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Abstract. In this paper, we study explicit correspondences between the in-
tegrable Novikov and Sawada-Kotera hierarchies, and between the Degasperis-
Procesi and Kaup-Kupershmidt hierarchies. We show how a pair of Liouville
transformations between the isospectral problems of the Novikov and Sawada-
Kotera equations, and the isospectral problems of the Degasperis-Procesi and
Kaup-Kupershmidt equations relate the corresponding hierarchies, in both posi-
tive and negative directions, as well as their associated conservation laws. Com-
bining these results with the Miura transformation relating the Sawada-Kotera
and Kaup-Kupershmidt equations, we further construct an implicit relationship
which associates the Novikov and Degasperis-Procesi equations.
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1. Introduction

This paper is devoted to studying Liouville correspondences between certain integrable
hierarchies and their interrelationships. One pair consists of the Novikov and Sawada-Kotera
(SK) hierarchies, which are initiated respectively from the Novikov equation [34, 55]

mt = 3uuxm+ u2mx, m = u− uxx, (1.1)

and the SK equation [7, 62]

Qτ +Qyyyyy + 5QQyyy + 5QyQyy + 5Q2Qy = 0. (1.2)

The second pair of integrable hierarchies is initiated by the Degasperis-Procesi (DP) equation
[17, 18]

mt = 3uxm+ umx, m = u− uxx, (1.3)

and the Kaup-Kupershmidt (KK) equation [37, 39]

Pτ + Pyyyyy + 10PPyyy + 25PyPyy + 80P 2Py = 0. (1.4)

Furthermore, combining these explicit correspondences with the known Miura transforma-
tion linking the SK and KK equations [23], we derive a nontrivial underlying correspondence
between the Novikov equation (1.1) and the DP equation (1.3).

The DP equation (1.3) was derived by Degasperis and Procesi [17] as a result of the
asymptotic integrability method for classifying (a class of) third-order nonlinear dispersive
evolution equations. It was subsequently shown that the DP equation is integrable with
a Lax pair involving a 3 × 3 isospectral problem as well as a bi-Hamiltonian structure
[18]. Furthermore, the Lax representation can be written in the form of a matrix spectral
problem of Zakharov-Shabat (ZS) form. The associated inverse scattering transform and the
dressing method can be applied to construct smooth soliton solutions for the DP equation
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[12, 13, 52]. Physically, the DP equation provides a model describing the propagation of
shallow water waves [14, 20]. It admits peaked solitons (peakons) [18] as well as multi-
peakon solutions which recover the soliton interaction dynamics [18, 48] and exhibits a
particular shock peakon structure [47]. The integrability, well-posedness, wave breaking
phenomenon and stability of peakons for the DP equation have been studied extensively;
see [9, 33, 43, 46] and references therein. The Novikov equation (1.1) with cubic nonlinear
terms was discovered as a consequence of the symmetry classification of nonlocal partial
differential equations involving both cubic and quadratic nonlinearities [55]. A Lax pair
formulation based on a 3×3 isospectral problem and the associated bi-Hamiltonian structure
were established in [34]. It was also shown that the Novikov equation possesses peaked
solitons and multi-peakon solutions [32, 34]. The well-posedness, wave breaking and blow-
up phenomena, as well as stability of peakons for the Novikov equation have been studied
in a number of papers, including [30, 44, 63].

The SK equation (1.2) and the KK equation (1.4) are two typical fifth-order integrable
equations [7, 37, 39, 62]. Their integrability can be verified from several different standpoints:
for instance, they both possess 3×3 isospectral problems and bi-Hamiltonian structures, en-
joy the Painlevé property, admit multi-soliton solutions, etc. Like the DP equation, the KK
equation also admits a Lax operator of ZS form, which can be applied to construct solitons
of the KK hierarchy, [2, 27, 52, 64]. In Section 2, we will see that both the Novikov and SK
equations support Lax operators of ZS form. Geometrically, the SK equation arises natu-
rally from an integrable planar curve flow in affine geometry [8, 59], while the KK equation
comes from an integrable planar curve flow in projective geometry [42, 54]. Interestingly,
both equations are related to the so-called Fordy-Gibbons-Jimbo-Miwa equation via certain
Miura transformations [23].

Like the Camassa-Holm (CH) equation [4, 5, 25] and the modified Camassa-Holm (mCH)
equation [24, 60], the Novikov and DP equations exhibit nonlinear dispersion. Recent years
have seen a proliferation of papers for the CH and mCH equations studying their integrable
properties, geometric formulations, well-posedness for solutions of the Cauchy problem, and
the stability of peaked solitary waves solutions; see [1, 3, 6], [10, 11], [14]-[16], and [29, 31,
35, 38, 41, 45, 51]. Interestingly, these equations support a notable variety of non-smooth
soliton-like solutions and can model the phenomenon of wave breaking.

The method of tri-Hamiltonian duality was developed [22, 24, 60] to systematically de-
rive additional nonlinear dispersive integrable systems. This method begins with the basic
observation that most classical integrable soliton equations that possess a bi-Hamiltonian
structure, actually support a compatible triple of Hamiltonian structures using a particular
scaling argument, leading to a systematic algorithm [60], to construct their dual nonlinear
dispersive integrable systems. In particular, the CH and mCH equations appear as the duals
to, respectively, the KdV and mKdV equations.

In view of this duality, it is of interest to establish relationships between the full integrable
hiearchy and the corresponding dual integrable hierarchy. In [40] and [50], the correspon-
dence between the CH hierarchy and the KdV hierarchy is established through a Liouville
transformation, the key point being that the two Hamiltonian operators of the CH hierarchy
can be obtained directly from those of the KdV hierarchy. This argument does not work for
the mCH and mKdV hierarchies, whose correspondence through a Liouville transformation
is based upon a relationship between the corresponding recursion operators and some sub-
tle identities relating the respective Hamiltonian operators [36]. It demonstrates that the
positive flow and negative flow of the mCH hierarchy are generated by the negative flow
and positive flow of the mKdV hierarchy, respectively. The correspondences between the
Hamiltonian conservation laws for the CH (mCH) hierarchy and KdV (mKdV) hierarchy
have also been derived [36, 40].
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The goal of this paper is to study the similar Liouville correspondences between the flows
and Hamiltonian conservation laws in both the Novikov and SK hierarchies, as well as the
DP and KK hierarchies. Furthermore, an underlying correspondence between the Novikov
equation (1.1) and the DP equation (1.3) is also constructed. Our motivations are three-fold.
First, it was shown that the Novikov equation is related to the first negative flow of the SK
hierarchy [34], while the DP equation is related to the first negative flow of the KK hierarchy
[18]. Second, the CH and mCH hierarchies are related, respectively, to the KdV and mKdV
hierarchies through Liouville transformations relating their isospectral problems. Third, the
SK equation is related to the KK equation by a Miura transformation [23], and there exists
a transformation found in [36] which maps the mCH equation to the CH equation.

