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HAMLTONIAN PERTURBATION THEORY AND WATER WAVES

Peter Olver

ABSTRACT. A general theory of noncanonical perturbations of
Hamiltonian systems, both finite dimensional and continuous is
proposed. The results determine a general formula for the deform
ation of a Poisson structure on a manifold. The theory is applied
to the Boussinesq expansion for the free boundary problem for water
waves which leads to the Korteweg-de Vries equation. Hew HamStol-
laa model equations for both uni- and bi-directional propagation

?J£n? T?" ^^f10? Water "" found- to explanation!? the
complete integrability (soliton property) of the KdV equation.as a
consequence of the expansion,is determined. "w»,m a

1. INTRODUCTION, m 1895 Korteveg and deVries first derived their celebrated

equation as a model for the unidirectional propagation of long waves in

shallow water. Their method proceeded by first applying the perturbation

expansion introduced by Boussinesq, and then restricting the resulting-bi

directional Boussinesq system to a "submanifold" of approximately unidirect

ional waves. Hamiltonian methods entered the subject when Zakharov found the

Hamiltonian form of the water wave problem. Subsequently, the Korteweg-

de Vries equation was shown to be Hamiltonian, in fact in two distinct ways.

In earlier work with Benjamin, [2], [l2], symmetry group techniques used

in conjunction with Zakharov's Hamiltonian structure proved that the two-

dimensional water wave problem without surface tension has precisely eight

nontrivlal conservation laws. The present work arose in an ongoing Invest

igation as to how these laws behave under the perturbation expansion leading

to the KdV equation. This project came to a temporary halt, however, with the

surprising discovery that the Hamiltonian structures of these two equations do

not match up in any natural way. indeed, this is first evidenced by the fact

that aLnost all versions of the Boussinesq system, which is the essential half

way point in the derivation, are not Hamiltonian, in particular do not conserve

energy. Even more striking is the elementary, but apparently unnoticed

observation that the perturbation expansion of the energy for the water wave
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problem does not agree to the requisite order with either of the Hamiltonians

for the KdV equation. Alternative models such as the BEM or Regularised

Long Wave equation, [1], suffer from the same problem.

In order to better understand this state of affairs, a general theory of

noncanonical perturbation expansions of Hamiltonian systems must be developed.

In outline, the theory proceeds as follows. Consider a Hamiltonian system

x = J(x,e)vU(x,e) , (n)

in which e is a small parameter, H(x,e) is the hamiltonian function and

J(x,e) the skew-adjoint Hamiltonian (or cosymplet.;-.:.;:) operator. Since the
1 T

operator J appears in the cosymplectic two-vector 8= j b AJ6 , defining

a Poisson structure, we call (1.1) the cosymplectic form of Hamilton's

equations, to be distinguished from the symplectic form

K(x,e)x = 7H(x,e) , (1.2)

corresponding to the symplectic two-form 0 = - -i dxTA Kdx , K = j"1 • (At

first sight, this distinction appears trivial, but the two forms lead to very

different types of perturbation equations.)

Consider a perturbation expansion

x = y+c q>(y)+ ... . (1.3)

In standard perturbation theory, one substitutes (1-3) into (1.1) or (1.2),

expands in powers of e and truncates to some required order. The resulting

system, as simple examples easily show, is not in general Hamiltonian. In

order to preserve the Hamiltcnian structure we must expand both the Hamiltonian

H(x,e) = HQ(y)+eH1(y) + e':Ho(y) + ...

and the cosymplectic operator

J(x,e) *< J (y) + c J, (y) + e'v (y) + ...
\J X £

and truncate at the required order. (We ignore for the moment the additional

complication that the truncated series for J is not in general a true

cosymplectic operator - see section 2B.) To first order.

y = (J_(y) + e Ji(y))(VH (y) + e 7H, (y))

° 1 ° o (1-U)
= Jo7Ho + « < Jl7Ho + Jo7Hl) + e Vl >

called the cosymplectic perturbation of (1.1). It agrees with the ordinary

perturbation expansion

to first order but includes some additional terms in e so as to maintain

the Hamiltonian structure. Note that (l.U) is not the second order ordinary
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perturbation of (1.1) - this would include the terms e2(j 7H2+ J-7H ) ,

which would again destroy the Hamiltonian form of the system. The symplectic

perturbation proceeds along the same lines, leading to

(KQ(y) + e K^yJJy = 7HQ(y) + « VH^y) , (1.6)

which is always Hamiltonian. For evolution equations, as the examples in

section k bear out, the cosymplectic form is usually the more desirable because

in (1.6) the symplectic operator, which may very well be nonlinear, is applied

to temporal derivatives of y .

