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1. Introduction

This paper is concerned with Liouville correspondences for integrable hierarchies of multi-
component systems possessing nonlinear dispersion, extending the previous work on scalar
hierarchies [35, 36, 43, 56]. Specifically, we shall establish Liouville correspondences among
several multi-component integrable hierarchies, generated respectively by the two-component
Camassa-Holm system, the two-component Novikov system, also known as the Geng-Xue
system, as well as the two-component dual dispersive water wave system.

A basic idea for investigating the integrability of a new system is to establish its rela-
tionship with a known integrable system through some kind of transformations. These may
include Bäcklund transformations, Miura transformations, gauge transformations, Darboux
transformations, hodograph transformations, Liouville transformations, etc [9, 12, 41, 55,
58, 66, 71]. Application of an appropriate transformation enables one to derive solutions and
analyze the integrability properties for the system under consideration through adaptation
of known solutions and integrable structures. Among these vital features of integrability,
the spatial isospectral problem in the Lax-pair formulation [42] plays a dominant role in the
construction of solitons using inverse scattering transform, as well as the long-time behavior
of solutions by virtue of the Riemann-Hilbert approach. Usually, the transition from one
isospectral problem to another through a change of variables can be identified as a form
of Liouville transformation; see also [57] and [60] for this terminology. It is then expected
that such a Liouville correspondence can be used to establish an inherent correspondence
between the associated integrability properties, including symmetries, conserved quantities,
soliton solutions, Hamiltonian structures, etc.

In recent years, intense interest in integrable systems of Camassa-Holm type has resulted
from their novel properties, including nonlinear dispersion, (usually) supporting non-smooth
soliton structures, such as peakons, cuspons, compactons, etc., and their ability to model
wave-breaking phenomena. Previous investigations have established a variety of Liouville
correspondences between integrable hierarchies of Camassa-Holm type and certain classical
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integrable hierarchies. The most well-studied example is the Camassa-Holm (CH) equation

mt + 2uxm+ umx = 0, m = u− uxx, (1.1)

that has a quadratic nonlinearity [6, 7, 14, 23]. In [43] and [56], the Liouville correspondence
between the entire CH hierarchy induced by (1.1) and the usual Korteweg–de Vries (KdV)
hierarchy was established which, moreover, provides a correspondence between the Hamil-
tonian functionals of the two hierarchies [43]. Furthermore, [44], the Liouville transformation
relates their smooth traveling wave solutions.

The modified Camassa-Holm (mCH) equation [64]

mt +
(
(u2 − u2x)m

)
x
= 0, m = u− uxx, (1.2)

is a prototypical integrable model with cubic nonlinearity, which presents several novel prop-
erties, as described, for instance, in [11, 27, 35, 48, 49, 53]. The Liouville correspondence
between the integrable mCH and modified Korteweg-de Vries (mKdV) hierarchies, including
the explicit relationships between their equations and Hamiltonian functionals, was estab-
lished in [35]. In contrast to the CH-KdV situation, the analysis in [35] is based on the
interrelationship between the respective recursion operators and the conservative structure
of the mCH hierarchy. Furthermore, with the respective Liouville correspondences between
the CH-KdV hierarchies and the mCH-mKdV hierarchies in hand, a novel transformation
mapping the mCH equation (1.2) to the CH equation (1.1) was constructed [35].

It is worth noting that all of the equations in the CH, mCH, KdV, and mKdV hierarchies
are of bi-Hamiltonian form. Moreover, the two Hamiltonian operators for the CH and mCH
integrable hierarchies can be constructed from those of the KdV and mKdV hierarchies,
respectively, using the method of tri-Hamiltonian duality, established in [21, 22, 64]. This
approach is based on the observation that most standard integrable equations which pos-
sess a bi-Hamiltonian structure, actually admit a compatible trio of Hamiltonian structures
through an adapted scaling argument. Recombinations of the members of the compatible
Hamiltonian triple will generate different types of bi-Hamiltonian integrable systems, which
admit a dual relationship. The tri-Hamiltonian duality relationships aid us to establish cor-
responding Liouville correspondences in the CH-KdV and mCH-mKdV cases as shown in
[35] and [43].

For the integrable hierarchies possessing generalized bi-Hamiltonian structures, i.e., com-
patible pairs of Dirac structures [17], or which do not admit tri-Hamiltonian duality, es-
tablishing the relevant Liouville correspondences is more challenging. Nevertheless, such
Liouville correspondences are to be expected whenever Liouville transformations between
the associated isospectral problems are provided. In this case, the Novikov and Degasperis-
Procesi (DP) [15, 16] integrable hierarchies are two representative examples. The Novikov
integrable equation with cubic nonlinearity [32, 59]

mt = u2mx + 3uuxm, m = u− uxx, (1.3)

is associated with a third-order isospectral problem. In [32], Hone and Wang employed a
Liouville transformation to convert its isospectral problem into that of the Sawada-Kotera
(SK) equation [8, 67]

Qτ +Qyyyyy + 5QQyyy + 5QyQyy + 5Q2Qy = 0. (1.4)

Even though the Novikov hierarchy is bi-Hamiltonian [32], its Hamiltonian operators do
not support the tri-Hamiltonian duality construction, especially one that relates to the
Hamiltonian operators of the SK equation. Moreover, the SK equation (1.4) exhibits the
generalized bi-Hamiltonian formulation with the corresponding hierarchy generated by the
recursion operator, which is the composition of symplectic and implectic operators that
fail to satisfy the conditions of non-degeneracy or invertibility [24]. Therefore, producing
a Liouville correspondence for the Novikov integrable hierarchy requires a more delicate
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analysis. In [36], using the Liouville transformation and several operator decomposition
identities, we were able to establish a Liouville correspondence between the Novikov and
SK integrable hierarchies. In a similar manner, using a certain Liouville transformation
proposed in [15] and [31], a similar correspondence between the DP and Kaup-Kupershmidt
[39] hierarchies was also established in [36].

Let us now turn our attention to multi-component integrable systems of Camassa-Holm
type. One important example is the well-studied two-component CH (2CH) system [10]{

mt + 2uxm+ umx + ρρx = 0, m = u− uxx,

ρt + (ρu)x = 0,
(1.5)

which arises as an integrable shallow water model [13]. The system (1.5) is of significant
interest, since it exhibits nonlinear interactions between the free surface and the horizontal
velocity components, and can model the phenomenon of wave breaking; see, for example,
[18, 19, 20, 25, 26, 29, 30, 54, 65, 68, 69]. The 2CH system (1.5) is completely integrable
and arises from the compatibility condition of the Lax-pair formulation [13]

Ψxx +

(
−1

4
− λm(t, x) + λ2ρ2(t, x)

)
Ψ = 0,

Ψt =

(
1

2λ
− u(t, x)

)
Ψx +

1

2
ux(t, x)Ψ.

(1.6)

In [3], Antonowicz and Fordy investigated the isospectral flows of the spectral problem

Ψxx +
(
λv1(t, x) + · · ·+ λNvN (t, x)

)
Ψ = αΨ, (1.7)

and the associated general N -component systems possessing (N+1) compatible Hamiltonian
structures. Furthermore, it was proved in [3] that the Liouville transformation

y =

∫ x√
vN (t, ξ) dξ, Φ = v

1
4

N Ψ,

u0(t, y) = − α

vN
− vN,xx

4v2N
+

5v2N,x

16v3N
, uk(t, y) =

vk
vN

, k = 1, · · · , N − 1

(1.8)

will transform (1.7) into the energy-dependent Schrödinger isospectral problem [2, 4]

Φyy +
(
u0(t, y) + λu1(t, y) + · · ·+ λN−1uN−1(t, y)

)
Φ = −λNΦ. (1.9)

Note that the x-part in (1.6) is the special case of (1.7). The transformation (1.8) for N = 2
was also employed by Chen et al [10] to convert (1.6) into

Φyy +
(
Q(τ, y) + λP (τ, y) + λ2

)
Φ = 0,

Φτ − 1

2λ
ρ(t, x)Φy +

1

4λ
ρy(t, x)Φ = 0,

(1.10)

which is the Lax-pair formulation of the following integrable system

Pτ (τ, y) = ρy, Qτ (τ, y) =
1

2
ρPy(τ, y) + ρyP (τ, y),

ρyyy + 2ρyQ(τ, y) + 2(ρQ(τ, y))y = 0.
(1.11)

In [10], taking into account the structure of spectrum in its Lax-pair formulation (1.10), the
system (1.11) is recognized to be the first negative flow of the AKNS hierarchy [1].

Moreover, the 2CH system (1.5) is bi-Hamiltonian — and so the compatible Hamiltonian
operators recursively generate the entire 2CH integrable hierarchy, with (1.5) forming the
second flow in the positive direction. Moreover, the bi-Hamiltonian structure can be derived
from that of the Ito system [33] using the method of tri-Hamiltonian duality [64]. On the
other hand, even though the 2CH and Ito integrable systems are in tri-Hamiltonian dual rela-
tionship, unlike the CH-KdV and mCH-mKdV cases, the Liouville correspondence between
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these two hierarchies is unexpected, because the transformation between the corresponding
isospectral problems is not evident. Nevertheless, one expects to be able to establish a Liou-
ville correspondence between the 2CH hierarchy and a second integrable hierarchy involving
integrable system (1.11) as a particular member in the negative direction.

To achieve this goal, we need to overcome several new difficulties. First of all, the in-
tegrable structures, including the recursion operator and Hamiltonian operators, for the
hierarchy that includes system (1.11) as a negative flow are not clear. Chen et al [10] also
did not clarify the required integrability information. On the other hand, as in the scalar
case, the verification of the Liouville correspondence relies on an analysis of the underly-
ing operators, which in the multi-component case, are of matrix form and hence a more
careful calculation of the nonlinear interplay among the various components is required.
In the present paper, we elucidate the entire integrable hierarchy, which we call associated
with the system (1.11), which forms the first negative flow in what we will refer to as the
associated two-component Camassa-Holm (A2CH) hierarchy. We further demonstrate its
bi-Hamiltonian structure and establish a Liouville correspondence between the 2CH and
A2CH hierarchies. Furthermore, we find that the second positive flow of the A2CH inte-
grable hierarchy is the following integrable system

Qτ = −1

2
Pyyy − 2QPy −QyP, Pτ = 2Qy − 3PPy,

which belongs to the integrable family studied in [34] and can be recognized as an integrable
system of Kaup-Boussinesq type describing the motion of shallow water waves [38].

The Novikov equation (1.3) has the following two-component integrable generalization
mt + 3vuxm+ uvmx = 0, m = u− uxx,

nt + 3uvxn+ uvnx = 0, n = v − vxx,
(1.12)

which was introduced by Geng and Xue [28], and so is referred to be the Geng-Xue (GX)
system; see [50] and references therein. As a prototypical multi-component integrable system
with cubic nonlinearity, the GX system (1.12) admits special peakon solutions and has
recently attracted much attention [45, 46, 47, 50, 51]. In [45], it was shown that there exists
a certain Liouville transformation converting the Lax-pair of the GX system (1.12) into the
Lax-pair of the following integrable system

Qτ = 3
2 (qy + py)− (q − p)P, Pτ = 3

2 (q − p),

pyy + 2pyP + pPy + pP 2 − pQ+ 1 = 0,

qyy − 2qyP − qPy + qP 2 − qQ+ 1 = 0,

(1.13)

where q = vm2/3n−1/3 and p = um−1/3n2/3. The system (1.13) is bi-Hamiltonian, whose
structure is derived in [45]. We shall elucidate the entire associated Geng-Xue (AGX) in-
tegrable hierarchy in which (1.13) is the first negative flow. We also establish a Liouville
correspondence between the integrable GX hierarchy generated by (1.12) and the AGX
hierarchy.