However, in the Novikov-SK and DP-KK settings, due to the non-standard bi-Hamiltonian
structures [26], we neither have the dual relationship, as in both CH-KdV and mCH-mKdV
settings, nor the subtle relationship between their Hamiltonian operators, as in the CH-KdV
setting [40, 50], nor between their recursion operators, as in the mCH-mKdV setting [36].
On the other hand, given that the Novikov and DP equations are both third-order nonlinear
equations, while the SK and KK equations are of fifth order, it seems difficult to estab-
lish any relationship between the Novikov or DP equations with the flows in the negative
direction of the SK hierarchy or the KK hierarchy. Nevertheless, based on the Liouville
transformation between the isospectral problems of the Novikov and SK hierarchies, as well
as the DP and KK hierarchies, we are able to establish certain nontrivial identities which
reveal the underlying relationship between the recursion operator of the Novikov (DP) hier-
archy and the adjoint operator of the recursion operator for the SK (KK) hierarchy. Using
these operator identities, we are able to prescribe a Liouville correspondence between the
flows involved in the Novikov-SK hierarchies and DP-KK hierarchies.

It is worth noting that, in the Novikov-SK setting, in order to establish the explicit rela-
tionship between the flows in the positive Novikov hierarchy and the flows in the negative SK
hierarchy, we make use of a novel factorization of the recursion operator of the SK equation
to identify the equations transformed from the positive flows in the Novikov hierarchy as
the corresponding negative flows in the SK hierarchy exactly. The factorization is based on
the following nontrivial operator identity for the recursion operator of the SK equation [8]:

R̄ = −
(
∂3y + 2Q∂y + 2∂y Q

)
·
(
2∂3y + 2∂2y Q∂

−1
y + 2∂−1

y Q∂2y +Q2 ∂−1
y + ∂−1

y Q2
)

= −2
(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

) (
∂2y +Q+Qy∂

−1
y

)
.

Since conservation laws play a key role in the study of well-posedness of solutions, sta-
bility of solitons, and wave-breaking phenomena, another topic of this paper is to establish
relationships between the Hamiltonian conservation laws for the Novikov and SK hierar-
chies, and the DP and KK hierarchies. These rely on some new identities for Hamiltonian
conservation laws related by the Liouville transformations and certain known results.

This section is concluded by outlining the rest of the paper. In Section 2, we first present
the Liouville transformation relating the isospectral problems of the Novikov hierarchy and
the SK hierarchy in Section 2.1. Next in Section 2.2, several operator identities are combined
with the Liouville transformation to establish the one-to-one correspondence between the
flows in the Novikov and SK hierarchies. It is proved in Section 2.3 that the Liouville trans-
formation establishes the correspondence between the series of Hamiltonian conservation
laws of the Novikov equation and the SK equation. The Liouville correspondence between
the DP hierarchy and the KK hierarchy, and the relationship of their conservation laws will
be studied in Section 3. In Section 4, we obtain a nontrivial relationship between the Novikov
equation (1.1) and the DP equation (1.3) by exploiting the Miura transformations relating
the SK equation (1.2) and the KK equation (1.4) and the results in previous Sections.



4 JING KANG, XIAOCHUAN LIU, PETER J. OLVER, AND CHANGZHENG QU

2. The correspondence between the Novikov and SK hierarchies

2.1. A Liouville transformation between the isospectral problems of the Novikov
and SK hierarchies. In this section, we first obtain the Liouville transformation relating
the Novikov and SK hierarchies. In accordance with standard terminology, a Liouville
transformation is defined by a change of variables which maps one spectral problem to
another [53, 56]. If the transformation does not affect the independent variables, it is
referred to as a Miura transformation.

The Novikov equation

mt = u2mx + 3uuxm, m = u− uxx, (2.1)

can be expressed as the compatibility condition for the linear system [34] consisting of

Ψx =



0 λm 1
0 0 λm
1 0 0


Ψ, Ψ =



ψ1

ψ2

ψ3


 , (2.2)

and

Ψt =




1
3λ

−2 − uux λ−1ux − λu2m u2x
λ−1u − 2

3λ
−2 −λ−1ux − λu2m

−u2 λ−1u 1
3λ

−2 + uux


Ψ. (2.3)

Note that equation (2.2) is reduced to a scalar equation by setting Ψ = ψ2, namely

Ψxxx = 2m−1mxΨxx +
(
m−1mxx − 2m−2m2

x + 1
)
Ψx + λ2m2Ψ. (2.4)

It was proved in [34] that by the reciprocal transformation

dy = m
2
3dx+m

2
3u2dt, dτ = dt, (2.5)

the isospectral problem (2.4) is converted into

Φyyy +QΦy = µΦ, (2.6)

with

Φ = Ψ, µ = λ2, Q =
4

9
m−

10
3 m2

x −
1

3
m−

7
3mxx −m−

4
3 , (2.7)

which is a third-order spectral problem for the SK equation. Note that the isospectral
problems for the Novikov equation and the SK equation can also be written as the Zakharov-
Shabat (ZS) form

Ψ̃y + (Ql − λ̃J)Ψ̃ = 0, (2.8)

where λ̃ = λ
2
3 , while

Ql =



−g−1gy 0 0

0 g−1gy + h−1hy 0
0 0 −h−1hy


 ,

is a diagonal sl(3) matrix. The functions here, g(y, t), h(y, t) satisfy the system

gyy + h−1hygy + hg = 0, h−1hyy − 2h−1h2y + h = − 1
3m

−1myy +
2
9m

−2m2
y −m−

4
3 ,

in the case of the Novikov equation, and

gyy + h−1hygy + hg = 0, h−1hyy − 2h−1h2y + h = Q,

for the SK equation.
Moreover, using (2.5),

∂t = ∂τ +m
2
3u2∂y,

the t evolution of Ψ = ψ2 in (2.2) is transformed into

Φτ −
1

µ
(V Φyy − VyΦy) +

2

3µ
Φ = 0, with V = um

1
3 . (2.9)
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Notice that (2.9) is equivalent to

Φτ +
1

3µ
(WΦyy −WyΦy) = 0 (2.10)

after gauging Φ by a factor of e2τ/(3µ) and setting W = −3V . Indeed, the linear system
(2.1) and (2.10) provides the Lax pair for the first negative flow in the SK hierarchy [28]
(see also [33, 34]), and the compatibility condition Φyyyτ = Φτyyy yields

Qτ =Wy, Wyy +QW = T, Ty = 0. (2.11)

Therefore, we conclude that there exists a Liouville corrspondence between the Novikov
equation (2.1) and the first negative flow (2.11) of the SK hierarchy, where their correspond-
ing Lax pairs are related by the transformations (2.5) and (2.7).

In light of this, we are led to generalize the Liouville correspondence between the Novikov
equation and the first negative flow of the SK hirarchy to their entire hierarchies, establishing
the correspondence between the flows of the Novikov and SK hierarchies. Motivated by (2.5)
and (2.7), we pursue this study by utilizing the Liouville transformation

y =

∫ x

m
2
3 (t, ξ) dξ, τ = t, Q =

4

9
m−

10
3 m2

x −
1

3
m−

7
3mxx −m−

4
3 . (2.12)

Note that the first expression in (2.12) has the form of a reciprocal transformation [61].