This Hamiltonian perturbation theory falls between the two main schools of

perturbation theory - on the one hand standard perturbation methods, [6], pay

no regard to any Haniltonian structure in the systems under investigation,

whereas in classical and celestial mechanics, [15J, all perturbations are

canonical and the problems discussed here never arise. Nevertheless, the

present theory should prove to be of importance in a wide range of physical

applications in which the perturbations are more or less prescribed, but one

still wishes to maintain some form of Hamiltonian structure.

In the water wave problem, there are two small parameters a and 0 but

the expansions take the same form, if (l.l) represents the original free

boundary problem, then the non-Hamiltonian Boussinesq systems are of the form

(1-5)- To make these Hamiltonian, we must add certain quadratic terms in

a ,00,0 , as in (l.U)v see (U.15) for the resulting system. Similar remarks

apply to the subsequent derivative of the KdV equation (coming from the

cosymplectic form of the expansion) or the BBM equation (coming from the

symplectic form). In terms of the surface elevation Tl(x,t) , the non-

Hamiltonian perturbation equation (1.5) is the familiar KdV equation

W 2alV £P1lxxx = 0 • d-7)
To retain the correct Hamiltonian structure according to the general theory,

one must include quadratic terms as in (l.U), leading to the "Hamiltonian

version" of the KdV equation

This model has Hamiltonian functional

Him - fj I T12+ ± a H3)dx , (1.9)

which is the correct first order expansion of the energy (Hamiltonian) of the

water wave problem, and cosymplectic operator

J = -[Dx+ -jj- a(Tl Dx+ yi) + I p d3] . (1.10)

Note that (1.9) does not agree with either of the usual Hamiltonians for the

KdV equation. (Segur, [1U], gives a completely different derivation of the
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KdV equation using two time scales. His expansion of the energy leads to a

linear combination of the two KdV Hamiltonians. It remains to be seen how

the two methods can be reconciled.)

There remains the question of why, in spite of the general theory, the

KdV equation is Hamiltonian. "ote that the operator (1.10) appearing in the

Hamiltonian perturbation rese: ^ 3 a linear combination of the two cosymplectic

operators for the KdV equation. Under special circumstances, the non-

Hamiltonian perturbation (1.5) can inherit two compatible Hamiltonian structures

(corresponding to J and J. ), and hence, by a theorem of Magri, [9]. is

automatically completely integrable. This may offer an explanation for the

remarkable fact that completely integrable Hamiltonian systems (soliton

equations) such as the KdV, sine-Gordon, and nonlinear SchrWinger equations

appear so often as model equations in the perturbation expansions to a wide

variety of physical systems.

I wish to thank T. Brooke Benjamin and Jerry Bona for valuable ceminents

on the results, and Jerry Marsden for organizing a superb conference.

2. FINITE DIMENSIONAL HAMILTONIAN PERTURBATION THEORY- The aim is to set up

a Hamiltonian perturbation theory for evolution equations, but to keep things

simple we begin with the finite dimensional case. One lesson gleaned from the

evolutionary case is that one should not rely on the existence of Darboux

coordinates in general, so we take a Hamiltonian structure to be defined by

either a symplectic two-form, or, more generally, a cosymplectic two-vector

field a la Lichnerowicz. To perturb the Hamiltonian structure, it then suffices

to perturb either the symplectic form (which is straight forward ) or the

cosymplectic two-vector (which is less so); in fact, the correct form of the

perturbation of the cosympleetic two-vector requires the full theory of Poisson

manifolds, which we develop in a form amenable to be immediately generalized to

the infinite-dimensional case of evolution equations.

A. POISSON STRUCTURES. In the usual theory, Hamiltonian mechanics takes place

on a manifold M equipped with a symplectic two-form 0 . One immediate

complication is that in local (non-Darboux) coordinates, if

O = - | dxT A K(x)dx = - -| E Kij^i A toj »

then both Hamilton's equations

x = J 7H(x) , (2.1)

and the Poisson bracket

{F,G3 = vFTJ 7G ,

require the inverse J = K~ of the matrix appearing in 0 . In the infinite-

dimensional version, J is a differential operator, so trying to use the
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symplectic form usually introduces unnecessary complications.

These can be avoided by introducing a Poisson structure, as detailed in the

paper by Weinstein in these proceedings. For our purposes, however, it is

expedient to adopt the viewpoint of Lichnerowicz, [8], and regard the

cosymplectic two-vector field

s - J *>l A J(x)6v =^ U..i-Al- (2 o\
2 x ■< 2 lj ox. ox. {£'<■)

as the fundamental object determine a Poisson structure, rather than the

Poisson bracket, which is easily recovered from 9 :

Cf,g] = <dF A dG,9) . (2>3)

The requirement that the Poisson bracket satisfy the Jacobi identity translates

into a system of nonlinear differential equations for the coefficients J (x)

of 3 . These are most easily expressed using the Schouten-Nijenhuis bracket.