Finally, we consider the dual dispersive water wave (dDWW) integrable system

ρt = ((ρ+ v)u)x , ρ = v − vx,

γt = (γ u+ 2v)x , γ = u+ ux,
(1.14)

which was recently derived using tri-Hamiltonian duality, [37], from the dispersive water
wave (DWW) integrable system whose integrability was studied by Kaup and Kupershimdt
[38, 40]. The dDWW system (1.14) possesses a bi-Hamiltonian formulation and admits
a variety of non-smooth soliton solutions [37]. We find a transformation to establish a
Liouville correspondence between the dDWW integrable hierarchy generated by (1.14) with
an associated dDWW integrable hierarchy, thus providing a bi-Hamiltonian characterization
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of the latter hierarchy. We further explore the explicit relationship between their flows and
Hamiltonian functionals.

This section is concluded by outlining the rest of the paper. In Section 2, we first present
a Liouville transformation relating the isospectral problems of the 2CH and A2CH integrable
hierarchies. Next, we exploit the Liouville transformation to establish the one-to-one corre-
spondence between the flows of the 2CH and A2CH hierarchies. Furthermore, we establish
the relationship between the Hamiltonian functionals appearing in the 2CH and A2CH hi-
erarchies. In Sections 3 and 4, we similarly investigate the Liouville correspondences for the
GX and dDWW integrable hierarchies, respectively.

2. The Liouville correspondence for
the two-component Camassa-Holm hierarchy

2.1. The Liouville transformation for the isospectral problem of the 2CH system.
In this subsection, we shall present the explicit expression of the Liouville transformation
for the isospectral problem of the 2CH system{

mt + uxm+ (um)x + ρρx = 0, m = u− uxx,

ρt + (ρu)x = 0,
(2.1)

which follows as the compatibility condition of the Lax-pair formulation

Ψxx +

(
−1

4
− λm+ λ2ρ2

)
Ψ = 0, Ψt =

(
1

2λ
− u

)
Ψx +

ux
2
Ψ, (2.2)

with the spectral parameter λ. It was proved in [10] that the reciprocal transformation

dy = ρ dx− ρu dt, dτ = dt, (2.3)

converts the isospectral problem (2.2) into

Φyy + (Q+ λP + λ2)Φ = 0, Φτ − 1

2λ
ρΦy +

1

4λ
ρyΦ = 0, (2.4)

with
Φ =

√
ρΨ, Q = −1

4
ρ−2 +

3

4
ρ−4ρ2x − 1

2
ρ−3ρxx, P = −m

ρ2
. (2.5)

The linear equations (2.4) have the form of a Lax pair, and the resulting compatibility
condition Φyyτ = Φτyy gives rise to the following integrable system

Pτ = ρy, Qτ =
1

2
ρPy + ρyP, ρyyy + 2ρyQ+ 2(ρQ)y = 0. (2.6)

Therefore, the anticipated Liouville correspondence between the 2CH system (2.1) and in-
tegrable system (2.6) is provided by the reciprocal transformation (2.3) and the change of
dependent variables (2.5). On the other hand, due to the spectral structure in (2.4), the
system (2.6) can be viewed as the first negative flow of some specific integrable hierarchy
that obeys the isospectral problem (2.4), that will be referred to as the associated 2CH
(A2CH) hierarchy in this paper.

2.2. The Liouville correspondence between the 2CH and A2CH hierarchies. Mo-
tivated by these results, we are led to generalize the Liouville correspondence between the
systems (2.1) and (2.6), to their respective entire integrable hierarchies. More precisely, we
propose the following Liouville transformation

τ = t, y =

∫ x

ρ(t, ξ) dξ, P (τ, y) = −m(t, x) ρ(t, x)−2,

Q(τ, y) = −1

4
ρ(t, x)−2 +

3

4
ρ(t, x)−4ρ2x(t, x)−

1

2
ρ(t, x)−3ρxx(t, x).

(2.7)
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First, the 2CH system (2.1) can be expressed in the bi-Hamiltonian form [64](
m
ρ

)
t

= KδH1(m, ρ) = J δH2(m, ρ), δHn(m, ρ) =

(
δHn

δm
,
δHn

δρ

)T

, n = 1, 2, (2.8)

with compatible Hamiltonian operators

K =

(
m∂x + ∂xm ρ∂x

∂xρ 0

)
, J =

(
∂x − ∂3x 0

0 ∂x

)
. (2.9)

The associated Hamiltonian functionals are

H1(m, ρ) = −1

2

∫
(u2 + u2x + ρ2) dx, H2(m, ρ) = −1

2

∫
u(u2 + u2x + ρ2) dx.

According to Magri’s theorem [52], the Hamiltonian pair induces the hierarchy(
m
ρ

)
t

= Kn = KδHn−1(m, ρ) = J δHn(m, ρ), δHn(m, ρ) =

(
δHn

δm
,
δHn

δρ

)T

, n ∈ Z,

(2.10)
of commutative bi-Hamiltonian systems, based on the corresponding Hamiltonian function-
als Hn = Hn(m, ρ). The members in the hierarchy (2.10) are obtained by successively
applying the recursion operator R = KJ−1 to a seed symmetry [61, 63]. The positive flows
of (2.10) begin with the seed system(

m
ρ

)
t

= K1 = −
(
m
ρ

)
x

,

and the 2CH system (2.8) is the second member. Observe that the Hamiltonian operator K
admits a Casimir functional

HC(m, ρ) =

∫
m

ρ
dx with variational derivative δHC(m, ρ) =

(
ρ−1

−mρ−2

)
, (2.11)

which leads to an associated Casimir system(
m
ρ

)
t

= K−1 = J δHC ,

which serves as the first negative flow for the hierarchy (2.10) and has the explicit form

mt = (∂x − ∂3x)

(
1

ρ

)
, ρt = −

(
m

ρ2

)
x

, m = u− uxx. (2.12)

Applying the inverse recursion operator R−1 = J K−1 successively to (2.12) produces the
members in the negative direction of (2.10), having the form(

m
ρ

)
t

= K−n = (J K−1)n−1 J
(

ρ−1

−mρ−2

)
, n = 1, 2, . . . . (2.13)

Furthermore, we will demonstrate, in Lemma 2.3 below, that the A2CH integrable hier-
archy involving system (2.6) is actually generated by the following recursion operator

R =
1

2

(
0 ∂2y + 4Q+ 2Qy∂

−1
y

−4 4P + 2Py∂
−1
y

)
. (2.14)

Successively applying R to the usual seed symmetry K1 = (−Qy, −Py)
T produces the

positive flows of the A2CH integrable hierarchy:(
Q
P

)
τ

= Kn = Rn−1
K1, n = 1, 2, . . . . (2.15)
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On the other hand, in the negative direction, since the trivial symmetry K0 = (0, 0)
T

satisfies RK0 = K1, the negative flow at stage n ∈ Z+ takes the form

Rn
(
Q
P

)
τ

= K0, n = 1, 2, . . . . (2.16)

In particular, the first negative flow, n = 1, in (2.16) takes the explicit form(
1

2
∂2y + 2Q+Qy∂

−1
y

)
Pτ = 0, Qτ =

(
P +

1

2
Py∂

−1
y

)
Pτ . (2.17)

More precisely, the system (2.6) arising from the compatibility condition of the Lax-pair
formulation (2.4) is a reduction of the first negative flow (2.17). Furthermore, the second
positive flow, for n = 2, of the A2CH hierarchy in (2.15) is(

Q
P

)
τ

= K2 = RK1 = R
(
−Qy

−Py

)
=

(
−1

2Pyyy − 2QPy −QyP
2Qy − 3PPy

)
, (2.18)

which can be obtained by the y component of the Lax-pair formulation (2.4) together with

Φτ + (2λ+ P )Φy −
1

2
PyΦ = 0.

In [34], Ivanov and Lyons introduced the following general Lax-pair formulation

Φyy =
(
−λ2 + λu(τ, y) +

κ

2
u2(τ, y) + v(τ, y)

)
Φ,

Φτ = −
(
λ+

1

2
u(τ, y)

)
Φy +

1

4
uy(τ, y)Φ,

where κ is an arbitary constant, leading to the integrable system{
uτ + vy + ( 32 + κ)uuy = 0,

vτ − 1
4uyyy + (uv)y − ( 12 + κ)uvy − κ( 12 + κ)u2uy = 0.

If κ = 0, then the resulting system is exactly (2.18) up to a change of variables u = P ,
v = −Q and τ = 2t. Moreover, a change of dependent variable

Q(τ, y) = N(τ, y) +
1

4
P 2(τ, y),

converts (2.18) into

Nτ = −1

2
Pyyy − 2(PN)y, Pτ = 2Ny − 2PPy,

which has the form of a Kaup-Boussinesq system considered in [38].
Hereafter, we denote, for a positive integer n, the n-th equation in the positive and

negative directions of the 2CH hierarchy (2.10) by (2CH)n and (2CH)−n, respectively, while
the n-th positive and negative flows of the A2CH hierarchy are denoted by (A2CH)n and
(A2CH)−n, respectively. With these notations, we are in a position to state the main result
on the Liouville correspondence between the 2CH and A2CH hierarchies as follows.

Theorem 2.1. Under the Liouville transformation (2.7), for each integer n, the (2CH)n+1

equation is mapped into the (A2CH)−n equation.

The proof of this theorem relies on the following two preliminary lemmas.
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Lemma 2.2. Let (m(t, x), ρ(t, x)) and (Q(τ, y), P (τ, y)) be related by the transformation
(2.7). Then the following operator identities hold:

ρ−
3
2

(
1

4
− ∂2x

)
ρ−

1
2 = −(Q+ ∂2y),

ρ−2
(
∂x − ∂3x

)
ρ−1 = −

(
∂3y + 2Q∂y + 2∂yQ

)
,

ρ−2 (∂xm+m∂x) ρ
−1 = −(P∂y + ∂yP ).

(2.19)

Proof. First of all, in view of the transformation (2.7), one has

∂x = ρ ∂y. (2.20)

It follows that
∂2x ρ

− 1
2 =

3

4
ρ−

5
2 ρ2x − 1

2
ρ−

3
2 ρxx + ρ

3
2 ∂2y .

We thus arrive at

ρ−
3
2

(
1

4
− ∂2x

)
ρ−

1
2 = ρ−

3
2

(
1

4
ρ−

1
2 − 3

4
ρ−

5
2 ρ2x +

1

2
ρ−

3
2 ρxx − ρ

3
2 ∂2y

)
= −

(
Q+ ∂2y

)
,

proving the first identity in (2.19). Next, from (2.20), one has

∂xρ
−1 = −ρ−1ρy + ∂y,

∂3xρ
−1 = −ρ−1ρ3y + 2ρyρyy − ρρyyy + (ρ2y − 2ρρyy)∂y + ρ2∂3y .