2.2. The correspondence between the Novikov and SK hierarchies. Let us now
study the correspondence between the Novikov hierarchy and the SK hierarchy. First of all,
the Novikov equation (2.1) can be written in bi-Hamiltonian form [34]

mt = K1 = K
δH0

δm
= J

δH1

δm
, m = u− uxx, (2.13)

where

K =
1

2
m

1
3 ∂xm

2
3 (4∂x − ∂3x)

−1m
2
3 ∂xm

1
3 and J = (1 − ∂2x)m

−1 ∂xm
−1 (1− ∂2x) (2.14)

are the compatible Hamiltonian operators. The corresponding Hamiltonian functionals are
given by

H0 = 9

∫ (
u2 + u2x

)
dx

and

H1 =
1

6

∫
um∂−1

x m(1− ∂2x)
−1(u2mx + 3uuxm) dx. (2.15)

Moreover, since

∂−1
x (mut) =

∫ x

−∞

(u− uxx)ut dx = −(uxut − uuxt)(t, x) +

∫ x

−∞

u(ut − uxxt) dx

= −(uxut − uuxt)(t, x) +

∫ x

−∞

u(u2mx + 3uuxm) dx = (uuxt − uxut + u3m)(t, x),

using the Novikov equation (2.1),

H1 =
1

6

∫

R

um∂−1
x (mut)dx =

1

6

∫

R

um(uuxt − uxut + u3m)dx

=
1

6

∫

R

u2muxtdx−
1

6

∫

R

uuxmutdx+
1

6

∫

R

u4m2dx

=
1

6

∫

R

(−3uuxm− u2mx)utdx+
1

6

∫

R

u4m2dx,
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which implies that H1 can be written in the following local form in terms of u and m:

H1 =
1

6

∫ (
u4m2 −mtut

)
dx. (2.16)

According to Magri’s Theorem [49, 57, 58], an integrable bi-Hamiltonian equation with
two compatible Hamiltonian operators K and J belongs to an infinite hierarchy

mt = Kn = K
δHn−1

δm
= J

δHn

δm
, n ∈ Z (2.17)

of higher-order bi-Hamiltonian systems, in both the positive and negative directions, where
Hn, n ∈ Z are all conserved functionals common to all members of the hierarchy.

The Novikov equation (2.13) serves as the first member in the positive direction of (2.17).
As for the negative direction, observe that

K0 = J
δH0

δm
= 0,

and the Hamiltonian operator K admits the Casimir functional

HC =
9

2

∫
m

2
3 dx with

δHC

δm
= 3m−

1
3 .

Therefore, we conclude that the negative flows of the Novikov hierarchy are generated from
the Casimir equation

mt = K−1 = J
δH−1

δm
= J

δHC

δm
= 3J m−

1
3 . (2.18)

The SK equation

Qτ +Qyyyyy + 5QQyyy + 5QyQyy + 5Q2Qy = 0 (2.19)

exhibits a generalized bi-Hamiltonian system, whose corresponding integrable hierarchy is
generated by a recursion operator R̄ = K̄J̄ , with

K̄ = −
(
∂3y + 2Q∂y + 2∂y Q

)
(2.20)

and

J̄ = 2∂3y + 2∂2y Q∂
−1
y + 2∂−1

y Q∂2y +Q2 ∂−1
y + ∂−1

y Q2. (2.21)

As noted in [26], K̄ maps the variational gradients of the conservation laws of the equation
under consideration onto its symmetry groups, while, J̄ works in the opposite way.

Definition 2.1. The equation Qτ = K̄[Q] is called a generalized bi-Hamiltonian system if
there exist an implectic (Hamiltonian) operator K̄ and a functional H̄0 such that

K̄[Q] = K̄
δH̄0

δQ
,

as well as a symplectic operator J̄ and a corresponding functional H̄1 satisfying

J̄ K̄[Q] =
δH̄1

δQ
.

The term “generalized bi-Hamiltonian system” is taken from [26], and refers to the fact
that we do not assume any nondegeneracy or invertibility conditions for the operators K̄
and J̄ . These are particular instances of the general notion of compatible pairs of Dirac
structures, whose properties are developed in Dorfman, [19].

Therefore, defining

H̄0 =
1

6

∫ (
Q3 − 3Q2

y

)
dy with

δH̄0

δQ
=

1

2
Q2 +Qyy, (2.22)
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one finds that the SK equation (2.19) can be written as

Qτ = K̄1 = K̄
δH̄0

δQ
,

and the positive flows of the SK hierarchy are generated by applying successively the recur-
sion operator R̄ = K̄ J̄ to K̄1, namely

Qτ = K̄n =
(
K̄ J̄

)n−1
K̄1, n = 1, 2, . . . . (2.23)

On the other hand, in the negative direction, note that the trivial function f = 0 satisfies
the equation

J̄ · f =
δH̄0

δQ
.

Then the n-th negative flow is proposed to take the form

R̄nQτ = 0, n = 1, 2, . . . . (2.24)

Furthermore, it has been discovered in [8] that the recursion operator R̄ satisfies the following
decomposition

R̄ = K̄ J̄ = −
(
∂3y + 2Q∂y + 2∂yQ

)
·
(
2∂3y + 2∂2y Q∂

−1
y + 2∂−1

y Q∂2y +Q2 ∂−1
y + ∂−1

y Q2
)

= −2
(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

)
·
(
∂2y +Q+Qy∂

−1
y

)
.

(2.25)
This factorization result demonstrates that the first negative flow (2.11) in the SK hierarchy
derived in [34] satisfies R̄Qτ = 0. We have thus confirmed the formulation (2.24) for the
negative flows.

We are now in the position to establish the theorem which shows how the transforma-
tions (2.12) affect the underlying Liouville correspondence between the Novikov and SK
hierarchies. In this theorem and hereafter, we denote, for a positive integer n, the n-th
equation in the positive and negative directions of the Novikov hierarchy by (Novikov)n and
(Novikov)−n, respectively, while the n-th positive and negative flows of the SK hierarchy
are denoted by (SK)n and (SK)−n, respectively.

Theorem 2.1. Under the Liouville transformation (2.12), for each nonzero integer n ∈ Z,
the (Novikov)n equation is mapped into the (SK)−n equation, and conversely.

The proof of this theorem relies on the following two lemmas.

Lemma 2.1. Let m(t, x) and Q(τ, y) be related by the transformation (2.12). Then the
following operator identities hold:

m−1 (1− ∂2x)m
−

1
3 = −(Q+ ∂2y), (2.26)

m−1 J m−
1
3 =

1

2
∂y J̄ ∂y, (2.27)

m−
4
3 (4∂x − ∂3x)m

−
2
3 = K̄. (2.28)

Proof. (i). In view of the transformation (2.12), one has ∂x = m
2
3 ∂y. It follows that

∂2xm
−

1
3 = m

2
3 ∂ym

2
3 ∂y = m∂2y +

(
m−

1
3

)
xx
,

where, by (2.12), a direct computation yields
(
m−

1
3

)

xx

= − 1
3

(
m−

4
3mx

)

x

= 1
3

(
4
3 m

−
7
3 m2

x −m−
4
3

(
4
3 m

−1m2
x − 3m− 3m

7
3 Q

))

= m (m−
4
3 +Q).
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We thus arrive at

m−1 (1− ∂2x)m
−

1
3 = m−1

(
m−

1
3 − (m∂2y +m−

1
3 +mQ)

)
= −(Q+ ∂2y).