We begin by describing a new invariant definition of this important bracket

between multi-vector fields which will readily generalize to the case aC

evolution equations. A k-vector field is a section of ^m , the bundle of

contravariant alternating k-tensors. Note that if a is a k-vector ffe Id

and m a differential (k-l)-form, then the interior product v = u>Ja is an

ordinary vector ffe Id. Thus v(0) = (t0 Ja)e , wirL denote the Lifi derivative

of another differential form 9 with respect to this vector field.

DEFINITION 2.1 Let a be a k-vector field and 0 an t-vector field. The

Schouten-Nijenhuis bracket [O,BJ is the following uniquely determined

"- ■ ' - 1) - vector field: For every k + 4 - 1 closed differential one-forms

<[o,P],««lA...Aa>k+<t_1>

j

In this formula, the first sum is over all multi-indices I=(i ,... i )

l<iL<... <it.1<k+A-l , with complement I* = (i£ i£) such that

l<ii<...<ik<k+*-l and (i1,...,i4.1,ii,...,li)=l,(1,...,k+*.i) for

some permutation « , and sign I s sign r. . Similarly, the second sum is over

all J = (dv...,3kl) , I«j1<...<jk_1<k+i-l with j- , sign J defined
similarly.

In the special case k = 1 , so a=v is an ordinary vector field, (2.U)

still holds with the understanding that in the second summation there is one

term, corresponding to 1=^5 , ^ = 1 (constant), it is easily seen that in

this case the Schouten-wijenhuis bracket [v,p] is just the Lie derivative of

0 with respect to v . Checking that definition 2.1 agrees with both that of

Nijenhuis, [10],and the invariant definition favored by Hchnerowicz, [8], is

a useful exercise. We have chosen this definition because it appears to be
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the only one that readily generalizes to the infix:: ze dimensional formulation

needed to treat evolution equations.

Let a,5 be k-vector fields, 3 ant-vector field and Y an m-vector

field. The basic properties of the bracket follow from (2.U):

a) Bilinearity

[ca+55,p] = c[a,g] +c[a,0] , c,c€B, (2.5)

b) Super-symmetry

c) Jacobi identity

(-l)lan[[a,3],Y]+(-l)*B[[Y,a],e]+(-l)k't'[[3,Y],a] = 0, (2.7)

d) Pseudo-derivation

[o,p a y] = [a,e] a y+ (-l)'tm+m & a [a,Y] . (2.8)

These properties, especially (2.8) which does not appear to be as well known,

are vital for determining the local coordinate formulae for this bracket.

DEFINITION 2.2 A two-vector field 9 is cosymplectic if

[Q,8] = 0 . (2.9)

A cosympleetic two-vector 9 determines a Poisson structure on M in

the sense of Weinstein, [16], via (2.3) and conversely. For a Hamiltonian

function H:M - K, the associated Hamiltonian vector field is

vH = F3(dH) = dHJS , (2.10)

with flow given by (2.1) in local coordinates.

THEOREM 2.3 Let © have constant rank 2m<n . Then there is a foliation of

M with 2m-dimensional leaves so that on each leaf L ,o| eA,TL| and is of

maximal rank for each xeL . Thus 0 defines a symplectic structure on L .

Each leaf is invariant under the flow of any Hamiltonian vector field on H, in face

TL|x = Fg(T*M|x)

for any x € L c m .

See Liclinerowicz, [8], for a proof and Weinstein, [16], Tor a discussion

of the non-constant rank case. The cosymplectic two-vector 9 sets up a

complex

6k = 5 j

with 6(ot) = [8,0t] . The condition (2.9) ijuplies, using the Jacobi identity

(2.7), that the complex is closed: 60 6=0 . However, unless 9 is of

maximal rank, this complex is not locally exact .

THEOREM 2.U Let 3 be cosymplectic, of constant rank. Let a be a k-vector

field on M . Then [9,a] = 0 if and only if in any coordinate cube
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a = [0,3) + aQ for 8 a (k-l)-vector field and aQ a k-vector field which, in

the given coordinates, is constant on the leaves of the symplectic foliation induced

by 9 . (aQ will in general depend on the choice of local coordinates.)

The proof of this result, as well as a discussion of the global cohomology,
can be found in Lichnerowicz, [8].