Hence,

ρ−2
(
∂x − ∂3x

)
ρ−1

=− ρ−3ρy + ρ−3ρ3y − 2ρ−2ρyρyy + ρ−1ρyyy + (ρ−2 − ρ−2ρ2y + 2ρ−1ρyy)∂y − ∂3y ,

and then the second identity in (2.19) follows. Finally, a direct computation shows that

ρ−2∂xmρ
−1 +mρ−2∂x ρ

−1 = −ρ−1∂yPρ− Pρ∂yρ
−1

= −ρ−1
(
(Pρ)y + Pρ∂y

)
+ P

(
ρ−1ρy − ∂y

)
= −(P∂y + ∂yP ),

verifying the third identity in (2.19). □

Lemma 2.3. Let K and J be the two compatible Hamiltonian operators given in (2.9) for
the 2CH integrable hierarchy. Then, for each positive integer n,

A−1
(
J K−1

)n
A = Rn

, (2.21)

through the transformations (2.7), where the operator R is defined by (2.14) and

A =

(
−2ρ2 0
0 ρ

)
. (2.22)

Moreover, R is not only a hereditary operator itself, but also the recursion operator for the
A2CH hierarchy with positive flows given by (2.15) and negative flows by (2.16).

Before proving Lemma 2.3, we give a brief remark on the notion of hereditary operators
in the two-component setting. Let A denotes the space of differential functions, depending
only on the indicated dependent variables and their spatial derivatives, while An denotes
the corresponding space of n-component differential functions. An operator, say R as in
(2.14) for instance, is called a hereditary operator if and only if it satisfies the condition

DR[R f ]g −DR[Rg] f = R (DR[f ]g −DR[g]f) , for all f , g ∈ A2. (2.23)

The following proposition, proved in [23, 63], describes how a hereditary operator serves as
the recursion operator of an integrable hierarchy.
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Proposition 2.4. Assume that the hereditary operator R and the system

Qτ = G1, Q = (Q(τ, y), P (τ, y))T , G1 =
(
G1

1(Q), G2
1(Q)

)T ∈ A2, (2.24)

satisfy the condition

Rτ

∣∣∣
Qτ=G1

=
[
DG1 , R

]
, (2.25)

where Rτ is the time derivative of R and DG1 is the Fréchet derivative of G1, so that R is
the recursion operator for (2.24). Then, R is also the recursion operator for each flow in
the assocaited hierarchy

Qτ = Gn = Rn−1
G1, n ∈ Z.

Proof of Lemma 2.3. We prove (2.21) by induction. For the case n = 1, in view of the
forms of K and J , we obtain

A−1JK−1A =
1

2

(
0 −ρ−2(∂x − ∂3x)ρ

−1∂−1
x ρ

−4 −2ρ−2(m∂x + ∂xm)ρ−1∂−1
x ρ

)
,

which together with the second and third equations in (2.19) leads to (2.21) for n = 1. Next,
assume that (2.21) holds for n = k with some k ∈ Z+. Then for n = k + 1, one has

Rk+1
= RkR = A−1(JK−1)kAA−1JK−1A = A−1(JK−1)k+1A,

which establishes the induction step and thus verifies (2.21) holds for any integer n ≥ 1.
According to Proposition 2.4, to prove that the operator R serves as a recursion operator

for the entire A2CH hierarchy, we first verify that R is a recursion operator for the seed
system (

Q
P

)
τ

= K1 = −
(
Q
P

)
y

. (2.26)

In order to prove (2.25), on the one hand, the relevant Fréchet derivative is

DK1
= −

(
∂y 0
0 ∂y

)
.

On the other hand, with respect to (2.26), we have

Rτ = −
(
0 Qyy∂

−1
y + 2Qy

0 Pyy∂
−1
y + 2Py

)
.

Furthermore, the commutator in (2.25) satisfies[
DK1

, R
]
= DK1

· R −R ·DK1

=
1

2

(
0 −∂y

(
∂2y + 2Qy∂

−1
y + 4Q

)
4∂y −2∂y(2P + Py∂

−1
y )

)
− 1

2

(
0 −

(
∂2y + 2Qy∂

−1
y + 4Q

)
∂y

4∂y −2(2P + Py∂
−1
y )∂y

)
= Rτ ,

which verifies (2.25) and demonstrates that R is a recursion operator for (2.26).
Finally, a direct and tedious calculation shows that R satisfies the hereditary property

(2.23). This, together with the fact that R is a recursion operator for the seed system
(2.26) suffices to prove that it is a recursion operator for each flow in the A2CH integrable
hierarchy, which completes the proof of this lemma. □

Proof of Theorem 2.1. First, we compute the t-derivatives of the functions Q(τ, y) and
P (τ, y) appearing in the Liouville transformation (2.7). More precisely,

Qt = Qτ +Qy

∫ x

ρt(t, ξ) dξ = Qτ +Qy∂
−1
y ρ−1ρt. (2.27)
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On the other hand, note that Q given in the transformation (2.7) can be rewritten in the
following compact form

Q = −ρ− 3
2

(
1

4
− ∂2x

)
ρ−

1
2 ,

which implies

Qt = −
(
ρ−

3
2

(
1

4
− ∂2x

)
ρ−

1
2

)
t

= −
(
2Q+

1

2
∂2y

)
ρ−1ρt, (2.28)

by using the operator identity (2.19). Thus, combining with (2.27) and (2.28), we obtain

Qτ = −
(
1

2
∂3y + 2Q∂y +Qy

)
∂−1
y ρ−1ρt.

Similarly,
Pτ = −ρ−2mt − (P∂y + ∂yP )∂

−1
y ρ−1ρt,

and hence (
Q
P

)
τ

= −RA−1

(
m
ρ

)
t

, (2.29)

where A is defined in (2.22).
Next, consider the (2CH)−n system (2.13) for n ≥ 1. The second identity in (2.19) and the

transformation formulae (2.7) imply that the first negative flow (2.12) of the 2CH hierarchy
satisfies (

m
ρ

)
t

= K−1 = A

(
Q
P

)
y

,

and hence the n-th negative flow (2.13) can be written as(
m
ρ

)
t

= K−n =
(
JK−1

)n−1
K−1 =

(
JK−1

)n−1
A

(
Q
P

)
y

, n = 1, 2, . . . . (2.30)

Plugging (2.30) into (2.29) and using the formula (2.21), we arrive at(
Q
P

)
τ

= −RA−1
(
JK−1

)n−1
A

(
Q
P

)
y

= − A−1
(
JK−1

)n
A

(
Q
P

)
y

= Rn
K1 = Kn+1.

Therefore, for each n ≥ 1, if
(
m(t, x), ρ(t, x)

)
is the solution of the (2CH)−n system (2.13),

then the corresponding
(
Q(τ, y), P (τ, y)

)
solves the (A2CH)n+1 system (2.15).

Moreover, for 0 ≤ n ∈ Z, substituting the (2CH)n+1 system in the positive direction(
m
ρ

)
t

= Kn+1 = −
(
KJ−1

)n(m
ρ

)
x

n = 0, 1, . . . , (2.31)

into (2.29) yields (
Q
P

)
τ

= RA−1
(
KJ−1

)n (m
ρ

)
x

.

Then, we let the operator Rn
to act on the both sides of the above system, and use the

formula (2.21) again, to deduce that

Rn
(
Q
P

)
τ

= Rn+1
A−1

(
KJ−1

)n (mx

ρx

)
= A−1JK−1

(
mx

ρx

)
=

(
0
0

)
,

where the operation K−1
(
mx, ρx

)T
=
(
1, 0
)T is used. We conclude that, for each n ≥ 0,

if
(
m(t, x), ρ(t, x)

)
is the solution of the (2CH)n+1 system (2.31), then the corresponding(

Q(τ, y), P (τ, y)
)

solves the (A2CH)−n system (2.16).
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Finally, if
(
m(t, x), ρ(t, x)

)
solves the (2CH)0 system, then the corresponding

(
Q(τ, y), P (τ, y)

)
satisfies (

Q
P

)
τ

= −RA−1

(
0
0

)
=

(
−Qy

−Py

)
,

which implies that
(
Q(τ, y), P (τ, y)

)
is the solution of the (A2CH)1 system. □

2.3. The correspondence between the Hamiltonian functionals of the 2CH and
A2CH hierarchies. In this subsection, we investigate the correspondence between the
Hamiltonian functionals appearing in the 2CH and A2CH hierarchies. We first consider the
effect of the Liouville transformation on the Hamiltonian operators. To do this, we need
some relevant results found in [62, 63]. In [62], a general transformation formula for scalar
Hamiltonian operators under a change of variables was provided, which can be directly
generalized to the multi-component case.

Consider an n-component system of equations

mt = K(m), m =
(
m1(t, x) , . . . ,mn(t, x)

)T
, (2.32)

where K(m) =
(
K1(m) , . . . , Kn(m)

)T ∈ An is an n-component differential function de-
pending on m and their x-derivatives up to a given order. Assume that system (2.32) and
another n-component system involving the dependent variable Q:

Qτ = K(Q), Q =
(
Q1(τ, y) , . . . , Qn(τ, y)

)T
, (2.33)

where K(Q) =
(
K1(Q) , . . . , Kn(Q)

)T ∈ An, are related by the following coordinate trans-
formation

y =

∫ x

Λ(m) dξ ≡ I(x, m), τ = t, Qi = Fi(m), i = 1, . . . , n, (2.34)

where Λ(m) and Fi(m) ∈ A.

Theorem 2.5. Let D(m) be a Hamiltonian operator of system (2.32). Suppose m(t, x) and
Q(τ, y) satisfy (2.32) and (2.33) respetively, and are related by the coordinate transformation
(2.34). Then the corresponding Hamiltonian operator D(Q) of system (2.33) takes the form

D(Q) = Λ(m)−1TD(m)T∗, (2.35)

where T is the n× n matrix operator with entries(
T
)
i,j

= Λ(m)DFi,mj −DxQi DI,mj , i, j = 1, . . . , n, (2.36)

and T∗ is its (formal) L2 adjoint. Here, Dx denotes the total derivative with respect to x,
while DI,mj and DFi,mj are the Fréchet derivatives of I and Fi with respect to mj.

We adapt the proof of Theorem 2.5 in the scalar case given in [62], using the following
lemma [63].

Lemma 2.6. Let H(m) and H̄(Q) be two functionals related by the change of variables
(2.34). Then their corresponding variational derivatives δH(m) =

(
δH/δm1 , . . . , δH/δmn

)T
and δH̄(Q) =

(
δH̄/δQ1 , . . . , δH̄/δQn

)T satisfy

δH(m) = T∗ δH̄(Q), (2.37)

where T∗ is the formal adjoint of the operator T given in (2.36).



12 JING KANG, XIAOCHUAN LIU, PETER J. OLVER, AND CHANGZHENG QU

Proof of Theorem 2.5. If
mt = K(m) = D δH(m) (2.38)

is a Hamiltonian system in the m(t, x) variable, then the corresponding evolution equation
in the Q(τ, y) variable will also be Hamiltonian

Qτ = K(Q) = D δH̄(Q), (2.39)

with the Hamiltonian operator D given in (2.35). To prove this, we first write the transfor-
mation (2.34) in implicit form

B(Q,m) =
(
B1(Q,m) , . . . , Bn(Q,m)

)T
= 0, (2.40)

where Bi(Q,m) = Qi − Fi(m) for i = 1, . . . , n.
Next, taking the t-derivative of each equation in the system (2.40) yields

n∑
k=1

(DBi,mk
mk,t +DBi,Qk

Qk,τ ) = 0, i = 1 , . . . , n,

where DBi,mk
and DBi,Qk

are the Fréchet derivatives of Bi with respect to mk and Qk,
respectively. For convenience, the above expression can be written in vectorial form:

Bm mt +BQ Qτ = 0.