(ii). Thanks to (2.26), we deduce that

m−1 (1 − ∂2x)m
−1 ∂xm

−1 (1− ∂2x)m
−

1
3 ∂−1

y = (Q+ ∂2y) ∂y (Q + ∂2y) ∂
−1
y = 1

2∂y J̄ ,

verifying (2.27).
(iii). Using the transformations (2.12) again, we find

∂2xm
−

2
3 = m

2
3 ∂y

(
∂y −

2
3 m

−
5
3 mx

)
= m

2
3

(
∂2y − 2

3 m
−

5
3 mx ∂y −

2
3 m

−
2
3 (m−

5
3 mx)x

)

=
2

9
m−

8
3 m2

x + 2m−
2
3 + 2m

2
3 Q−

2

3
m−1mx ∂y +m

2
3 ∂2y .

Hence,

m−
4
3 (4∂x − ∂3x)m

−
2
3 = m−

2
3 ∂y (4− ∂2x)m

−
2
3

= m−
2
3 ∂y

(
2m−

2
3 − 2

9 m
−

8
3 m2

x − 2m
2
3 Q+ 2

3 m
−1mx ∂y −m

2
3 ∂2y

)

= 2m−
4
3 (m−

2
3 )x − 2

9 m
−

4
3 (m−

8
3 m2

x)x − 2m−
4
3 (m

2
3 )xQ− 2Qy

+
(
2m−

4
3 − 2

9 m
−

10
3 m2

x + 2
3 m

−
4
3 (m−1mx)x − 2Q

)
∂y

+
(
m−

2
3 (m

2
3 )x − 2

3 m
−1mx

)
∂2y − ∂3y ,

then (2.28) follows. �

The relationship between the recursion operator for the Novikov hierarchy and the adjoint
operator of recursion operator for the SK hierarchy is given by the following result.

Lemma 2.2. Under the transformation (2.12), the relation

m−1
(
JK−1

)n
m = ∂y

(
J̄ K̄

)n
∂−1
y (2.29)

holds for each integer n ≥ 1.

Proof. We prove (2.29) by induction on n. First, using the inverse operator K−1 along with
(2.12), we deduce from (2.27) and (2.28) that

m−1 JK−1m = 2m−1 J m−
1
3 ∂−1

x m−
2
3 (4∂x − ∂3x)m

−
2
3 ∂−1

x m
2
3 = ∂y J̄ K̄ ∂−1

y ,

which shows that (2.29) holds for n = 1. Next, we assume that (2.29) holds for n = k, say

m−1
(
JK−1

)k
m = ∂y

(
J̄ K̄

)k
∂−1
y .

Then for n = k + 1, thanks to the result when n = 1, one has

m−1
(
JK−1

)k+1
m = m−1 JK−1

(
JK−1

)k
m = ∂y

(
J̄ K̄

)k+1
∂−1
y .

This completes the induction step, and thus proves the lemma. �

Proof of Theorem 2.1. The proof of Theorem 2.1 contains two parts:
(i). Let us begin with the (Novikov)−n equation for n ≥ 1. First, since the relation (2.12)
can be rewritten as

Q = −m−1 (1− ∂2x)m
−

1
3 , (2.30)

we deduce from (2.26) that the first negative flow (2.18) of the Novikov hierarchy satisfies

mt = K−1 = −3 (1− ∂2x)m
−1Qx = 3m(Q+ ∂2y)Qy = 3m∂y (

1

2
Q2 +Qyy). (2.31)
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Hence, the n-th member in the negative hierarchy takes the form

mt = K−n =
(
JK−1

)n−1
K−1 = 3

(
JK−1

)n−1
m∂y (

1

2
Q2 +Qyy), n = 1, 2, . . . . (2.32)

Next, suppose that m(t, x) is the solution of the equation (2.32). We calculate the t-
derivative of the corresponding function Q(τ, y) defined in (2.30). More precisely, we deduce
that, on the one hand,

Qt = Qτ +Qy

∫ x(
m

2
3 (t, ξ)

)
t
dξ = Qτ +

2

3
Qy∂

−1
x m−

1
3mt = Qτ +

2

3
Qy∂

−1
y m−1mt,

and on the other hand, in view of (2.30),

Qt = m−2mt (1− ∂2x)m
−

1
3 +

1

3
m−1 (1− ∂2x)m

−
4
3mt = −m−1

(
Q−

1

3
(1 − ∂2x)m

−
4
3

)
mt.

Hence, combining the preceding two equations, we arrive at

Qτ =

(
−
2

3
Qy∂

−1
y m−1 −m−1Q+

1

3
m−1(1− ∂2x)m

−
4
3

)
mt =

1

3
K̄∂−1

y m−1mt, (2.33)

where we have made use of the formula (2.26).
Finally, according to Lemma 2.2, we deduce that ifm(t, x) is the solution of the (Novikov)−n

equation (2.32), the corresponding Q(τ, y) satisfies

Qτ = K̄∂−1
y m−1

(
JK−1

)n−1
m∂y

(
1

2
Q2 +Qyy

)

= K̄
(
J̄ K̄

)n−1
(
1

2
Q2 +Qyy

)
= R̄n−1K̄1 = K̄n.

This immediately implies that Q(τ, y) solves the (SK)n equation (2.23).
Conversely, if Q(τ, y) is a solution of the (SK)n equation for n ≥ 1, since the transfor-

mation (2.12) is a bijection, tracing the previous steps backwards suffices to verify that the
reverse argument is also true.

(ii). Now, we focus our attention on the (Novikov)n equation for n ≥ 1, which can be
written as

mt = Kn =
(
KJ −1

)n−1
K
δH0

δm
= 9

(
KJ −1

)n−1
m

1
3 ∂xm

2
3 (4∂x − ∂3x)

−1m
2
3 ∂xm

1
3 u. (2.34)

Plugging it into (2.33), we find

Qτ = 3K̄∂−1
y m−1

(
KJ −1

)n−1
m

1
3 ∂xm

2
3 (4∂x − ∂3x)

−1m
2
3 ∂xm

1
3 u.