B. PERTURBATION THEORY.

We now consider perturbation theory for a system of ordinary differential

equations in Hamiltonian form. Throughout this section c will be a

parameter, and we allow the possibility of both the Hamiltonian and the

cosymplectic form depending on e . The basic system is

x = J(x,e)vH(x,e) = F(x,e) . (2.11)

Given a perturbation expansion

y+

following standard perturbation methods, we substitute (2.12) into (2.11) and

expand the series in e to first order:

(l+evcp)y = FQ(y)+e F^y) . (2.13)

Here FQ,F1 can easily be evaluated from (2.11) using the chain rule:

F0(y) = F(y,O) = J0(y)7H0(y) , F^y) = Fe(y,0) + 7F(y,0)p(y) .

We can also invert l+evtp in (2.13) to obtain the alternative system

where fx = F± - Vep . FQ . Unless the expansion (2.12) happens to be

canonical, neither (2.I3) nor (2.U) will be in general Hamiltonian. If we

expand the Hamiltonian

H(x,e) =H0(y) + e H^y) + e2H2(y) + ... , (2.15)

we find that the first order truncation HQ+ e ^ is not in general a constant

of the motion.

In order to maintain some form of Hamiltonian structure under perturbation,

we must investigate how the symplectic or cosymplectic forms themselves are

being perturbed. First we look at the easier case when the system is in

symplectic form

K(x,e)i = 7H(x,e) .

The symplectic two-form has the perturbation expansion

O(x,e) =Oo(y) + e O^y) + e^y) + ... , (2.16)

or, in coordinates,

- -|dxT A K(x,e)dx = - |dyT A (KQ(y) +
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using (2.12). Since the closure condition dn=O for a symplectic tvo form

is linear, we can truncate the expansion (2.16) at any order and (provided e

is sufficiently small to ensure nondegeneracy) be assured the truncated form,

0o+e 0^ say, remains symplectic. This, together with (2.15), yields the

first order symplectic perturbacioa

(Ko(y)+e K^y))/* VHQ(y)+c THjM , (2.17)Ko(

which is a Hamiltonian system. :!ote that (2.17) is not the same as (2.13) °r

(2.1U), but does agree with them up to terns of first order in e .

This is because to lowest order y = F (y) + o(e) , so whenever we see a term

like ey we can replace it by ey (y) and still maintain first order
o

agreement. :.'ote also that it is not permissible to invert K + e K. in (2.17)

and truncate and expect to have a Hamiltonian system.

As for the cosymplectic form (2.U.), we can similarly expand the two-vector

field

8(x,e) = 3Q(y) + € S^y) + eh^y) + ... , (2.18)

or

| 6^ A J(x,e)6.< = i &J A (Jo(y) + « J1(y) + e2J2(y)+...)&y .

However, owing to the basic nonlinearity of the cosymplectic condition (2.9)

one cannot expect in general to be able to truncate the series (2.18) and

have the resulting two-vector field be cosymplectic. Thus the first order

perturbation

7= (J_(y) + e
° X o (2.19)

= W e(Jl7Ho+ J07Hi) + €~Ji7Hi

will not in general be Haniltonian. However, since J +e J. is still skew-

symmetric, the perturbed Hamiltcnian H + e H., vill always be a constant of

the motion of (2.19).

LEMMA 2.5 The perturbed two-vector 3 + c 3 is conymplectic if and only if

9X itself is:

[31,31] = 0 . (2.20)

PROOF.

The full series (2.18) is certainly cosymplectic. (Indeed, the perturbation

expansion (2.12) is in essence jMst a change of coordinates.) Expanding (2.9)

in powers of c , and using (2.5,6), we find the infinite series of relations

[3o,3o]=0 , 2(9^] =0 , 2[9o,32]+ [S^S-J = 0,... , (2.21)

resulting from the fact that (2.18) is cosymplectic for all e . On the other

hand, the conditions that 3 + e 3. be cosymplectic are the first two of

(2.21), which are automatically fulfilled, plus (2.20). This proves the
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lemma. (Note, by (2.21) we can replace (2.20) by [9 ,82J=0 .)

More generally, if (2.20) fails to hold, yet we still wish to retain the

Hamiltonian property of the perturbation, we are required to include certain

higher order terms in « in the cosymplectic two-vector agreeing with (2.15)
to first order, i.e. of the form

®0 + e 81+ e2E) + ... .

To accomplish this, we simplify matters by working locally to avoid global

integrability conditions.