From the transformation (2.40), Bm = −Λ(m)−1T. This immediately gives rise to

Qτ = Λ(m)−1Tmt.

Finally, assembing (2.38) and (2.39), together with formula (2.37) verifies (2.35), completing
the proof of the theorem. □

A direct application of the above theorem is to derive a compatible pair of Hamiltonian
operators for the A2CH integrable hierarchy, which is generated by the recursion operator
R in (2.14), from the given Hamiltonian operators K and J (2.9) of the 2CH integrable
hierarchy. Indeed, due to transformation (2.7), the function Λ(·) given in (2.34) takes the
form Λ(m, ρ) = ρ. Additionally, the operator defined in (2.36) is given by

T = −1

2

(
0 ρ(∂2y + 4Q+ 2Qy∂

−1
y )ρ−1

2ρ−1 ρ(4P + 2Py∂
−1
y )ρ−1

)
with adjoint

T∗ = −1

2

(
0 2ρ−1

∂2y + 4Q− 2∂−1
y Qy 4P − 2∂−1

y Py

)
. (2.41)

We conclude that the resulting pair of Hamiltonian operators for the A2CH hierarchy are

K = Λ−1TJT∗

=
1

4

(
L ∂−1

y L 2L ∂−1
y (P∂y + ∂yP )

2(P∂y + ∂yP )∂
−1
y L 4(P∂y + ∂yP )∂

−1
y (P∂y + ∂yP ) + 2L

)
,

J = Λ−1TKT∗ =
1

2

(
0 L
L 2(P∂y + ∂yP )

)
,

(2.42)

where L = ∂3y+2Q∂y+2∂yQ, and hence the A2CH hierarchy can be written in bi-Hamiltonian
form. In the positive direction,(

Q
P

)
τ

= Kn = KδH̄n−1 = J δH̄n, δH̄n =

(
δH̄n

δQ
,
δH̄n

δP

)T

, n ≥ 1,

with, for example,

H̄1 = −
∫
P dy, H̄2 = −

∫ (
1

2
P 2 + 2Q

)
dy. (2.43)
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Remark 2.7. It follows from (2.14) and (2.42) that

R = KJ−1
=

1

2

(
0 ∂2y + 2Q+Qy∂

−1
y

−4 4P + 2Py∂
−1
y

)
= Λ−1TJ K−1T−1Λ.

This formula provides an alternative decomposition of the recursion operator R, differing
from the one given in Lemma 2.3.

Now, with the two pairs of Hamiltonian operators {K,L} and {K,L} in hand, Magri’s
theorem enables us to recursively construct an infinite hierarchy of Hamiltonian functionals.
In the 2CH setting, these are determined by the recursive formula

K δHn−1 = J δHn, n ∈ Z, (2.44)

whereas for the A2CH hierarchy they satisfy

KδH̄n−1 = J δH̄n, n ∈ Z. (2.45)

In order to establish the correspondence between the respective hierarchies of Hamiltonian
functionals Hn and H̄n, we require a formula which clarifies the correspondence between
their variational derivatives.

Lemma 2.8. Let {Hn} and {H̄n} be the hierarchies of Hamiltonian functionals determined
by the recurrence formulas (2.44) and (2.45), respectively. Then their corresponding varia-
tional derivatives satisfy

δH−(n+1)(m, ρ) = −K−1AJ δH̄n(Q,P ), 0 ̸= n ∈ Z. (2.46)

Proof. We first prove (2.46) for n ≥ 1 by induction. Since in the 2CH setting, H−1 =

HC(m, ρ), the Casimir functional given in (2.11), then δH−1 = δHC =
(
ρ−1, −mρ−2

)T .
Using (2.19) and (2.44), we have

δH−2 = K−1J δH−1 = K−1A (Qy, Py)
T
= −K−1AJ δH̄1,

verifying that (2.46) holds for n = 1. Assume now (2.46) holds for n = k with some integer
k ≥ 1; in other words,

δH−(k+1) = −K−1AJ δH̄k.

Then, for n = k + 1,

δH−(k+2) = K−1J δH−(k+1) = −K−1JK−1AJ δH̄k

= −K−1JK−1AJ K−1J δH̄k+1 = −K−1AJ δH̄k+1,

where we have made use of the relation (2.21) with n = 1. This proves (2.46) for each integer
n ≥ 1.

Next, for the case of n = −1, note first that (2.46) is equivalent to

δH̄−1 = −J−1
A−1K δH0. (2.47)

Since H̄−1 is a Casimir functional of the Hamiltonian operator K, in order to prove (2.47),
it suffices to verify that the function h = −J−1

A−1K δH0 satisfies K h = 0. Indeed, using
(2.21) with n = 1 once again, one has

K h = A−1JK−1AA−1K δH0 = A−1J δH0 = 0,

where we take advantage of the property that δH0 is a constant vector. Next, assuming that
(2.46) holds for n = −k ≤ −1, we infer that

δH−(−k−1+1) = δHk = J−1KδHk−1 = −J−1AJ δH̄−k

= −J−1AK δH̄−k−1 = −K−1AJ δH̄−k−1,

which, by induction, establishes (2.46) for each n ≤ −1 and thus proves the lemma in
general. □
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Finally, given that
(
m(t, x), ρ(t, x)

)
and

(
Q(τ, y), P (τ, y)

)
are related by the transforma-

tion (2.7), we define the functional

Gn(Q,P ) ≡ Hn(m, ρ).

A direct application of Lemma 2.6 leads to

δHn(m, ρ) = T∗δGn(Q,P ),

with the operator T∗ defined in (2.41). On the other hand, by Lemma 2.8, we have

δHn(m, ρ) = −K−1AJ δH̄−(n+1)(Q,P ),

which, together with (2.44) and relation (2.21), yields

δHn(m, ρ) = −J−1AJ δH̄−n(Q,P ).

Furthermore, a direct calculation shows that the operator T∗ admits the following decom-
position

J−1AJ = −T∗,

which implies
Hn(m, ρ) = Gn(Q,P ) = H̄−n(Q,P ).

The following theorem is thus proved.

Theorem 2.9. Under the Liouville transformation (2.7), for each nonzero integer n, the
Hamiltonian functionals Hn(m, ρ) of the 2CH hierarchy given by (2.44) are related to the
Hamiltonian functionals H̄n(Q,P ) of the A2CH hierarchy given by (2.45), according to

Hn(m, ρ) = H̄−n(Q,P ), 0 ̸= n ∈ Z.

For instance, in the case of n = −1, using (2.7), one can check that

H−1(m, ρ) =

∫
m

ρ
dx = −

∫
P dy = H̄1(Q,P ).

In the case of n = −2, (2.43) and (2.46) imply

δH−2 =

(
−m

ρ3
, −2Q+

3

2
P 2

)T

,

and hence

H−2(m, ρ) = −
∫
ρ

(
1

2
P 2 + 2Q

)
dx = −

∫ (
1

2
P 2 + 2Q

)
dy = H̄2(Q,P ).

Both of the preceding two results are in accordance with Theorem 2.9.

3. The Liouville correspondence for the Geng-Xue hierarchy

3.1. The Liouville transformation for the isospectral problem of the Geng-Xue
system. The Lax-pair formulation for the GX system{

mt + 3vuxm+ uvmx = 0,

nt + 3uvxn+ uvnx = 0, m = u− uxx, n = v − vxx,
(3.1)

takes the form [28]

Ψx =

0 λm 1
0 0 λn
1 0 0

Ψ, Ψ =

ψ1

ψ2

ψ3

 ,

Ψt =

−uxv λ−1ux − λuvm uxvx
λ−1v −λ−2 + uxv − uvx −λuvn− λ−1vx
−uv λ−1u uvx

Ψ.

(3.2)
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It was shown in [45] that the reciprocal transformation defined by

dy = ∆
1
3 dx−∆

1
3uvdt, dτ = dt, ∆ = mn, (3.3)

converts the isospectral problem (3.2) into

Φy =

0 λ Q
0 P λ
1 0 0

Φ, Φ =

ϕ1ϕ2
ϕ3

 ,

Φτ =
1

2

 A 2λ−1(py + pP ) p+ q
2λ−1q A− 2λ−2 2λ−1(Pq − qy)

0 2λ−1p A

Φ,

(3.4)

respectively, where

Q =
1

6
∆− 5

3∆xx − 7

36
∆− 8

3∆2
x +∆− 2

3 , P =
1

2
m− 4

3n
2
3

(m
n

)
x

(3.5)

and
A = qyp− qpy − 2pqP, q = vm

2
3n−

1
3 , p = um− 1

3n
2
3 .

The compatibility condition Φyτ = Φτy gives rise to the following integrable system
Qτ = 3

2 (qy + py)− (q − p)P, Pτ = 3
2 (q − p),

pyy + 2pyP + pPy + pP 2 − pQ+ 1 = 0,

qyy − 2qyP − qPy + qP 2 − qQ+ 1 = 0,

(3.6)

which admits (3.4) as the corresponding Lax-pair formulation.
It turns out that there exists a Liouville correspondence between the GX system (3.1) and

system (3.6), in the sense that their respective isospectral problems (3.2) and (3.4) are related
through the transformations (3.3), (3.5). In addition, in view of the spectral structure of the
time evolution component of (3.4), the reduced system (3.6) can be viewed as a negative flow
of an integrable hierarchy, namely the associated Geng-Xue (AGX) integrable hierarchy.

3.2. The Liouville correspondence between the GX and AGX integrable hierar-
chies. Consider the following transformation

y =

∫ x

∆
1
3 (t, ξ) dξ, τ = t,

Q = ∆− 2
3 +

1

6
∆− 5

3∆xx − 7

36
∆− 8

3∆2
x, P =

1

2
m− 4

3n
2
3

(m
n

)
x
,

(3.7)

where and throughout this section ∆ = mn.
The GX system (3.1) can be written in a bi-Hamiltonian form [46](

m
n

)
t

= KδH1(m, n) = J δH2(m, n),

where the compatible Hamiltonian operators are

K =
3

2

(
3m

1
3 ∂xm

2
3Ω−1m

2
3 ∂xm

1
3 +m∂−1

x m 3m
1
3 ∂xm

2
3Ω−1n

2
3 ∂xn

1
3 −m∂−1

x n

3n
1
3 ∂xn

2
3Ω−1m

2
3 ∂xm

1
3 − n∂−1

x m 3n
1
3 ∂xn

2
3Ω−1n

2
3 ∂xn

1
3 + 3n∂−1

x n

)
,

J =

(
0 ∂2x − 1

1− ∂2x 0

)
, where Ω = ∂3x − 4 ∂x,

(3.8)

while

H1(m, n) =

∫
un dx, H2(m, n) =

∫
(uxv − uvx)un dx
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are the initial Hamiltonian functionals. Based on the bi-Hamiltonian structure of the GX
system, one may construct the full GX integrable hierarchy by applying the resulting hered-
itary recursion operator R = KJ−1 to the particular seed system(

m
n

)
t

= G1(m,n) =

(
−m
n

)
.

