{equation*}
$$

for the energy. For the symplectic version of the Boussinesq system, we expand the two form $\Omega=d \eta \wedge d \rho_{S}$ appropriate to (4.11), leading to

$$
n^{(1)}=d \eta \wedge\left(d \forall+\frac{1}{2} \beta\left(\theta^{2}-1\right) d \theta_{x x}\right)=d \eta \wedge\left(D_{x}^{-1}+\frac{1}{2} \beta\left(\theta^{2}-1\right) D_{x}\right) d u \cdot(4.17)
$$

(We omit the integral sign from $\Omega^{(1)}$ for simplicity.) This yields

$$
\begin{align*}
& 0=u_{t}+\eta_{x}+\alpha u_{x}+\frac{1}{2} \beta\left(\theta^{2}-1\right) u_{x x t} \tag{4.13}\\
& 0=\eta_{t}+u_{x}+\alpha(u \eta)_{x}+\frac{1}{2} \beta\left(\theta^{2}-1\right) \eta_{x x t}+\beta\left(\theta^{2}-\frac{2}{3} l_{x x x x}\right.
\end{align*}
$$

(We have differentiated both equations with respect to x here.). Note that the "symplectic Boussinesq" system (4.13) agrees to first order with (4.7) after manipulations similar to those discussed earlier. Using (4.6) again, frm (3.2) we find

$$
\begin{equation*}
\theta^{(1)}=\partial_{\eta} \wedge\left\{D_{x}+\frac{1}{2} \beta\left(1-\theta^{2}\right) D_{x}^{3}\right\} \partial_{u}, \tag{4.14}
\end{equation*}
$$

which is cosymplectic since the underlying operator is constant coefficient. This yields the "cosymplectic Boussinesq" system

$$
\begin{aligned}
& 0=u_{t}+\eta_{x}+\alpha u u_{x}+\frac{1}{2} \beta\left(1-\theta^{2}\right) \eta_{x 00 x}+\frac{1}{1} \alpha \beta\left(1-\theta^{2}\right)\left(u^{2}\right)_{200 x}, \quad \text { (4.15) } \\
& 0=\eta_{t}+u_{x}+\alpha\left(\eta()_{x}+\frac{1}{0} \beta\left(3 \theta^{2}-1\right) u_{x x x}+\frac{1}{2} \alpha \beta\left(1-\theta^{2}\right)(\eta u)_{x x x}-\frac{1}{3} \beta\left(3 \theta^{4}-5 \theta^{2}+2\right) u_{x 000 x x},\right. \\
& \text { differing from (4.7) by the inclusion of quadratic terms. The special case } \\
& \theta=1 \text { is of special note. as remarked by Broer ! ! ! : :ince t: first order the } \\
& \text { expansion (4.6) is equivalent to a canonical expansion in the variables } \Pi, \varphi_{S} \text { : }
\end{aligned}
$$

the Hamiltonian systems ($4.13,14$) reduce to versions of the usual system (4.7). The more general $(\theta \neq 1)$ Hamiltonian Boussinesq systems are new.

As for unidirectional models, since we are still matching the two equations to first order in the Boussinesq system, the definition (4.8) of the submanifold of unidirectional solutions remains the same. Thus we need only substitute (4.8) into the energy and the (co-) symplectic form and expand to first order. The appropriate Hamiltonian is

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}^{(1)}=\int_{-\infty}^{\infty}\left\{u^{2}+\frac{3}{4} \alpha u^{3}+\left(\frac{2}{3}-\theta^{2}\right)_{\beta} u_{x}^{2}\right\} d x, \tag{4.16}
\end{equation*}
$$

where we have integrated one term by parts. For the cosymplectic model, note first that from (4.8)

$$
\frac{\partial}{\partial u}=\left[1+\frac{1}{2} \alpha u+\left(\frac{1}{2} \theta^{2}-\frac{1}{3}\right) \beta D_{x}^{2}\right] \frac{\partial}{\partial \pi},
$$

cf. (3.2), hence to first order

$$
\frac{\partial}{\partial \eta}=\left(1-\frac{1}{2} \alpha u+\left(\frac{1}{3}-\frac{1}{2} \cdot \theta^{2}\right) B D_{x}^{2}\right) \frac{\partial}{\partial u} .
$$