THEOREM 2.6 Let 8^ be two-vector fields satisfying (2.21) for sane

82 . Then there exists a vector field ^ and a two-vector field Y

constant on the leaves of the foliation induced by 8Q such that

91 - £V@0] + *1 • (2.22)

Moreover, the two-vector field

8*-exp(cVl).(eo+t T^ (2.23)

is cosymplectic, with expansion

S*=8o+e 81+0(e2) . (2.2U)

PROOF

The existence of v^^ follows directly from theorem 2.U. in (2.23)

the * refers to the action of the one-parameter (local) group of

diffeomorphisms exp(e v^ on the space of two-vector fields. Since the

Schouten- Nljenhuis bracket is Invariant under diffeomorphisms it suffices to

check that SQ+« Tx is cosymplectic. Clearly [8^] =0 , so we need only

check that [^,^1=0 . Using the Jacobi identity (2.7), and the third

equation in (2.21),

-2teo,92) = [81>s1]

Therefore

for some well defined T . But since ¥1 is constant on the leaves induced by

8Q , this latter identity is impossible unless both sides vanish. Finally, to

establish (2.2U) we need only notice that

exp(e v^or) = ot+ etv^a] + 0(«2)

for any k-vector field a , using the identification of the bracket with the

Lie derivative in this case.
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C. SOME QUALITATIVE COMPARISONS. What are some of the advantages of the

Hamiltonian theory over standard perturbation methods? The most important is

certainly that the Hamiltonian perturbation equations conserves energy, whereas

the standard perturbation equation does not in general. (This is also true

when one truncates the cosymplectic form without worrying about the bracket

condition^ however in this case there is no Poisson bracket.) It is easy to

find two-dimensional examples in which the orbits of the unperturbed system

are closed curves surrounding a fixed point. The Hamiltonian perturbation has

the same orbit structure, its orbits just being perturbations of the closed

curves, whereas the solutions of the standard perturbation equations slowly

spiral into or away from the fixed point. In higher dimensions, KAM theory

shows that "most" solutions of a small Hamiltonian perturbation of a completely

integrable system remain quasi-periodic, whereas the standard perturbation can

again result in spiralling behavior. At the other extreme, only Hamiltonian

perturbations of an ergodic system stand a chance of being ergodic in the right

way as the standard perturbation will mix up the different energy levels.

Of course, both the Hamiltonian and non-Hamiltonian expansions are valid to

the same order, and hence give equally valid approximations to the short-time

behavior of the system. Based on the above observations, the Hamiltonian

perturbation appears to do a better job modelling long-time and qualitative

behavior of the system. It remains to see whether any rigorous theorem to

this effect can be proved.

3. EVOLUTION EQUATIONS. The Hamiltonian theory of evolution equations is most

easily developed using the formal variational calculus introduced in [5], [11].

Here we present a brief outline of the theory, including an extended discussion

of multi-vectors and the Schouten-Mijenhuis bracket, the latter being new. For

simplicity, we work in Euclidean space, with x = (x«,...,x_) € X •" 3RP and
Inn P

u = (u ,...,uq) 5 U« r denoting independent and dependent variables. The

infinite jet space Jo = XX Uo is the inverse limit of the spaces

J = X X U with coordinates (x,uln') = (x,...,u*,...) , where u^ represents
n n • i *^

the partial derivative 6Tu = 5, •■• b, u , m<n , 6. =o/6x. . Let
1 m 'n) ^ ^

Q denote the space of smooth functions P(x,u* ) , n arbitrary, and

k *
A' = A. T J the space of vertical k-forms, i.e. finite sums of the form

cd= Z P.(x,u(n))duT1A... A du_k .
J Jl Jk

Vector fields are formal infinite sums

J ° j J 6u^

with Q.,QT € Q . The standard formulae relating Lie derivatives, exterior

derivatives and interior products extend readily to this set-up. In particular
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the total derivatives D. can be viewed as vector fields, hence act on Ak

by Lie derivatives.

The space of functionals 5 is the quotient space of G by the image of

the total divergence, Div Q - D^* ... + DpQp , Qj 6 0 . The projection

G - 5 is denoted by an integral sign: Jpdx € 5 for P 6 G . Similarly, the

space^of functional k-forms is Ak = Ak/Div(Ak) , with projection J a, dx ,

a. € A . The deRham complex d:Ak - Ak+1 projects to a locally exact complex
d- \ ~ \ -The dual space to a£ is the space TQ of evolutionary

vector fields

j

uniquely characterized (except for the trivial translationai fields ft/bx )

by the fact that they commute with all total derivatives. Hence they act by

Lie derivatives on A^. , and again the standard differential-gemetric formulae

can be readily established. The exponential exp(ev) of an evolutionary

vector field can be found by solving the system of evolution equations

fjf = Q u(x,O) = uQ(x) ,

with flow u(x,c) = exp(«v)[uo] , in seme appropriate space of functions.