Hence, the l-th member in the positive direction takes the form(
m
n

)
t

= Gl(m,n) = Rl−1 G1(m,n), l = 1, 2, . . . , (3.9)

and the GX system (3.1) is exactly the second positive flow. In analogy with the 2CH
hierarchy, the fact that the trivial symmetry G0 =

(
0, 0

)T satisfies RG0 = G1, implies
that, in the opposite direction, the negative flow is generated by the Casimir system. Note
that the Hamiltonian operator K admits the following Casimir functional

HC(m, n) = 3

∫
∆

1
3 dx with variational derivative δHC =

(
m− 2

3n
1
3 , m

1
3n−

2
3

)T
.

(3.10)
Therefore, the l-th negative flow of the GX hierarchy is(

m
n

)
t

= G−l(m,n) = (J K−1)l−1 J δHC , l = 1, 2, . . . . (3.11)

Turning to the AGX integrable hierarchy, based on Theorem 2.5, one can readily con-
struct two Hamiltonian operators for the transformed system (3.6) by applying the Liouville
transformation (3.7) from the given Hamitonian pair K and J introduced in (3.8) for the
GX system. Indeed, resulting Hamiltonian operators admitted by (3.6) were given in [45]
as follows:

K = Γ

(
0 Θ

−Θ∗ 0

)
Γ∗ and J =

1

2

(
E 0
0 −3∂y

)
, (3.12)

where the matrix operator Γ, and operators Θ, E are defined by

Γ = −1

6

(
E∂−1

y E∂−1
y

(3∂2y − 2∂yP )∂
−1
y −(3∂2y + 2∂yP )∂

−1
y

)
,

Θ = ∂2y + P∂y + ∂yP + P 2 −Q,

E = ∂3y − 2Q∂y − 2∂yQ.

(3.13)

Therefore, the AGX integrable hierarchy can be obtained by applying the resulting heredi-
tary recursion operator R = KJ−1

to the seed system(
Q
P

)
τ

= G1 = −
(
Q
P

)
y

.

More precisely, the l-th member in the positive direction takes the form(
Q
P

)
τ

= Gl = Rl−1
G1, l = 1, 2, . . . . (3.14)

For instance, the second positive flow, for l = 2, of the AGX hierarchy in (3.14) is
Qτ = 1

9

(
Pyyyyy − 2(QP )yyy − 2(QPyy)y − 2QPyyy + 6(Q2P )y + 2Q2Py

−2
9 ( (P

3)yyy − 4(QP 3)y + 2QyP
3)
)
,

Pτ = 2
9

(
PPyy − 3

2Qyy +
1
2P

2
y − 5

18P
4 +QP 2 + 3

2Q
2
)
y
.
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While, the l-th negative flow can be written as

Rl
(
Q
P

)
τ

= G0 =

(
0
0

)
, l = 1, 2, . . . . (3.15)

The scheme of the Liouville correspondence between the GX and AGX integrable hi-
erarchies is described in the following Theorem 3.1. Adopting a similar notation to that
in Theorem 2.1, the l-th positive and negative flows of the GX and AGX hierarchies are
denoted by (GX)l and (GX)−l, and by (AGX)l and (AGX)−l, respectively.

Theorem 3.1. Under the Liouville transformation (3.7), for each integer l ≥ 1,
(i). If

(
m(t, x), n(t, x)

)
is a solution of the (GX)l system (3.9), then the corresponding(

Q(τ, y), P (τ, y)
)

satisfies the (AGX)−l system (3.15);
(ii). If

(
m(t, x), n(t, x)

)
is a solution of the (GX)−l system (3.11), then the corresponding(

Q(τ, y), P (τ, y)
)

satisfies the (AGX)l+1 system (3.14).

Two preliminary lemmas are required.

Lemma 3.2. Let
(
m(t, x), n(t, x)

)
and

(
Q(τ, y), P (τ, y)

)
be related through the transfor-

mation (3.7). Then the following operator identities hold:

∆− 1
2

(
1− ∂2x

)
∆− 1

6 = Q− ∂2y , ∆− 2
3 Ω∆− 1

3 = E , m− 4
3 n

2
3 ∂xmn

−1 = 2P + ∂y, (3.16)

where Ω and E are given in (3.8) and (3.13), respectively.

Proof. (i). In view of the transformation (3.7), one has

∂x = ∆
1
3 ∂y, (3.17)

which implies that

∂2x ∆
− 1

6 =
7

36
∆− 13

6 ∆2
x − 1

6
∆− 7

6∆xx − 1

3
∆− 7

6∆x ∂x +∆− 1
6 ∂2x.

Substituting this into ∆− 1
2

(
1− ∂2x

)
∆− 1

6 yields the first identity in (3.16).
(ii). From (3.17), one has

∂2x ∆
− 1

3 =
4

9
∆− 1

3 ∆2
x − 1

3
∆− 4

3∆xx − 1

3
∆−1∆x ∂y +∆

1
3 ∂2y .

Then a straightforward computation shows that

∆− 2
3 Ω∆− 1

3 = ∆− 2
3 ∂x

(
∂2x − 4

)
∆− 1

3

=∆− 2
3 ∂x

(
−4∆− 1

3 +
4

9
∆− 7

3∆2
x − 1

3
∆− 4

3∆xx − 1

3
∆−1∆x ∂y +∆

1
3 ∂2y

)
=
4

3
∆−2∆x − 28

27
∆−4∆3

x +
4

3
∆−3∆x∆xx − 1

3
∆−2∆xxx

+

(
−4∆− 2

3 +
7

9
∆− 8

3∆2
x − 2

3
∆− 5

3∆xx

)
∂y + ∂3y .

Using the formula for Q in (3.7), we deduce the second identity in (3.16).
(iii). In view of (3.17) again, one has

m− 4
3 n

2
3 ∂xmn

−1 =
n

m
∂y
m

n
=

n

m

(m
n

)
y
+ ∂y.

Hence, the third identity in (3.16) follows from the formula for P in (3.7). □

Lemma 3.3. Define

E =

(
∂y 0
0 ∂y

)
and B =

(
m 0
0 n

)
. (3.18)
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Then the operator identity

B−1
(
J K−1

)l
B = (−1)l E (V U)l E−1 (3.19)

holds for each positive integer l, where

U =

(
E E

F + 3 ∂2y F − 3∂2y

)
, F = −(2P∂y + 2Py),

V =
1

54

(
3 ∂−1

y Θ ∂−1
y ∂−1

y Θ ∂−1
y (2P − 3 ∂y)

−3 ∂−1
y Θ∗ ∂−1

y −∂−1
y Θ∗ ∂−1

y (2P + 3 ∂y)

)
,

(3.20)

E and Θ are defined in (3.13), while K and J are the compatible Hamiltonian operators for
the GX system given in (3.8).

Proof. The proof relies on an induction argument. First, we prove (3.19) in the case of l = 1.
For arbitrary constants α and β, the direct calculation by use of the transformation (3.7)
yields the following operator identities

(∂y − 2αP )
(m
n

)α
=
(m
n

)α
∂y,

(m
n

) β
2

(∂y + βP )
(m
n

)− β
2

= ∂y. (3.21)

Note that (3.19) with l = 1 is equivalent to

B−1J = −EV U E−1 B−1 K =

(
R11 R12

R21 R22

)
.

In virtue of the first operator identity in (3.16), we deduce that

B−1J =

(
0 m−1(∂2x − 1)

n−1(1− ∂2x) 0

)
=

(
0 −

(
m
n

)− 1
2 (Q− ∂2y)∆

1
6(

m
n

) 1
2 (Q− ∂2y)∆

1
6 0

)
.

On the other hand, a direct calculation shows that

R11 =
1

18
Θ∂−1

y

{
E∂−1

y (3∂x +m−1mx + n−1nx)Ω
−1(3m∂x +mx)

−
(
∂y −

2

3
P

)[(1
6
F∂−1

y +
1

2
∂y
) (

(
3

2
∂x +m−1mx)Ω

−1(3m∂x +mx) +
3

2
∂−1
x m

)
+
(1
6
F∂−1

y − 1

2
∂y
) (

(
3

2
∂x + n−1nx)Ω

−1(3m∂x +mx)−
3

2
∂−1
x m

)]}
=
1

2
Θ∂−1

y

(
n−

2
3 ∂xm

1
3 −

(
∂y −

2

3
P
)
m

2
3n−

1
3

)
.

Then using the first equation in (3.21), we have R11 = 0. Next,

R12 =
1

18
Θ∂−1

y

{
E∂−1

y (3∂x +m−1mx + n−1nx)Ω
−1(3n∂x + nx)

−
(
∂y −

2

3
P

)[(1
6
F∂−1

y +
1

2
∂y
) (

(
3

2
∂x +m−1mx)Ω

−1(3n∂x + nx)−
3

2
∂−1
x n

)
+
(1
6
F∂−1

y − 1

2
∂y
) (

(
3

2
∂x + n−1nx)Ω

−1(3n∂x + nx)−
3

2
∂−1
x n

)]}
=
1

2
Θ∂−1

y

((
∂y −

2

3
P
)
m− 1

3n
2
3 +m− 2

3 ∂x n
1
3

)
=
1

2
Θ∂−1

y

( (m
n

)− 1
3

∂y

(m
n

)− 1
6

+
(m
n

) 1
3

∂y

(m
n

)− 5
6

)
∆

1
6

=Θ∂−1
y

(m
n

)− 1
2

(∂y − P )∆
1
6 .
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Now we claim that

Θ ∂−1
y

(m
n

)− 1
2

(∂y − P )
(m
n

) 1
2

= −
(m
n

)− 1
2 (
Q− ∂2y

) (m
n

) 1
2

.

In fact, based on the expression of Q given in (3.7), a direct calculation leads to(m
n

)− 1
2 (
Q− ∂2y

) (m
n

) 1
2

= −Θ,

whereas, from the second equation in (3.21),

Θ ∂−1
y

(m
n

)− 1
2

(∂y − P )
(m
n

) 1
2

= Θ,

proving the claim.
After a further calculation, we have

R21 =− 1

18
Θ∗ ∂−1

y

{
E∂−1

y (3∂x +m−1mx + n−1nx)Ω
−1(3m∂x +mx)

+

(
∂y +

2

3
P

)[(1
6
F∂−1

y +
1

2
∂y
) (

(
3

2
∂x +m−1mx)Ω

−1(3m∂x +mx) +
3

2
∂−1
x m

)
+
(1
6
F∂−1

y − 1

2
∂y
) (

(
3

2
∂x + n−1nx)Ω

−1(3m∂x +mx)−
3

2
∂−1
x m

)]}
=−Θ∗ ∂−1

y

(m
n

) 1
2

(∂y + P )∆
1
6 =

(m
n

) 1
2

(Q− ∂2y)∆
1
6

and

R22 =− 1

18
Θ∗ ∂−1

y

{
E∂−1

y (3∂x +m−1mx + n−1nx)Ω
−1(3n∂x + nx)

+

(
∂y +

2

3
P

)[(1
6
F∂−1

y +
1

2
∂y
) (

(
3

2
∂x +m−1mx)Ω

−1(3n∂x + nx)−
3

2
∂−1
x n

)
+
(1
6
F∂−1

y − 1

2
∂y
) (

(
3

2
∂x + n−1nx)Ω

−1(3n∂x + nx) +
3

2
∂−1
x n

)]}
=− 1

2
Θ∗ ∂−1

y

[
m− 2

3 ∂xn
1
3 −

(
2

3
P + ∂y

)(m
n

)− 1
3

n
1
3

]
= 0,

where we have employed the formulae (3.21) and the relation(m
n

) 1
2 (
Q− ∂2y

) (m
n

)− 1
2

= −Θ∗.