As a consequence, the operator factorization identity (2.25), when combined with (2.29),
allows us to deduce that, for each n ≥ 1, if m(t, x) solves the (Novikov)n equation (2.34),
then for the operator B defined by

B = −2
(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

)
,

the corresponding Q(τ, y) satisfies

R̄nQτ = B
(
∂2y +Q+Qy∂

−1
y

) (
K̄J̄

)n−1
Qτ

= 3B ∂y
(
∂2y +Q

)
∂−1
y

(
K̄J̄

)n−1
K̄∂−1

y m−1
(
KJ −1

)n−1
m

1
3 ∂xm

2
3 (4∂x − ∂3x)

−1m
2
3 ∂xm

1
3 u

= 3B ∂y
(
∂2y +Q

)
∂−1
y K̄m

2
3 (4∂x − ∂3x)

−1m
2
3 ∂xm

1
3 u

= 3B ∂y
(
∂2y +Q

)
m

1
3 u = −3B ∂y · 1 = 0,

where we have made use of the operator identity (2.26). This immediately reveals that
Q(τ, y) solves the (SK)−n equation (2.24). We thus prove that, for each n ≥ 1 the (Novikov)n
equation is mapped into the (SK)−n equation under the transformation (2.12).
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In analogy with the proof of part (i), the reverse argument follows from the fact that
(2.12) is a bijection. �

2.3. The correspondence between the Hamiltonian conservation laws of the
Novikov and SK equations. According to Magri’s theorem, one can also recursively con-
struct an infinite hierarchy of Hamiltonian conservation laws of any bi-Hamiltonian struc-
ture. In particular, for the Novikov equation (2.1), at the n-th stage we determine the
Hamiltonian conservation laws Hn satisfying the recursive formula

K
δHn−1

δm
= J

δHn

δm
, n ∈ Z, (2.35)

where K and J are the two compatible Hamiltonian operators (2.14) admitted by the
Novikov equation. On the other hand, the recursive formula

J̄ K̄
δH̄n−1

δQ
=
δH̄n

δQ
, n ∈ Z, (2.36)

formally provides an infinite collection of Hamiltonian conservation laws for the SK equation
(2.19), using the operator pair K̄ and J̄ given in (2.20) and (2.21).

In this subsection we investigate the relationship between the two hierarchies of Hamil-
tonian conservation laws {Hn} and {H̄n}. Let us begin with two preliminary lemmas.

Lemma 2.3. Let {Hn} and {H̄n} be the hierarchies of Hamiltonian conservation laws of
the Novikov and SK equations, respectively. Then, for each n ∈ Z, their corresponding
variational derivatives satisfy the relation

δH̄n

δQ
=

1

3
∂−1
x m−

1
3K

δH−(n+2)

δm
. (2.37)

Proof. The proof relies on an induction argument. First of all, since

δH−2

δm
= K−1J

δH−1

δm
= 3K−1(1− ∂2x)m

−1∂xm
−1(1− ∂2x)m

−
1
3

= −3K−1(1− ∂2x)m
−1Qx = 3K−1m(Q+ ∂2y)Qy = 3K−1m∂y

δH̄0

δQ
,

by (2.12), (2.26), and (2.30), and so, clearly, (2.37) holds for n = 0.
Suppose by induction, that (2.37) holds for n = k with k ≥ 0, say

δH̄k

δQ
=

1

3
∂−1
x m−

1
3K

δH−(k+2)

δm
.

Then, for n = k + 1, by (2.35) and (2.36), we deduce that

δH̄k+1

δQ
= J̄ K̄

δH̄k

δQ
=

1

3
J̄ K̄∂−1

x m−
1
3K

δH−(k+2)

δm

=
1

3
J̄ K̄∂−1

y m−1KJ −1K
δH−(k+3)

δm
=

1

3
∂−1
x m−

1
3K

δH−(k+3)

δm
,

where we have made use of Lemma 2.2 with n = 1. This verifies (2.37) for n ≥ 0, completing
the first step.

Next, in the case of n = −1, it follows from δH−1/δm = 3m−1/3 that

1

3
K̄∂−1

x m−
1
3K

δH−1

δm
=

1

2
m−

2
3 ∂x · 1 = 0,

which, together with the fact that K̄ ·
(
δH̄−1/δQ

)
= 0 shows that (2.37) holds for n = −1.
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Finally, to prove (2.37) holds for all n ≤ −1, we assume that (2.37) holds for n = k. Then
for n = k − 1, using the recursive formulae (2.35) and (2.36) and Lemma 2.2 with n = 1
again, we infer that

δH−(k−1)

δm
= J−1K

δH−k

δm
= 3J−1m∂y

δH̄k−2

δQ
= 3J−1m∂yJ̄ K̄

δH̄k−3

δQ
= 3K−1m

1
3 ∂x

δH̄k−3

δQ
,

which establishes the induction step for n ≤ −1 and thus proves the lemma in general. �

In order to establish the correspondence between Hamiltonian conservation laws admitted
by the Novikov and SK equations, we require the formula for the change of variational
derivatives.

Lemma 2.4. Let m(t, x) and Q(τ, y) be related by the transformations (2.12). If H(m) =
H̄(Q), then

δH

δm
=

1

3
m−

1
3 ∂−1

y K̄
δH̄

δQ
, (2.38)

where K̄ is the Hamiltonian operator (2.20) admitted by the SK equation (2.19).

Proof. First of all, motivated by (2.12) and (2.30), we introduce

F [m(t, x)] ≡ −m−1(1− ∂2x)m
−

1
3 = Q(τ, y).

Then the Fréchet derivative of F [m] is

DF [m] =
4

3
m−

7
3 −m−2(m−

1
3 )xx −

1

3
m−1∂2xm

−
4
3

= −m−1Q−
1

3
(Q+ ∂2y)m

−1 = −
1

3
(4Q+ ∂2y)m

−1.

On the other hand,

d

dǫ

∣∣∣
ǫ=0

F [m+ ǫρ] = Qy
d

dǫ

∣∣∣
ǫ=0

y(m+ ǫρ) +
d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫρ],

where, by (2.12),
d

dǫ

∣∣∣
ǫ=0

y(m+ ǫρ) =
2

3
∂−1
x m−

1
3 ρ.

Next, it follows from

d

dǫ

∣∣∣
ǫ=0

F [m+ ǫρ] = DF [m](ρ) = −
1

3
(4Q+ ∂2y)m

−1ρ

that
d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫρ] = −

1

3
(4Q+ ∂2y)m

−1ρ−
2

3
Qy∂

−1
y m−1ρ =

1

3
K̄∂−1

y m−1ρ.

Finally, the assumption of the lemma implies that

d

dǫ

∣∣∣
ǫ=0

H(m+ ǫρ) =
d

dǫ

∣∣∣
ǫ=0

H̄ (F [m+ ǫρ]) .

According to the usual definition of the variational derivative, we have, on the one hand,

d

dǫ

∣∣∣
ǫ=0

H(m+ ǫρ) =

∫
δH

δm
· ρ dx. (2.39)

On the other hand, using the fact that K̄ is skew-symmetric, we infer that

d

dǫ

∣∣∣
ǫ=0

H̄ (F [m+ ǫρ]) =

∫
δH̄

δQ
·
d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫρ] dy =

1

3

∫
δH̄

δQ
· K̄∂−1

y m−1ρ dy

=
1

3

∫
m

2
3

(
K̄∂−1

y m−1
)∗ δH̄
δQ

· ρ dx =
1

3

∫
m−

1
3 ∂−1

y K̄
δH̄

δQ
· ρ dx,

which, in comparison with (2.39) verifies (2.38), proving the lemma. �
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Finally, referring back to the form of the Hamiltonian operator K, one has

K−1m
1
3 ∂x = 2m−

1
3 ∂−1

x m−
2
3 (4∂x − ∂3x)m

−
2
3 = 2m−

1
3 ∂−1

y K̄.