The spaces of multi-vectors, dual to functional forms, are more interesting;

they are not images of the spaces ^T J^ under any projection! Part of the

problem is that there is no well-defined exterior product on /£ :

/ m dx A J 9dx / JWe)dx . In particular, A^) / Ak . We are interested
in multi-linear, alternating maps on aJ . First, recall that every functional
one form is uniquely equivalent to one of the form

aip = J(.P.du)dx = /(EP^u^dx ,

(just integrate by parts). Moreover, by the exactness of the d-complex on

A# , a function one-form a^ is closed: da>p = 0 , if and only if ^ =

for some functional, which means that P = E(Q) where E is the Euler
operator, or variational derivative, [U],

EXAMPLE 3.1. A functional one-vector will be determined by q-tuple of

differential operators & = (fl^...,^) , ^ = L qJ dj (finite suma,

D = °j • ••°j ^ With QJ € ° * Given * » consider the linear map
1 m

= =

given by ^[/(p.dujdx] -/ flP dx-J" [E ^PJdx . A simple integration by
parts shows that

where
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♦

so the space A. of functional one-vectors can be identified with T , the

space of evolutionary vector fields. (Note that in the above notation we are

regarding [f, ,] as the basis of A dual to the "basis" Cdu } of AT .)
u L

DEFINITION 3.2 A functional k-vector is a finite, constant coefficient linear

combination of the basic k-vectors, defined as follows. Given differential

operators &^> • •. ,£>k ,

, (3-1)

k °

is defined so that for any

a^ = /(P* du)dx = J (I pfdu^dx SA,1, j=l,...,k ,

we have

otfu^A... Atu^) = J dettfi^ ]dx ,

the determinant being of a kxk matrix with the (i,o) -entry indicated.

EXAMPLE 3.3 Suppose q = l . A functional two vector is of the form

a = A16U A «26U ,

with

= _f(P£Q)dx ,

where & = fl-,^ " *^i *3 s'cew a£ijoint (& = -&) . Thus every functional

two vector is uniquely equivalent to one of the form — f>u AS ft for £

skew-adjoint. This integration by parts argument easily generalizes to

functional k-vectors.

Once the basic definition of a functional multi-vector has been properly

presented, the definition and properties of a Poisson structure readily adapt

to this infinite dimensional situation. In particular, the definition 2.1

of the Schouten-Nijenhuis bracket carries over with no change, as it does not

rely on the exterior derivative A . (This is the definition used by Gel'fand

and Dorfman, [5], in the special case k = <« = 2 , although they appear to emit

the vital assumption that the one-forms ou. be closed.) Thus a skew-adjoint

differential operator fl is cosymplectic if and only if the two-vector

9 = 6 Afi.6 satisfies [9,9] = 0 . In particular, if £ does not depend on

u , it is automatically cosymplectic.

EXAMPLE 3.U Consider the KdV equation in the form

u,_ = u + uu .
t xxx x

This is Hamiltonian in two ways:

in which v denotes the variational derivative with respect to u ,
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and

The first operator is cosymplectic since it does not depend on u -, the proof

that Jx is cosymplectic is not difficult and can be found in [5], [9], [uj.

The only part of the theory that has not so far been adapted to this

context is the exactness result of the 6-complex in theorem 2.U. We still

have 80 6 . 0 , and I strongly suspect that some version of this theorem is

true, but do not have a proof. Thus in the perturbation theorem 2.6, one

cannot at present be guaranteed the existence of a vector field v and two-

vector tx , but in all the simple examples I have looked at, y is easy to

find and ^ is invariably zero.

Finally, we need to discuss change of variables. For simplicity, assume

P-q-1 , but the result readily generalizes. Given a change of variables

« =F(v,vx,...) (e.g. the Miura transformation u = v* + v for the KdV) define
the differential operator ^

D* 2D* = M . D 6£ + 2 6F _

. F bv x*vx x °vxx "• '
so Dp is the adjoint of the Frechet derivative of F . Then the functional

multi-vectors transform according to the basic rule

6v " UF bu (3-2)

applied to (3.I). For example,

To see this, a one-form clearly transforms by

<"p - J(P(u,ux,...)du]dx = J*[P(F,DxF,...)dF]dx

= $Hb?V + 5? dVx+ ' • •>** = .ftD*(P)dv]dx .
From this, (3.2) follows by duality. (Often, as l£ depends on v , (3.2)

is not directly useful except in conduction with some perturbation expansion!)