Consequently, combining the preceding results together verifies that (3.19) holds for l = 1.
Then, the induction procedure shows that (3.19) holds in general. Lemma 3.3 is thus
proved. □
Remark 3.4. Notably, we claim that the matrix operators U and V defined by (3.20) satisfy
the following composition identity

R = U V. (3.22)
Indeed, define the matrix operator

Ξ =

(
0 Θ

−Θ∗ 0

)
Γ∗. (3.23)

It follows from the definition of operators Γ by (3.13) and U by (3.20) that

Γ = −1

6
U E−1.

Thus, in virtue of (3.12) and (3.23), we have

K = −1

6
U E−1Ξ. (3.24)
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On the other hand, the identity

ΞJ−1
=

1

3

(
0 Θ

−Θ∗ 0

)
Γ∗
(
−6E−1 0

0 −2∂−1
y

)
= −1

9

(
3Θ∂−1

y Θ∂−1
y (2P − 3∂y)

−3Θ∗∂−1
y −Θ∗∂−1

y (2P + 3∂y)

)
,

yields
E−1Ξ = −6V J .

Substituting the result into (3.24), we arrive at R = KJ−1
= U V, proving the claim.

The formula (3.22) can be viewed as a new operator factorization for the recursion op-
erator R, which is not the same as the decomposition of R = KJ−1

using the pair of
Hamiltonian operators. We will see from the following proof for Theorem 3.1 that such a
novel factorization plays a key role to identify the systems transformed from the negative
(positive) flows of the GX hierarchy to be the corresponding positive (negative) flows of the
AGX hierarchy.

Proof of Theorem 3.1. A straightforward computation of taking the t-derivative of the
function Q(τ, y) and P (τ, y) according to the Liouville transformation (3.7) yields(

Q
P

)
τ

=
1

6
UE−1B−1

(
m
n

)
t

, (3.25)

where U , E,B are the matrix operators defined in Lemma 3.3.
Suppose that

(
m(t, x), n(t, x)

)
is the solution of the (GX)−l system (3.11) for some integer

l ≥ 1. Then, using formula (3.19) and (3.25), we find from (3.11) that(
Q
P

)
τ

=
1

6
U E−1B−1

(
JK−1

)l (0
0

)
=

1

6
(−1)l U (V U)l E−1B−1

(
0
0

)
=

1

6
(−1)l (U V)l U

(
c
c

)
=

2

3
(−1)l c (U V)l G1,

with c being the corresponding constant of integration. Choosing c = 3(−1)l/2, the fact
that R = UV, immediately reveals that the corresponding

(
Q(τ, y), P (τ, y)

)
satisfies the

(AGX)l+1 system (3.14).
Moreover, assume that for each l ≥ 1,

(
m(t, x), n(t, x)

)
solves the (GX)l system (3.9).

Then, subject to the transformation (3.7), the corresponding
(
Q(τ, y), P (τ, y)

)
satisfies

Rl
(
Q
P

)
τ

=
1

6
RlU E−1B−1

(
KJ−1

)l (0
0

)
=

1

6
(U V)l U E−1B−1

(
KJ−1

)l(0
0

)
=

1

6
(−1)l U E−1

(
0
0

)
=

(
0
0

)
,

where we have made use of Lemma 3.3 and the factorization R = U V again. This implies(
Q(τ, y), P (τ, y)

)
is a solution for the (AGX)−l system, which completes the proof of the

theorem. □

3.3. The correspondence between the Hamiltonian functionals of the GX and
AGX hierarchies. We now study the correspondence between the Hamiltonian functionals
involved in the GX and AGX hierarchies. Based on the pair of Hamiltonian operators K
and J in (3.8) for the GX hierarchy and the pair of Hamiltonian operators K and J in
(3.12) for the AGX hierarchy, their respective infinite hierarchy of Hamiltonian functionals
{Hl} = {Hl(m,n)} and {H̄l} = {H̄l(Q,P )} are determined by the following recursive
formulae

K δHl−1 = J δHl, l ∈ Z, (3.26)
and

KδH̄l−1 = J δH̄l, l ∈ Z, (3.27)
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where δHl = (δHl/δm, δHl/δn)
T and δH̄l =

(
δH̄l/δQ, δH̄l/δP

)T . Establishing the cor-
respondence between the two hierarchies of Hamiltonian functionals relies on the following
two preliminary lemmas.

Lemma 3.5. Let {Hl} and {H̄l} be the hierarchies of Hamiltonian functionals determined
by (3.26) and (3.27), respectively. Then, for each l ∈ Z, their corresponding variational
derivatives are related according to the following identity

δHl(m,n) = 6(−1)l J−1 BΞ δH̄−(l+1)(Q,P ), (3.28)

where the matrix operators B, Ξ are defined in (3.18), (3.23) repectively, and J is the first
Hamiltonian operator of the GX hierarchy given by (3.8).

Proof. First of all, we prove a recursive identity

K−1 BΞ δH̄l−1 = −J−1 BΞ δH̄l, l ∈ Z, (3.29)

for the hierarchy of Hamiltonian functionals {H̄l}. In fact, formula (3.19) with l = 1 leads
to

K−1 B = −J−1 BEV U E−1.

Hence, the left-hand side of equation (3.29) becomes

K−1 BΞ δH̄l−1 = −J−1 BEV U E−1 ΞK−1 J δH̄l.

Then, referring back to the definition of operator Ξ (3.23) immediately verifies that (3.29)
holds for all l ∈ Z.

Next, we perform an induction argument to prove (3.28). For the case l = −2 of (3.28),
due to (3.29) with l = 1, we need to prove

δH−2 = −6K−1 BΞ δH̄0. (3.30)

In fact, it follows from (3.10) and (3.26) that

δH−2 = K−1J δH−1 = K−1J δHC = K−1

(
(∂2x − 1)m

1
3n−

2
3

(1− ∂2x)m
− 2

3n
1
3

)
. (3.31)

Using (3.7) and (3.16), we have

(∂2x − 1)m
1
3n−

2
3 = −∆

1
2 (Q− ∂2y)

(m
n

) 1
2

= m (Py + P 2 −Q)

and

(1− ∂2x)m
− 2

3n
1
3 = ∆

1
2 (Q− ∂2y)

(m
n

)− 1
2

= n (Py − P 2 +Q).

Thus

δH−2 = K−1 B

(
Py + P 2 −Q
Py − P 2 +Q

)
. (3.32)

On the other hand, since H̄0 =
∫
P dy, in view of the form of operator Ξ, we deduce that

6K−1 BΞ δH̄0 = −K−1 B

(
Θ · 1

−Θ∗ · 1

)
,

which, together with (3.31) and (3.32), proves the identity (3.30) and implies that (3.28)
holds for l = −2.

Suppose by induction that (3.28) holds for l = k with k ≤ −2. Then, we deduce from
(3.29) that, for l = k − 1,

δHk−1 = K−1J δHk = 6(−1)k K−1 BΞ δH̄−(k+1) = 6(−1)k−1 J−1 BΞ δH̄−k,

which implies that (3.28) holds for each l ≤ −2.
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In the opposite direction, we first prove that

δH−1 = 6K−1 BΞ δH̄−1. (3.33)

It suffices to show that KΞ−1 B−1 KδH−1 = 0. In fact, by (3.24),

KΞ−1 B−1 KδH−1 = −1

6
U E−1 B−1 K δH−1 =

1

6
V−1 E−1 B−1 J δH−1,

where,

B−1 J δH−1 =

(
Py + P 2 −Q
Py − P 2 +Q

)
= EV

(
0
0

)
,

so (3.33) follows.
Further induction on l shows that if (3.28) holds for l = k with some k ≥ −1, then for

l = k + 1, using (3.29) again, we infer that

δHk+1 = J−1K δHk = 6(−1)k J−1 KBΞ δH̄−(k+1) = 6(−1)k+1 J−1 BΞ δH̄−(k+2),

which completes the induction step, and proves (3.28) in general. □
The next lemma reveals the effect of the Liouville transformation (3.7) on the variational

derivatives, which follows from Theorem 2.5.

Lemma 3.6. Let
(
m(t, x), n(t, x)

)
and

(
Q(τ, y), P (τ, y)

)
be related by the Liouville trans-

formation (3.7). If H(m,n) = H̄(Q,P ), then

δH(m,n) = −1

6
∆

1
3 B−1 E−1 U∗ δH̄(Q,P ).

Finally, we claim that

J−1 B

(
0 Θ

−Θ∗ 0

)
= ∆

1
3 B−1,

which is equivalent to

B

(
0 Θ

−Θ∗ 0

)
= J

(
m− 2

3n
1
3 0

0 m
1
3n−

2
3

)
.

In fact,

J
(
m− 2

3n
1
3 0

0 m
1
3n−

2
3

)
=

(
0 ∆

1
2 (Q− ∂2y)

(
m
n

) 1
2

∆
1
2 (Q− ∂2y)

(
m
n

)− 1
2 0

)
= B

(
0 Θ

−Θ∗ 0

)
.

Now, define the functional
Gl(Q,P ) ≡ Hl(m,n),

we have, on the one hand, by Lemma 3.6

δHl(m,n) = −1

6
∆

1
3 B−1 E−1 U∗ δGl(Q,P ).

On the other hand, in view of Lemma 3.5,

δHl(m,n) = 6(−1)l J−1 BΞ δH̄−(l+1)(Q,P )

= (−1)l J−1 B

(
0 Θ

−Θ∗ 0

)
E−1 U∗ δH̄−(l+1)(Q,P )

= (−1)l∆
1
3 B−1 E−1 U∗ δH̄−(l+1)(Q,P ).

Combining the preceding two equations gives rise to

Hl(m,n) = Gl(Q,P ) = 6(−1)l+1 H̄−(l+1)(Q,P ),

which establishes the correspondence between the sequences of the Hamiltonian quantities
admitted by the GX and AGX hierarchies. Thus, we have proved the following theorem.
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Theorem 3.7. For any nonzero integer l, each Hamiltonian conserved density Hl(m,n) of
the GX hierarchy relates the Hamiltonian conserved density H̄l(Q,P ), under the Liouville
transformation (3.7), according to the following identity

Hl(m,n) = 6(−1)l+1H̄−(l+1)(Q,P ), 0 ̸= l ∈ Z.

4. The Liouville correspondence for the dual DWW hierarchy

The following dispersive water wave (DWW) system

qt =
(
− qx + 2qr

)
x
, rt =

(
rx + r2 + 2q

)
x
, (4.1)

is an integrable physical system describing the propagation of shallow water waves [5, 38,
40, 70]. Its tri-Hamiltonian formulation was found by Kupershmidt, [40] and can be used
to construct a dual counterpart, which is the dual dispersive water wave (dDWW) system
proposed in [37]:

ρt = ((ρ+ v)u)x , ρ = v − vx,

γt = (γ u+ 2v)x , γ = u+ ux.
(4.2)

The bi-Hamiltonian structure for the dDWW system (4.2)(
ρ
γ

)
t

= K δH1 = J δH2, δHn =

(
δHn

δρ
,
δHn

δγ

)T

, n = 1, 2,

is governed by the following pair of Hamiltonian operators [37]

K =

(
ρ∂x + ∂xρ γ∂x
∂x γ 2∂x

)
, J =

(
0 ∂x − ∂2x

∂x + ∂2x 0

)
, (4.3)

together with the associated Hamiltonian functionals

H1 = H1(ρ, γ) =

∫
(u− ux) v dx and H2 = H2(ρ, γ) =

∫
(u+ ux)uv dx.