It follows that the relation (2.37) can be written in an equivalent form, namely

δHn

δm
= 3K−1m

1
3 ∂x

δH̄−(n+2)

δQ
= 6m−

1
3 ∂−1

y K̄
δH̄−(n+2)

δQ
. (2.40)

Therefore, subject to the hypothesis of Lemma 2.4, if we define the functional

Gl(Q) ≡ Hn(m),

for some l ∈ Z, then Lemma 2.4 allows us to conclude that, for each n ∈ Z,

δHn

δm
=

1

3
m−

1
3 ∂−1

y K̄
δGl

δQ
.

This, when combined with (2.40), immediately leads to

Gl(Q) = 18 H̄−(n+2)(Q),

and then

Hn(m) = 18 H̄−(n+2)(Q)

follows. We thus conclude that there exsits an one-to-one correspondence between the
sequences of the Hamiltonian conservation laws admitted by the Novikov and SK equations.

Indeed, we have proved the following theroem.

Theorem 2.2. Under the Liouville transformation (2.12), for each n ∈ Z, the Hamiltonian
conservation law H̄n(Q) of the SK equation is related to the Hamiltonian conservation law
H−n(m) of the Novikov equation, according to the following identity

Hn(m) = 18 H̄−(n+2)(Q), n ∈ Z.

For instance, in the case of n = 2,

δH−2

δm
= K−1J

δH−1

δm
,

which can be expressed in terms of Q according to (2.30), say

δH−2

δm
= 6m−

1
3 ∂−1

y K̄(
1

2
Q2 +Qyy) = −6m−

1
3

(
Qyyyy + 5QQyy +

5

3
Q3

)
.

As a consequence,

H−2(m) = 9

∫
m

2
3

(
1

5
Qyyyy +QQyy +

1

3
Q3

)
dx = 3

∫ (
Q3 − 3Q2

y

)
dy,

with Q being determined by (2.12) and (2.30), which, when compared with (2.22), shows
that H−2(m) = 18H̄0(Q), in accordance with Theorem 2.2.

3. The correspondence between the DP and KK hierarchies

3.1. A Liouville transformation between the isospectral problems of the DP and
KK hierarchies. The Lax pair for the DP equation

nt = vnx + 3vxn, n = v − vxx, (3.1)

takes the form [34]

Ψx =




0 1 0
0 0 1

−λn 1 0


Ψ, Ψ =



ψ1

ψ2

ψ3


 , (3.2)
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and

Ψt =




vx −v −λ−1

v −λ−1 −v
λvn+ vx 0 −λ−1 − vx


Ψ. (3.3)

These can be rewritten in scalar form by setting Ψ = ψ1, namely

Ψxxx −Ψx + λnΨ = 0, Ψt + λ−1Ψxx + vΨx − vxΨ = 0. (3.4)

Consider the KK equation

Pτ + Pyyyyy + 20PPyyy + 50PyPyy + 80P 2Py = 0. (3.5)

It has been shown in [34] that the Lax pair for the first negative flow of its associated
hierarchy is

Φyyy + 4PΦy + 2PyΦ = µΦ (3.6)

and

Φτ + µ−1

(
UΦyy −

1

2
UyΦy +

1

6
(Uyy + 16PU)Φ

)
= 0, (3.7)

which is a reduction of a (2 + 1)-dimensional non-isospectral Lax pair given in [28]. The
compatibility condition for (3.6) and (3.7) gives rise to

Pτ =
3

4
Uy, AU = 0, (3.8)

where A is the fifth-order operator

A = ∂5y + 6(∂y P ∂
2
y + ∂2y P ∂y) + 4(∂3y P + P ∂3y) + 32(∂y P

2 + P 2 ∂y).

In analogy with the Liouville correspondence between the Novikov equation and the first
negative flow of the SK hierarchy, there exists a similar correspondence between the DP
equation and the first negative flow of the KK hierarchy. In fact, it has been found [18] that
the following coordinate transformations

dy = n
1
3dx+ n

1
3 v2dt, dτ = dt,

together with

Ψ = n−
1
3Φ, λ = −µ, P =

1

4

(
7

9
n−

8
3n2

x −
2

3
n−

5
3nxx − n−

2
3

)

will convert the isospectral problem (3.2) into (3.6).
As before, in this section we investigate the Liouville correspondence between the DP

and KK hierarchies. More precisely, the respective flows in the two hierarchies are related
by the Liouville transformations

y =

∫ x

n
1
3 (t, ξ) dξ, τ = t, (3.9)

and

P =
1

4

(
7

9
n−

8
3n2

x −
2

3
n−

5
3nxx − n−

2
3

)
=

1

4
n−

1
2

(
4∂2x − 1

)
n−

1
6 . (3.10)

In addition, the relationship between the Hamiltonian conservation laws for the DP hierarchy
and those for the KK hierarchy is also clarified.
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3.2. The correspondence between the DP and KK hierarchies. The DP equation
(3.1) is also a bi-Hamiltonian system [18]

nt = G1 = L
δE0
δn

= D
δE1
δn

, n = v − vxx,

where

L = n
2
3 ∂x n

1
3 (∂x − ∂3x)

−1 n
1
3 ∂x n

2
3 , D = ∂x (1− ∂2x) (4− ∂2x) (3.11)

are a pair of compatible Hamiltonian operators, and the corresponding Hamiltonian func-
tionals are

E0 =
9

2

∫
n dx, E1 =

1

6

∫
u3 dx.

Applying the recursion operator R̃ = LD−1 successively to the initial symmetry nt = G1

gives rise to an infinite hierarchy

nt = Gl = L
δEl−1

δn
= D

δEl
δn

, l ∈ Z,

of commuting bi-Hamiltonian flows and consequent conservation laws El. As far as the
associated negative flows are concerned, noting that

G0 = D
δE0
δn

= 0,

and L admits the Casimir functional

EC = 18

∫
n

1
3 dx with

δEC
δn

= 6n−
2
3 .

Therefore, we conclude that the first negative flow of the DP hierarchy is the Casimir
equation

nt = G−1 = D
δEC
δn

= 6D n−
2
3

and applying R̃−1 = DL−1 successively to it produces the hierarchy of negative flows, in
which the l-th member takes the form

nt = G−l = 6
(
DL−1

)l−1
D n−

2
3 , l = 1, 2, . . . .

Analogous to the SK hierarchy, the integrable hierarchy of the KK equation also arises
from a generalized bi-Hamiltonian structure, the flow is governed by Pτ = Ḡl[P ], where
Ḡl[P ] are determined by the relations

Ḡl[P ] = L̄
δĒl−1

δP
and D̄Ḡl[P ] =

δĒl
δP

, l ∈ Z,

with

L̄ = −
(
∂3y + 2P∂y + 2∂y P

)
,

D̄ = ∂3y + 6(P ∂y + ∂y P ) + 4(∂2y P ∂
−1
y + ∂−1

y P∂2y) + 32(P 2 ∂−1
y + ∂−1

y P 2),
(3.12)

and R̂ = L̄D̄ is the consequent recursion operator. It is easy to see that the KK equation
(3.5) in this hierarchy is exactly

Pτ = Ḡ1[P ] = L̄
δĒ0
δP

= L̄(Pyy + 8P 2),

with the corresponding Hamiltonian functional

Ē0 =

∫ (
8

3
P 3 −

1

2
P 2
y

)
dy.