U. WATER WAVES. The water wave problem means the free boundary problem of

irrotational, inviscid, incompressible, ideal fluid flow with gravity. We also

omit surface tension effects, although this is not essential - see [13]. The

model equations are for long, small amplitude, two-dimensional waves over a

shallow horizontal bottom. The basic equations, and subsequent derivation of

the KdV equation, are given in Whitham, [17, pp. U6V6], whose notation we use

here. After rescaling, the problem takes the form

0<y<l+aTl , (U.I)
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9=0, y =0 , (U.2)

|V(f| - 0 , |x| -- , (U.3)

tp + i a«p2 + - <&~\2+T\ = 0 , 1 (h.*>
Tt 2 x 2 y '

Ut = 3 <Py - ofllx?x ■ J ("»-5)

Here x is the horizontal and y the vertical coordinate, cp(x,y,t) the

velocity potential, l+ortl(x,t) the surface elevation. The two small

parameters are a = a/h , the ratio of wave amplitude to undisturbed water
2 P

depth, and p = h /& , the square of the ratio between depth and wave

length.

A. NON-HAMILTONIAN H2RTURBATICNS. In Boussinesq1s method, the first step is to

solve the elliptic boundary value problem (U.l-3) in terms of the potential

« =9 (x,t) = cp(x,0,t) at depth 0<8<l , giving the series solution

(We will not worry about problems concerning the precise domains of

definition of the functions - see Lebovitz, [710 Substituting the series

(U.6) into Ci.^,5), differentiating the former with respect to x and

truncating to first order leads to the following version of the Boussinesq

system:

O = u,. + Tl +a uu + -|p(0-l)u
u x x 2 xxt

0 = T1. + u +a(Tlu) + 4
Q

in which u = u (x,t) = tp (x,9,t) is the horizontal velocity at depth 9 . The

basic system (k.7) can be modified by resubstituting, expanding and truncating

again; for instance since to leading order ufc = -1) , the tern u^^ in the

first equation can be replaced by -IL--. to yield a purely evolutionary

system. See Bona and Smith, [3], for a complete discussion of the

possibilities, and the companion paper [13) for the second order terns in the

expansion.

To specialize to unidirectional waves, one looks for an expansion of the

form 71 = u + oA+SB+... such that the two equations in (k.7) become the

same up to the requisite order. To first order,

11 = u+ £au2+ |^(392-2)uxx, (U.8)

leading to the KdV equation

VUx+ 2 ""V |P
independent of depth 6 . Alternatively, one can express u in terms of

11 , leading to the same equation for 11 , (1.7) • Again one can play the sane

games as with the Boussinesq system, so, for instance, since ufc»-u^ to
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leading order, we can replace u^ by -u^ , yielding the BBH equation,

[1], whose dispersion relation offers some advantages over the KdV model.

B. HAMILTONIAI1 MODELS. In Zakharov's Hamiltonian formulation of the water

wave problem, the basic variables are the surface elevation T) and the

potential on the surface tp^x.t) = <p(x,l + ofll(x,t),t) , the values of 9

within the fluid being determined from cpg by solving the auxilliary boundary

value problem (U.l-3), cf. [2]. The Hamiltonian is the energy

H = JJ. I (pO'^Py -Cfllx<px) + A T\Z Jdx . (U.io)

(The S on the integral means aj_l terms are evaluated on the free surface
y = l + tfll .) The water wave probelm (l*.l-5) is now in canonical forffl

—3. = M M 5H
6t 6T1 ' ftt = 5<ps * (^-ll)

First consider bidirectional Boussinesq systems. Substituting (U.6) into

(U.IO), and truncating, we get the first order expansion

«U) = IJ I "2+ I n2+ \ an u2+ 1 p(a. 3e2)u2]dx (u-12)

for the energy. For the sympl*ctic version of the Boussinesq system, we

expand the two form 0 = d1| A d»s appropriate to (U.il), leading to

°(1) = dT1 A <a*+ I e(92-lUexx) = dT] a (D^+ I 0(02-l)Dx)du . (U.17)
(We omit the integral sign from n^ tar simplicity.) This yields

0 = ut + n + a uu+ \ 2

0 = Vx (i)x ^(^Dn^.^e- I

(We have differentiated both equations with respect to x here.). Note that

the "symplectic Boussinesq" system (U.13) agrees to first order with (U.7)

after manipulations similar to those discussed earlier.

Alternatively, we can perturb the cosymplectic two-vector 9=6 Ao

Using (U.6) again, from (3.2) we find ^ 's

which is cosymplectic since the underlying operator is constant coefficient.