The members in the positive direction of the dDWW integrable hierarchy(
ρ
γ

)
t

= Mn = K δHn−1(ρ, γ) = J δHn(ρ, γ), n = 1, 2, . . . , (4.4)

are obtained by applying successively the recursion operator R = KJ−1 to the seed system(
ρ
γ

)
t

= M1 =

(
ρ
γ

)
x

= J δH1(ρ, γ).

Observe that the Hamiltonian operator K in (4.3) admits the following Casimir functional

HC(ρ, γ) = −1

2

∫ √
4ρ− γ2 dx,

with variational derivative

δHC =

(
δHC

δρ
,
δHC

δγ

)T

=

(
− 1√

4ρ− γ2
,

γ

2
√
4ρ− γ2

)T

.

The functional HC leads to the associated Casimir system(
ρ
γ

)
t

= M−1 = J δHC ,

which is given explicitly by

ρt =
1

2
(∂x − ∂2x)

γ√
4ρ− γ2

, γt = −(∂x + ∂2x)
1√

4ρ− γ2
, (4.5)
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and serves as the first negative flow in the dDWW integrable hierarchy. Starting from
the Casimir system (4.5), one (formally) can construct an infinite hierarchy of higher-order
commuting bi-Hamiltonian systems and corresoponding Hamiltonian functionals {H−n} =
{H−n(ρ, γ)} in the negative direction:(

ρ
γ

)
t

= M−n = K δH−(n+1)(ρ, γ) = J δH−n(ρ, γ), n = 1, 2, . . . , (4.6)

with H−1(ρ, γ) = HC(ρ, γ) and δH−n(ρ, γ) =
(
δH−n/δρ, δH−n/δγ

)T .
The dDWW system can be expressed as the compatibility condition for the linear system

consisting of

Ψx =

(
1
2

(
1
λγ − 1

)
1√
λ

− 1
λ
√
λ
ρ 1

2

(
1− 1

λγ
))Ψ, Ψ =

(
ψ1

ψ2

)
, (4.7)

and

Ψt =

(
1
2

(
1
λγu− λ

)
1√
λ
u+

√
λ

− 1√
λ

(
1
λρu+ ρ+ vx

)
1
2

(
λ− 1

λγu
))Ψ.

Note that equation (4.7) can be reduced to the scalar equation

Ψxx =

(
1

2λ
γx − 1

λ2
ρ+

1

4
(
1

λ
γ − 1)2

)
Ψ. (4.8)

Now, we define ω(ρ, γ) =
√
4ρ− γ2, and introduce the following coordinate transforma-

tion:

y =

∫ x

ω(t, ξ) dξ, τ = t,

Q(τ, y) =
1

ω(t, x)

(
1− ωx(t, x)

ω(t, x)

)
, P (τ, y) = − γ(t, x)

ω(t, x)
,

(4.9)

and
Φ = ω− 1

2Ψ. (4.10)
A direct calculation shows that the Liouville transformations (4.9)-(4.10) will convert the
isospectral problem (4.8) into

Φyy =
1

4

(
2

λ
(PQ− Py)−

1

λ2
+Q2 − 2Qy

)
Φ.

In analogy with the 2CH and GX hierarchies, in this section we aim to investigate how the
transformation (4.9) affect the underlying correspondence between the flows of the dDWW
hierarchy and what we will call the associated dDWW (AdDWW) integrable hierarchy.

We first investigate the integrable structure of the AdDWW hierarchy. As a direct ap-
plication of Theorem 2.5, one can readily construct its pair of Hamiltonian operators, from
the known pair of Hamiltonian operators K and J given by (4.3) of the dDWW system,
through the transformation (4.9).

Theorem 4.1. Under the coordinate transformation (4.9), the Hamiltonian pair K and J
(4.3) admitted by the dDWW system (4.2) is converted to a pair of Hamiltonian operators

K = 2

(
X
(
PX +O P ∂−1

y

)
O X

(
PX P∂y +O (1 + P∂−1

y P∂y)
)

Y X O + (Py∂
−1
y + P )O P ∂−1

y O Y X P∂y + (Py∂
−1
y + P )O (1 + P∂−1

y P∂y)

)
,

J = 2

(
X O χP ∂y

∂yP∂
−1
y O ∂y(1 + P∂−1

y P∂y)

)
,

(4.11)

where the operators O, X and Y are defined by

O = Q∂y − ∂2y , X = ∂y +Q+Qy∂
−1
y , Y = 1 + P 2 + Py∂

−1
y P. (4.12)
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Proof. Let b, ν be arbitrary nonzero constants. In a similar manner as Lemma 2.2, we can
verify the following operator identities

ω−(1+ν)
(
1 + b ∂2x

)
ων = Q+ b ∂y,

ω−2 (∂x − ∂2x) = Q∂y − ∂2y ,

ω−1 (∂x + ∂2x)ω
−1 = ∂yQ + ∂2y ,

ω−2 (ρ ∂x + ∂x ρ)ω
−1 =

1

2
(∂y + P ∂y P ).

(4.13)

The first and second identities in (4.13) imply that the matrix operators T and T∗ in
Theorem 2.5 are

T = −ω
(

2X ω−2 X P ω−1

2(P + Py∂
−1
y )ω−2 Y ω−1

)
, T∗ = −

(
2ω−1 ∂−1

y O 2ω−1 ∂−1
y P∂y

P ∂−1
y O 1 + P∂−1

y P∂y

)
.(4.14)

Therefore, in view of (4.13), the formulas for the Hamiltonian operators (4.11) follow directly
from formula (2.35). □

Now, with the Hamiltonian pair K and J given by (4.11) in hand, the positive flows in
the AdDWW hierarchy are generated by applying the recursion operator

R = KJ−1
=

(
X P X (Q− ∂y)
Y (P + Py ∂

−1
y )(Q− ∂y)

)
(4.15)

to the seed symmetry M1 = (Qy, Py)
T successively:(

Q
P

)
τ

= Mn = Rn−1
M1, n = 1, 2, . . . , (4.16)

whereas the negative flows are

Rn
(
Q
P

)
τ

= M0 =

(
0
0

)
, n = 1, 2, . . . . (4.17)

Lemma 4.2. Let K, J , be the compatible Hamiltonian operators (4.3) for the dDWW
hierarchy and R the recursion operator (4.15) admitted by the AdDWW hierarchy. Let

C =
1

2

(
0 −ω2(Q− ∂y)

−2ω 0

)
.

Then, subject to the transformation (4.9), we have the operator identity

C−1
(
J K−1

)n
C = Rn

for all 0 < n ∈ Z. (4.18)

Employing this Lemma and an induction procedure, we are able to obtain the following
result on the correspondence between the dDWW and AdDWW hierarchies. Hereafter, we
denote the n-th system in the positive and negative directions of the dDWW hierarchy by
(dDWW)n and (dDWW)−n, respectively, while the n-th positive and negative flows in the
AdDWW hierarchy by (AdDWW)n and (AdDWW)−n, respectively.

Theorem 4.3. Under the transformation (4.9), for each integer n ∈ Z, (dDWW)n system
is related to the (AdDWW)−(n−1) system.

The proof of this theorem is based mainly on the operator decomposition identity (4.18)
and is omitted for brevity.

We now in a position to establish the correspondence between the Hamiltonian functionals
of the dDWW and AdDWW hierarchies. In particular, for the dDWW hierarchy, the bi-
Hamiltonian structure (4.4), (4.6) produce the bi-infinite sequence of functionals {Hn} by

K δHn = J δHn+1, n ∈ Z. (4.19)
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On the other hand, the recursive formula

KδH̄n = J δH̄n+1, n ∈ Z, (4.20)

with the Hamiltonian pair (4.11) of the AdDWW hierarchy, gives rise to an infinite sequence
of Hamiltonian functionals {H̄n} admitted by the AdDWW flows (4.16) and (4.17).

The formula for the correspondence between the variational derivatives δHn(ρ, γ) and
δH̄n(Q,P ) can be proved by a straightforward induction.

Lemma 4.4. Let {Hn} and {H̄n} be the hierarchies of Hamiltonian functionals determined
by the recursive formulae (4.19) and (4.20), respectively. Then, for each n ∈ Z, their
respective variational derivatives satisfy the following identiy

δHn(ρ, γ) = K−1 C J̄ δH̄−(n+1)(Q,P ).

In addition, a formula for the change of the variational derivative under the transformation
(4.9) is given in the following lemma, which is also a direct consequence of Lemma 2.6.

Lemma 4.5. Let
(
ρ(t, x), γ(t, x)

)
and

(
Q(τ, y), P (τ, y)

)
be related by the Liouville trans-

formation (4.9). If H(ρ, γ) = H̄(Q,P ), then

δH(ρ, γ) = T∗ δH̄(Q,P ), (4.21)

where T∗ is the formal adjoint of operators T given in (4.14).

Finally, referring back to the form of the Hamiltonian operators J , using the identity

R = ∆−1TC,

and (4.18) with n = 1, one has
T∗ = J−1 CJ . (4.22)

It follows that

δHn(ρ, γ) = K−1 CJ δH̄−(n+1)(Q,P ) = J−1 CJ δH̄−n(Q,P ) = T∗ δH̄−n(Q,P ).

Hence, based on the hypothesis of Lemma 4.5, we define the functional

Gn(Q,P ) ≡ Hn(ρ, γ).

Then, together with (4.21) and (4.22), we have

T∗ δGn(Q,P ) = δHn(ρ, γ) = T∗ δH̄−n(Q,P ),

which yields
δGn(Q,P ) = δH̄−n(Q,P ).

Then
Hn(ρ, γ) = H̄−n(Q,P ).

Consequently, we have now proved the following main theorem on the Hamiltonian func-
tionals of two hierarchies.

Theorem 4.6. Each Hamiltonian functional Hn(ρ, γ) of the dDWW hierarchy yields a
Hamiltonian functionals of the AdDWW hierarchy, under the transformation (4.9), accord-
ing to the following identity

H̄−n(Q,P ) = Hn(ρ, γ), n ∈ Z.

Acknowledgements. Kang’s research was supported by NSFC under Grant 11631007 and
Grant 11871395. Liu’s research was supported in part by NSFC under Grant 11722111 and
Grant 11631007. Qu’s research was supported by NSFC under Grant 11631007 and Grant
11971251.



LIOUVILLE CORRESPONDENCES 27

References

[1] M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, The inverse scattering
transform — Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974),
249-315.

[2] M. Antonowicz and A.P. Fordy, Coupled KdV equations with multi-Hamiltonian
structures, Physica D, 28 (1987), 345-358.

[3] M. Antonowicz and A.P. Fordy, Coupled Harry Dym equations with multi-
Hamiltonian structures, J. Phys. A: Math. Gen., 21 (1988), 269-275.

[4] M. Antonowicz and A.P. Fordy, Factorisation of energy dependent Schrödinger
operators: Miura maps and modified systems, Commun. Math. Phys., 124 (1989), 465-
486.

[5] L.J.F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975),
377–395.

[6] R. Camassa and D.D. Holm, An integrable shallow water equation with peaked
solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.

[7] R. Camassa, D.D. Holm, and J. Hyman, An new integrable shallow water equation,
Adv. Appl. Mech., 31 (1994), 1-33.