LIOUVILLE CORRESPONDENCES BETWEEN INTEGRABLE HIERARCHIES 15

Similarly, if we use the fact that D̄ ·0 = δĒ0/δP , we may conclude that the negative flows
of the KK hierarchy take the form

(
L̄D̄

)l
Pτ = 0, l = 1, 2, . . . . (3.13)

It’s worth noting that since D̄ = ∂−1
y A∂−1

y , so the equation (3.8) arising from the com-
patibility condition of the Lax pair (3.6) and (3.7) is a reduction of the first negative flow
L̄D̄Pτ = 0.

As before, we hereafter denote, for a positive integer l, the l-th equation in the positive
and negative directions of the DP hierarchy by (DP)l and (DP)−l, respectively, while the
l-th positive and negative flows of the KK hierarchy by (KK)l and (KK)−l, respectively.
With this notation, we state the main theorem on the Liouville correspondence between the
DP and KK hierarchies as follows.

Theorem 3.1. Under the Liouville transformations (3.9) and (3.10), for each nonzero
integer 0 6= l ∈ Z, the (DP)l equation is mapped into the (KK)−l equation, and conversely.

The proof of this theorem is based on the following two preliminary lemmas, which clarify
the relations between certain operators.

Lemma 3.1. Let n(t, x) and P (τ, y) be related by the transformations (3.9) and (3.10).
Then the following identities hold:

n−
1
2 (

1

4
− ∂2x)n

−
1
6 = −(P + ∂2y), (3.14)

n−
2
3 (∂x − ∂3x)n

−
1
3 = L̄, (3.15)

n−1 D n−
2
3 = ∂y D̄ ∂y. (3.16)

Proof. (i). Define χ = n
1
3 , so from (3.9) and (3.10), we have ∂x = χ∂y and

P =
1

4
χ−2χ2

y −
1

2
χ−1χyy −

1

4
χ−2. (3.17)

And then, a direct calculation shows that

∂2x χ
−

1
2 = χ∂y χ∂y χ

−
1
2 = χ

3
2 ∂2y −

1

2
χ
(
χ−

1
2 χy

)
y
,

where, by (3.17)

χ
(
χ−

1
2 χy

)
y
= −

1

2
χ−

1
2 − 2χ

3
2 P.

We thus have

∂2x χ
−

1
2 =

1

4
χ−

1
2 + χ

3
2 (P + ∂2y),

which immediately leads to
(
1

4
− ∂2x

)
χ−

1
2 = −χ

3
2 (P + ∂2y),

and verifies (3.14).

(ii). To prove (3.15), according to (3.9) and (3.10) , we only need to verify

L̄ = χ−1 ∂y (1− ∂2x)χ
−1. (3.18)

In fact, since
(1− ∂2x)χ

−1 = χ−1 + χ(χ−1χy)y + χy∂y − χ∂2y ,

one has

χ−1 ∂y (1− ∂2x)χ
−1 = χ−1

(
χ−1 + χ (χ−1 χy)y

)
y
+ χ−1

(
χ−1 + χ (χ−1 χy)y + χyy

)
∂y − ∂3y .
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This, when combined with (3.17), proves (3.18).
(iii). In view of the explicit form of D, we deduce that

χ−3 D χ−2 = χ−1 L̄χ (4− ∂2x)χ
−2,

where we have made used of (3.15). In the right-hand side of the preceding equation

χ (4− ∂2x)χ
−2 = χ

(
4χ−2 + 2χ (χ−2 χy)y + 3χ−1 χy∂y − ∂2y

)

= −16χP − 6χyy + 3χy∂y − χ∂2y .

Hence,

χ−1 L̄χ (4− ∂2x)χ
−2

= χ−1
(
32χPPy + 64(χP )yP + 12χyyPy + 24χyyyP + 16(χP )yyy + 6χyyyyy

)

+ χ−1
(
64χP 2 − 6χyPy + 12χyyP + 48(χP )yy + 15χyyyy

)
∂y

+ χ−1
(
2χPy − 8χyP + 48(χP )y + 10χyyy

)
∂2y + 20P∂3y + ∂5y

= 4 (16PPy + Pyyy) + 2
(
32P 2 + 9Pyy

)
∂y + 30Py∂

2
y + 20P∂3y + ∂5y ,

which implies

χ−3 D χ−2 = ∂y D̄ ∂y,

and then (3.16) follows. �

Lemma 3.2. Under the transformations (3.9) and (3.10), the relation

n−1
(
DL−1

)l
n = ∂y

(
D̄L̄

)l
∂−1
y (3.19)

holds for each integer l ≥ 1.

Proof. Due to the form of the inverse operator L−1 and the identities (3.15) and (3.16), we
arrive at

n−1 DL−1 n = ∂y D̄ ∂y ∂
−1
x n−

1
3 (∂x − ∂3x)n

−
1
3 ∂−1

x n
1
3 = ∂y D̄ L̄ ∂−1

y ,

which verifies (3.19) for l = 1. Then an obvious induction procedure allows us to prove
(3.19) in general. Hence the lemma is proved. �

Proof of Theorem 3.1. To prove this theorem, we take the analogous steps as in the proof
of Theorem 2.1. First of all, the derivative of P with respect to t is

Pt = Pτ + Py

∫ x(
n

1
3 (t, ξ)

)
t
dξ = Pτ +

1

3
Py∂

−1
x n−

2
3nt = Pτ +

1

3
Py∂

−1
y n−1nt.

On the other hand, it follows from (3.10) that

Pt =
1

8
n−

3
2nt (1 − 4∂2x)n

−
1
6 +

1

24
n−

1
2 (1− 4∂2x)n

−
7
6 nt

= −
1

2
Pn−1nt +

1

24
n−

1
2 (1− 4∂2x)n

−
7
6 nt.

From the preceding equations and using the formula (3.14), we have

Pτ =

(
−
1

3
Py∂

−1
y −

1

2
P −

1

6
(P + ∂2y)

)
n−1nt =

1

6
L̄ ∂−1

y n−1nt. (3.20)

Now, suppose n(t, x) is the solution of the (DP)−l equation

nt = G−l = 6
(
DL−1

)l−1
Dn−

2
3 , l = 1, 2, . . . , (3.21)
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and n(t, x) is related to P (τ, y) according to (3.9) and (3.10). Then plugging (3.21) into
(3.20), one finds that the corresponding function P (τ, y) satisfies

Pτ = L̄∂−1
y n−1

(
DL−1

)l−1
Dn−

2
3 = L̄

(
D̄ L̄

)l−1
∂−1
y n−1Dn−

2
3

=
(
L̄D̄

)l−1
L̄ D̄ · 0 =

(
L̄D̄

)l−1
L̄
δĒ0
δP

= Ḡl.