This yields the "cosymplectic Boussinesq" system

differing from (U.7) by the inclusion of quadratic terms. The special case

9 = 1 is of special note, as remarked by Broer [1: ]. »i-ce t? fir=t order *-he

expansion (U.6) is equivalent to a canonical expansion in the variables H,<p
s
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the Hamiltonian systems (U.13.1W reduce to versions of the usual system

(U.7). The more general (9^1) Hamiltonian Boussinesq systems are new.

As for unidirectional models, since we are still matching the two

equations to first order in the Boussinesq system, the definition (U.8) of the

submanifold of unidirectional solutions remains the same. Thus we need only

substitute (U.8) into the energy and the (co-) symplectic form and expand to

first order. The appropriate Hamiltonian is

U(l) = j"[u2+ 1 a u3+ ( f -92)P ujdbc , (U.16)

where we have integrated one term by parts. For the cosymplectic model, note

first that from (U.8)

cf. (3.2), hence to first order

Therefore, substituting into (U.1U), we find

$M = 6u a (Dx - J a(uDx+ Dxu) + ( | xu

which can be proved to be cosymplectic, [5], [91- Combining (U.l6,17) we

find the following "cosymplectic version" of the Korteweg-de Vries equation.

Ut+[V ira(uVDxu)+( 2
or, in detail,

ut+ux+ 1 ouux+ 1 eu^

+ ( |i - ^aeu^ ^ )^ % x

(in deriving (U.18) we have multiplied by £ - this is rigorously justified

since we are restricting the system to a submanifold.)

The symplectic form, which resembles more closely the BBM equation, is

more complicated. We find

&1] = du A

hence, formally,

To convert this into a bcna-fide differential equation, recall u=&x* , and

differentiate:

fxt i
This example illustrates well the previous remarks that the symplectic

perturbation is easier to handls theoretically, but the resulting equations

are much more unpleasant.
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There are a lot of open questions concerning these models, most of which

are probably only amenable to numerical investigation. What are their

solitary-wave solutions like, and how do they interact? (Only the 11-equation

(1.8) can be solved "explicitly" in terms of a hyperelliptic integral.) How

do the solutions compare with those of the KdV or BBM equation? In particular,

do they give any truer indication of the qualitative or long time behavior of

water waves? Does the dependence of (U.18) on the depth 9 have any relevance

to the breaking of water waves, in that solitary waves of the same amplitude

may move a different speeds at different depths, thereby setting up seme kind

of shearing instability? (see also [13}.) All those questions must await

further research.

5- COMPLETE INTEGRABILITY. We now turn to the question of why the KdV equation

happens to be Hamiltonian. Returning to the general set-up, as summarized in

(1.1*,5), we see that one possibility for (1.5) to be Hamiltonian is if the

first order terms are multiples of each other:

Jl7Ho - a Jo7Hl ' (5-1)

This of course cannot be expected in general, but if it does happen, the

situation can be handled by the theorem of Magri on complete integrability of

bi-Hamiltonian systems, [9], [5].

THEOREM 5-1 Suppose a system x = K^x) can be written in Hamiltonian form in

two distinct ways: Kx = •M^ = J1'Hq . Assume also that the two Hamiltonian

structures are compatible, meaning that J +|i J. is cosymplectie for ait

constant ti . Then the recursion relation KR = JQ7H = J.VH . defines an

infinite sequence of commuting bi-Hamiltonian flows x = K (x) , with mutually

conserved Hamiltonians H (x) in involution (with respect to either the J
" o

or J^ Poisson bracket). (One also needs to assune that J in the

recursion relation always invertible, but this usually holds.)

Thus, in this special case, both the noncanonical perturbation equation

(1.5) and the cosymplectie version (1.6) are linear combinations of the

completely integrable flows KQ, 1^ , K, , and hence, provided "enough" of the

Hamiltonians H are independent, are both completely integrable Hamiltonian

systems.

For the water wave expansion, in the Korteweg-de Vries model the O(a,P)-

terrns are in the right ratio only at the "magic" depth e = yn/iP , and for

this depth (U.18) is a linear combiration of a fifth, third and first order

KdV equation. For more general 9 , one must fudge the condition (5-1) slightly

to obtain complete integrability.

nevertheless, this leads to an intriguing speculation. Does condition

(5-1) often hold in the perturbational derivation of model equations from con-
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servativo physical systems? If true, it would provide a good explanation of

the common feature of many systems that in the zeroth order perturbation one

has linear equations, and in the first order perturbation the equations are

nonlinear, but canpletely integrable soliton equations. Presumably the

second order expansion leads to nonintegrable models with seme chaotic com

ponents. A good place to check this is in Zakharov's derivation of the non

linear Schrodinger equation as the modulational equation for periodic water

waves, [18].
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