[8] P.J. Caudrey, R.K. Dodd, and J.D. Gibbon, A new hierarchy of Korteweg-de Vries
equations, Proc. Roy. Soc. London Ser. A, 351 (1976), 407-422.

[9] D.Y. Chen, Y.S. Li, and Y. B. Zeng, The transformation operator between recursion
operators of Bäcklund transformations, Sci. China Ser. A, 28 (1985), 907-922.

[10] M. Chen, S.Q. Liu, and Y.J. Zhang, A two-component generalization of the
Camassa-Holm equation and its solutions, Lett. Math. Phys., 75 (2006), 1-15.

[11] Robin M. Chen, Y. Liu, C.Z. Qu, and S.H. Zhang, Oscillation-induced blow-up to
the modified Camassa-Holm equation with linear dispersion, Adv. Math., 272 (2015),
225-251.

[12] P.A. Clarkson, A.S. Fokas, and M.J. Ablowitz, Hodograph transformations of
linearizable partial differential equations, SIAM J. Appl. Math., 49 (1989), 1188-1209.

[13] A. Constantin and R.I. Ivanov, On an integrable two-component Camassa-Holm
shallow water system, Phys. Lett. A, 372 (2008), 7129–7132.

[14] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm
and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165–186.

[15] A. Degasperis, D.D. Holm, and A.N.W. Hone, A new integrable equation with
peakon solutions, Theor. Math. Phys., 133 (2002), 1463-1474.

[16] A. Degasperis and M. Procesi, Asymptotic integrability, Symmetry and perturba-
tion theory (Rome, 1998), 23-37, World Sci. Publ., River Edge, NJ, 1999.

[17] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations. John
Wiley, New York, 1993.

[18] J. Eckhardt, F. Gesztesy, H. Holden, A. Kostenko, and G. Teschl, Real-
valued algebro-geometric solutions of the two-component Camassa-Holm hierarchy,
Ann. Inst. Fourier., 67 (2017), 1185-1230.

[19] J. Eckhardt and K. Grunert, A Lagrangian view on complete integrability of the
two-component Camassa-Holm system, J. Integrable Sys., 2 (2017), xyx002, 14pp.

[20] J. Escher, J. Kohlmann, and J. Lenells, The geometry of the two-component
Camassa-Holm and Degasperis-Procesi equations, J. Geom. Phys., 61 (2011), 436–452.

[21] A.S. Fokas, P.J. Olver, and P. Rosenau, A plethora of integrable bi-Hamiltonian
equations, in: Algebraic aspects of integrable systems, Progr. Nonlinear Differential
Equations Appl., vol. 26, Birkhäuser Boston, Boston , MA, 1997, pp. 93-101.

[22] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations:
generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 229-243.

[23] B. Fuchssteiner and A.S. Fokas, Symplectic structures, their Bäcklund transfor-
mations and hereditary symmetries, Physica D, 4 (1981/1982), 47-66.



28 JING KANG, XIAOCHUAN LIU, PETER J. OLVER, AND CHANGZHENG QU

[24] B. Fuchssteiner and W. Oevel, The bi-Hamiltonian structure of some nonlinear
fifth and seventh order differential equations and recursion formulas for their symmetries
and conserved covariants, J. Math. Phys., 23 (1982), 358-363.

[25] P. Guha and P.J. Olver, Geodesic flow and two(super)-component analog of
the Camassa-Holm equation, SIGMA Symmetry Integrability Geom. Methods Appl., 2
(2006), 054, 9pp.

[26] G. Gui and Y. Liu, On the global existence and wave breaking criteria for the two-
component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.

[27] G. Gui, Y. Liu, P.J. Olver, and C.Z. Qu, Wave breaking and peakons for a
modified Camassa-Holm equation, Commun. Math. Phys., 319 (2013), 731-759.

[28] X.G. Geng and B. Xue, An extension of integrable peakon equations with cubic
nonlinearity, Nonlinearity, 22 (2009), 1847-1856.

[29] D.D. Holm and R.I. Ivanov, Two-component Camassa-Holm systemr: inverse scat-
tering, peakons and geometry, Inverse Problem, 27 (2011), 045013, 19pp.

[30] A.N.W. Hone, V. Novikov, and J.P. Wang, Two-component generalizations of the
Camassa-Holm equation, Nonlinearity, 30 (2017), 622-658.

[31] A.N.W. Hone and J.P. Wang, Prolongation algebras and Hamiltonian operators for
peakon equations, Inverse Problems, 19 (2003), 129-145.

[32] A.N.W. Hone and J.P. Wang, Integrable peakon equations with cubic nonlinearity,
J. Phys. A: Math. Theor., 41 (2008), 372002.

[33] M. Ito, Symmetries and conservation laws of a coupled nonlinear wave equation, Phys.
Lett. A, 91 (1982), 335-338.

[34] R.I. Ivanov and T. Lyons, Integrable models for shallow water with energy dependent
spectral problems, J. Nonlinear Math. Phys., 19 (2012), 72-88.

[35] J. Kang, X.C. Liu, P.J. Olver, and C.Z. Qu, Liouville correspondence between the
modified KdV hierarchy and its dual integrable hierarchy, J. Nonlinear Sci., 26 (2016),
141-170.

[36] J. Kang, X.C. Liu, P.J. Olver, and C.Z. Qu, Liouville correspondences between
integrable hierarchies, SIGMA Symmetry Integrability Geom. Methods Appl., 13 (2017),
035, 26pp.

[37] J. Kang, X.C. Liu, P.J. Olver, and C.Z. Qu, Bäcklund transformations for tri-
Hamiltonian dual structures of multi-component integrable system, J. Integrable Syst.,
2 (2017), xyw016, 43pp

[38] D.J. Kaup, A higher-order water-wave equation and the method for solving it, Progr.
Theoret. Phys., 54 (1975), 396-408.

[39] B.A. Kupershmidt, A super Korteweg-de Vries equation: an integrable system, Phys.
Lett. A, 102 (1984), 213-215.

[40] B.A. Kupershmidt, Mathematics of dispersive water waves, Commun. Math. Phys.,
99 (1985), 51-73.

[41] A. Kundu, Landau-Lifshitz and higher-order nonlinear systems gauge generated from
nonlinear Schrödinger-type equations, J. Math. Phys., 25 (1984), 3433-3438.

[42] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun.
Pure Appl. Math., 21 (1968), 467-490.

[43] J. Lenells, The correspondence between KdV and Camassa-Holm, Int. Math. Res.
Not., 71 (2004), 3797-3811.

[44] J. Lenells, Traveling wave solutions of the Camassa-Holm and Korteweg-de Vries
equations, J. Nonlinear Math. Phys., 11 (2004), 508-520.

[45] H.M. Li and W. Chai, A new Liouville transformation for the Geng-Xue system,
Commun. Nonlinear Sci. Numer. Simulat., 49 (2017), 93-101.

[46] N.H. Li and Q.P. Liu, On bi-hamiltonian structure of two-component Novikov equa-
tion, Phys. Lett. A, 377 (2013), 257-261.

[47] N.H. Li and X.X. Niu, A reciprocal transformation for the Geng-Xue equation, J.
Math. Phys., 55 (2014), 053505.

[48] X.C. Liu, Y. Liu, and C.Z. Qu, Orbital stability of the train of peakons for an
integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.



LIOUVILLE CORRESPONDENCES 29

[49] Y. Liu, P.J. Olver, C.Z. Qu, and S.H. Zhang, On the blow-up of solutions to the
integrable modified Camassa-Holm equation, Anal. Appl., 12 (2014), 355-368.

[50] H. Lundmark and J. Szmigielski, An inverse spectral problem related to the Geng-
Xue two-component peakon equation, Mem. Amer. Math. Soc., 244 (2016), no. 1155,
87pp.

[51] H. Lundmark and J. Szmigielski, Dynamics of interlacing peakons (and shock-
peakons) in the Geng-Xue equation, J. Integrable Syst., 2 (2017), xyw014, 65pp.

[52] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19
(1978), 1156-1162.

[53] Y. Matsuno, Bäcklund transformation and smooth multisoliton solutions for a modi-
fied Camassa-Holm equation with cubic nonlinearity, J. Math. Phys., 54 (2013), 051504.

[54] Y. Matsuno, Multisoliton solutions of the two-component Camassa-Holm system and
their reductions, J. Phys. A: Math. Theor., 50 (2017), 345202.

[55] V.B. Matveev and M.A. Salle, Darboux transformations and solitons, Springer-
Verlag, Berlin, (1991).

[56] H.P. McKean, The Liouville correspondence between the Korteweg-de Vries and the
Camassa-Holm hierarchies, Commun. Pure Appl. Math., 56 (2003), 998-1015.

[57] R. Milson, Liouville transformation and exactly solvable Schrödinger equations, Int.
J. Theo. Phys., 37 (1998), 1735-1752.

[58] R. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit
nonlinear transformation, J. Math. Phys., 9 (1968), 1202-1204.

[59] V. Novikov, Generalizations of the Camassa–Holm equation, J. Phys. A: Math. Theor.,
42 (2009), 342002.

[60] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
[61] P.J. Olver, Evolution equations possessing infinitely many symmetries, J. Math.

Phys., 18 (1977), 1212-1215.
[62] P.J. Olver, Darboux’ theorem for Hamiltonian differential operators, J. Differential

Equations, 71 (1988), 10-33.
[63] P.J. Olver, Applications of Lie Groups to Differential Equations. Second edition, Grad-

uate Texts in Mathematics, 107, Springer-Verlag, New York, 1993.
[64] P.J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-

wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
[65] C.Z. Qu, J.F. Song, and R.X.Yao, Multi-component integrable systems with peaked

solitons and invariant curve flows in certain geometries, SIGMA Symmetry Integrability
Geom. Methods Appl., 9 (2013), 007, 19pp.

[66] C. Rogers and W.K. Schief Bäcklund and Darboux Transformations, Cambridge
University Press, Cambridge, (2002).

[67] K. Sawada and T. Kotera, A method for finding N-soliton solutions of the K.d.V.
equation and K.d.V.-like equation, Prog. Theor. Phys., 51 (1974), 1355-1367.

[68] I.A. Strachan and B.M. Szablikowski, Novikov algebras and a classification of
multicomponent Camassa-Holm equations, Stud. Appl. Math., 133 (2014), 84-117.

[69] B.Q. Xia, Z.J. Qiao, and R.G. Zhou, A synthetical two-component model with
peakon solutions, Stud. Appl. Math., 135 (2015), 248-276.

[70] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, (1974).
[71] M. Wadati and K.Sogo, Gauge transformations in soliton theory, J. Phys. Soc. Japan,

53 (1983), 394-398.



30 JING KANG, XIAOCHUAN LIU, PETER J. OLVER, AND CHANGZHENG QU

Jing Kang
Center for Nonlinear Studies and School of Mathematics, Northwest University,
Xi’an 710069, P.R. China

E-mail address: jingkang@nwu.edu.cn

Xiaochuan Liu
School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi
710049, P.R. China

E-mail address: liuxiaochuan@mail.xjtu.edu.cn

Peter J. Olver
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

E-mail address: olver@umn.edu

Changzheng Qu
Center for Nonlinear Studies and Department of Mathematics, Ningbo University,
Ningbo 315211, P.R. China

E-mail address: quchangzheng@nbu.edu.cn