Therefore, substituting into (4.14), we find

$$
\vec{\theta}^{(2)}=\partial_{u} \wedge\left(D_{x}-\frac{1}{4} \alpha\left(u D_{x}+D_{x} u\right)+\left(\frac{5}{6}-\theta^{3}\right) \beta D_{x}^{3}\right) \partial_{u},
$$

which can be proved to be cosymplectic, [5], [9]. Combining (4.16,17) we find the following "cosymplectic version" of the Korteweg-de Vries equation.

$$
u_{t}+\left[D_{x}-\frac{1}{4} \alpha\left(u D_{x}+D_{x} u\right)+\left(\frac{5}{6}-\theta^{2}\right) \beta D_{x}^{3}\right]\left[u+\frac{9}{8} \alpha u^{2}+\left(\theta^{2}-\frac{2}{3}\right) \beta u_{x x}\right]=0,
$$

or, in detail,

$$
\begin{align*}
u_{t}+u_{x} & +\frac{3}{2} \alpha 0 u_{x}+\frac{1}{6} \beta u_{x<x x}+\frac{1}{18} \beta^{2}\left(-18 \theta^{4}+27 \theta^{2}-10\right) u_{x x c x x}+ \tag{4.18}\\
& +\left(\frac{53}{24}-\frac{11}{4} \cdot \theta^{2}\right) \alpha \beta u u_{x x x}+\left(\frac{139}{24}-7 \theta^{2}\right) \alpha \beta u_{x} u_{x x}-\frac{45}{32} \cdot x^{2} u^{2} u_{x}=0
\end{align*}
$$

(In deriving (4.18) we have multiplied by $\frac{1}{4}$ - this is rigorously justified since we are restricting the system to a submanifold.)

The symplectic form, which resembles more closely the BEM equation, is more complicated. We find

$$
\vec{n}^{(1)}=d u \wedge\left[D_{x}^{-1}+\frac{1}{4} \alpha\left(u D_{x}^{-1}+D_{x}^{-1} u\right)+\left(\theta^{2}-\frac{5}{6}\right) B D_{x}^{3}\right] d u,
$$

hence, formallv,

$$
\left[D_{x}^{-1}+\frac{1}{4} \alpha\left(u D_{x}^{-1}+D_{x}^{-1} u\right)+\left(\theta^{2}-\frac{5}{6}\right) D_{x}\right]\left(u_{t}\right)+u+\frac{9}{8} \alpha u^{2}+\left(\theta^{2}-\frac{2}{3}\right) \beta u_{\partial x}=0
$$

To convert this into a bcna-fide differential equation, recall $u=\delta_{x}$, and differentiate:

This example illustrates well the previous remarks that the symplectic perturbation is easier to handle theoretically, but the resulting equations are much more unpleasant.

There are a lot of open questions concerning these models, most of which are probably only amenable to numerical investigation. What are their solitary-wave solutions like, and how do they interact? (Only the η-equation (1.8) can be solved "explicitiy" in terms of a hyperelliptic integral.) how do the solutions compare with those of the KdV or BEM equation? In particular, do thay give any truer indication of the qualitative or long time behavior of water waves? Does the dependence of (4.18) on the depth θ have any relevance to the breaking of water waves, in that solitary waves of the same amplitude may move a different speeds at different depths, thereby sctting up some kind of shearing instability? (See also [13].) All those questions must await further research.
5. COMPLETE INTEGRABILITY. We now turn to the question of why the KdV equation happens to be Hamiltonian. Returning to the gen@ral set-up, as summarized in $(1.4,5)$, we see that one possibility for (1.5) to be Hamiltonian is if the first order terms are multiples of each other:

$$
\begin{equation*}
J_{1} \nabla H_{0}=\sigma J_{0} \nabla H_{1} \tag{5.1}
\end{equation*}
$$

This of course cannot be expected in general, but if it does happen, the situation can be handled by the theorem of Magri on complete integrability of bi-Hamiltonian systems, [9], [5].
THEOREM 5.1 Suppose a system $\dot{x}=K_{1}(x)$ can be written in Hamiltonian form in two distinct ways: $K_{1}=J_{0} \nabla H_{1}=J_{1} \nabla H_{o}$. Assume also that the two Hamiltonian structures are compatible, meaning that $J_{0}+\mu J_{1}$ is cosymplectic for all constant μ. Then the recursion relation $K_{n}=J_{0} \nabla H_{n}=J_{1} \nabla H_{n-1}$ defines an infinite sequence of comuting bi-Hamiltonian flows $\dot{x}=K_{n}(x)$, with mutually conserved Hamiltonians $H_{n}(x)$ in involution (with respect to either the J_{0} or J_{1} Poisson bracket). (One also needs to assume that J_{0} in the recursion relation always invertible, but this usually holds.)

Thus, in this special case, both the noncanonical perturbation equation (1.5) and the cosymplectic version (1.6) are linear combinations of the completely integrable flows K_{0}, K_{1}, K_{2}, and hence, provided "enough" of the Hemiltonians H_{n} are independent, are both completely integrable Hamiltonian systems.

For the water wave expansion, in the Korteweg-de Vries model the $O(\alpha, \beta)$ terms are in the right ratio only at the "magic" depth $\theta=\sqrt{11 / 12}$, and for this depth (4.18) is a linear combiration of a fifth, third and first order KdV equation. For more general θ, one must fudge the condition (5.1) slightly to obtain complete integrability.

Nevertheless, this leads to an intriguing speculation. Joes condition (5.1) orten hold in the perturbational derivation of model equations from con-
servative physical systems? If true, it would provide a good explanation of the comon feature of many systems that in the zeroth order perturbation one has linear equations, and in the first order perturbation the equations are nonlinear, but completely integrable soliton equations. Presumably the second order expansion leads to nonintegrable models with some chaotic components. A good place to check this is in Zaleharov's derivation of the nonlinear Schrodinger equation as the modulational equation for periodic water waves, [18].

REFERENCES

1. T.B. Benjamin, J.E. Bona and J.J. Mahony, "Model. equations for long waves in nonlinear dispersive systems", Phil. Trans Roy. Soc. London A 272 (1972) 47-78.
2. T.B. Benjamin and P.J. Olver, "Hamiltonian structure, symmetries and conservation laws for water waves", J. Fluid Mech. 125 (1982) 137-185.
3. J.L. Bona and R. Smith, "A model for the two-way propagation of water waves in a channel," Math. Proc. Camb. Fhil. Soc. 79 (1976) 167-182.
4. L.J.F. Broer, "Apprximate equations for long water waves", Appl. Sci. Res. 31 (1975) 377-395.
5. I.M. Gelfand and I. Ya. Dorfman, "Hamiltonian operators and related algebraic structures", Func. Anal. Appl. 13 (1979) 13-30.
6. J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1981.
7. N. Lebovitz, "Perturbation expansions on perturbed domains", SIAM Rev. 24 (1982) 381-400.
8. A.Lichnerowicz, "Les varietes de Poisson et leurs algebres de Lie Associees" J. Diff. Geom. 12 (1977) 253-300.
9. F. Magri, "A simple model of the integrable Hamiltonian equation", J. Math. Fhys. 19 (1978) 1156-1162.
10. A. Nijenhuis, "Jacobi-type identities for bilinear differenti al concomitants of certain tensor fields", Proc. Kon. Ned. Akad. Wet. 58A (1955) 390-405
11. P.J. Olver, "On the Hamiltonian structure of evolution equations", Math. Proc. Camb. Phil. Soc. 88 (1980) 71-88.
12. P.J. Olver, "Conservation laws of free boundary problems and the classification of conservation laws for water waves", Trans. Amer. Math. Soc. 277 (1983) 353-380.
13. P.J. Olver, "Hamiltonian and non-Hamiltonian models for water waves", Proceedings, 5th Symposium on Trends in Applications of Pure Mathematics to Mechanics, to appear.
14. H. Segur, "Solitons and the inverse scattering transform", Topics in Ocean Physics 80 (1982) 235-277.
15. C.L. Siegel and J.K. Moser, Lectures on Celestial Mechanics, SpringerVerlag, New York, 1971.
16. A. Weinstein, "The local structure of Poisson manifolds", CPAM preprint年97, Berkeley, 1982.
17. G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York,
18. 1974.
1. V.E. Zalcharov, "Stability of periodic waves of finite amplitude on the surface of a deep fluid", J. Appl. Mech. Tech. Phys. 2 (1968) 190-194.

SCHOOL OF MATHEMATICS
UNIVERSITY OF MINNESOTA
MMNEAPOLIS; MN 55455

[^0]: 1980 Mathematics Subject Classification 35Q20, 58F05, 76 Bl 5.
 1
 Supported in part by NSF Grant NCS 81-00786.