This shows that by the transformations (3.9) and (3.10), the (DP)−l equation is mapped
into the (KK)l equation.

When it comes to the (DP)l equation for l ≥ 1, inserting the formula

nt = Gl =
(
LD−1

)l−1
L
δE0
δn

=
(
LD−1

)l−1
L ·

9

2

for the (DP)l equation into (3.20) yields

Pτ =
3

4
L̄ ∂−1

y n−1
(
LD−1

)l−1
L · 1.

Therefore, referring back to the form of the operator D and using the identity (3.19), we
deduce that

(
L̄ D̄

)l
Pτ =

3

4
L̄

(
D̄ L̄

)l
∂−1
y n−1

(
LD−1

)l−1
L · 1

=
3

4
L̄ ∂−1

y n−1D · 1 = −
3

4

(
∂2y + 4P + 2Py∂

−1
y

)
· 0 = 0,

which shows that P (τ, y) is a solution for the (KK)−l equation (3.13). We thus have proved
that for each l ≥ 1, the (DP)l equation is mapped, via the transformations (3.9) and (3.10),
into the (KK)−l equation.

As in Theorem 2.1, the converse argument is also valid. �

3.3. The correspondence between the Hamiltonian conservation laws of the DP
and KK equations. We now investigate the relationship between the Hamiltonian conser-
vation laws of the DP and KK equations. For the DP equation (3.1), with the Hamiltonian
pair L and D defined in (3.11) in hand, the corresponding recursive formula formally defines
an infinite hierarchy of Hamiltonian conservation laws El determined by

L
δEl−1

δn
= D

δEl
δn

, l ∈ Z. (3.22)

For the KK equation, its Hamiltonian conservation laws Ēl can be determined by the gen-
eralized bi-Hamiltonian (bi-Dirac) structure

D̄ L̄
δĒl−1

δP
=
δĒl
δP

, l ∈ Z,

with L̄ and D̄ given by (3.12).
Before proving the main theorem for the correspondence between the two hierarchies

of Hamiltonian conservation laws {El} and {Ēl}, two lemmas regarding their variational
derivatives are in order.

Lemma 3.3. Let {El} and {Ēl} be the hierarchies of Hamiltonian conservation laws of the
DP and KK equations, respectively. Then, for each l ∈ Z, their corresponding variational
derivatives are related according to the following identity

δEl
δn

= 6L−1 n ∂y
δĒ−(l+2)

δP
. (3.23)
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Proof. We first consider the case of l ≤ −2. Since

δE−2

δn
= L−1D

δE−1

δn
= 6L−1D n−

2
3 = 6L−1 n ∂y D̄ · 0,

then the fact D̄ · 0 = δĒ0/δP reveals that (3.23) holds for l = −2.
We proceed by induction on l. Assume that (3.23) holds when l = k, namely

δEk
δn

= 6L−1 n ∂y
δĒ−(k+2)

δP
.

From the recursive formula (3.22) and by the assumption,

δĒ−(k+1)

δP
= D̄ L̄

δĒ
−(k+2)

δP = 1
6 D̄ L̄ ∂−1

y n−1 L δEk

δn = 1
6 D̄ L̄ ∂−1

y n−1 LD−1 L δEk−1

δn .

Then, thanks to Lemma 3.2 with l = 1, we conclude that (3.23) holds for l = k − 1.
Furthermore, for the case of l = −1, we claim

δĒ−1

δP
=

1

6
∂−1
y n−1L

δE−1

δn
.

Note that Ē−1 is a Casimir functional for Hamiltonian operator L̄, it suffices to show that

L̄∂−1
y n−1L

δE−1

δn
= 0.

Indeed, from the definition of the operator L and the formula (3.15), we have

L̄ ∂−1
y n−1 Ln−

2
3 = n−

1
3 ∂x · 1 = 0,

proving the claim and verifying that (3.23) holds for l = −1.
Finally, induction on l shows that if (3.23) holds for l = k, then for l = k + 1, from the

recursive formula (3.22) and the identities (3.15) and (3.16), we infer that

δEk+1

δn
= D−1L

δEk
δn

= 6D−1 n ∂y
δĒ−(k+2)

δP
= 6D−1 n ∂y D̄ L̄

δĒ−(k+3)

δP

= 6n−
2
3 ∂−1

x n−
1
3 (∂x − ∂3x)n

−
1
3
δĒ−(k+3)

δP
= 6L−1 n ∂y

δĒ−(k+3)

δP
,

which completes the induction step, and thereby proves the lemma. �

Lemma 3.4. Let n(t, x) and P (τ, y) be related by the transformations (3.9) and (3.10). If
E(n) = Ē(P ), then

δE

δn
=

1

6
n−

2
3 ∂−1

y L̄
δĒ

δP
, (3.24)

where L̄ is the Hamiltonian operator (3.12) admitted by the KK equation (3.5).

Proof. As the first step, in view of (3.10), for convenience, we introduce the notation

F̃ [n(t, x)] ≡ −n−
1
2

(
1

4
− ∂2x

)
n−

1
6 = P (τ, y).

So evaluating the Fréchet derivative of F̃ [n] produces

DF̃ [n] =
1

6
n−

5
3 −

1

2
n−

3
2

(
n−

1
6

)
xx

−
1

6
n−

1
2

(
n−

7
6

)
xx

= −
1

2
n−1 P −

1

6
(P + ∂2y)n

−1 = −
1

6
(4P + ∂2y)n

−1.

On the other hand, we get

d

dǫ

∣∣∣
y fixed

ǫ=0
F̃ [n+ ǫρ] = DF̃ (ρ)−

1

3
Py ∂

−1
y n−1ρ =

1

6
L̄ ∂−1

y n−1ρ.
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Secondly, by the assumption, one has

d

dǫ

∣∣∣
ǫ=0

E(n+ ǫρ) =
d

dǫ

∣∣∣
ǫ=0

Ē
(
F̃ [n+ ǫρ]

)
.

Furthermore, due to the fact that L̄ is skew-adjoint, the righ-hand side of the above expres-
sion yields

d

dǫ

∣∣∣
ǫ=0

Ē
(
F̃ [n+ ǫρ]

)
=

∫
δĒ

δP
·
d

dǫ

∣∣∣
y fixed

ǫ=0
F̃ [n+ ǫρ] dy

=

∫
δĒ

δP
·

(
1

6
L̄ ∂−1

y n−1ρ

)
dy =

1

6

∫
n−

2
3 ∂−1

y L̄
δĒ

δP
ρ dx,

which, combined with the definition of the variational derivative, produces (3.24). �

Finally, it follows from (3.16) and (3.19) with l = 1 that

L−1n ∂y = D−1n ∂y D̄ L̄ = n−
2
3 ∂−1

y L̄,

which, together with (3.23), implies

δEl
δn

= 6n−
2
3 ∂−1

y L̄
δĒ−(l+2)

δP
. (3.25)

Now, we suppose that n(t, x) and P (τ, y) are related by the transformations (3.9) and
(3.10). Define a functional

G̃k(P ) ≡ El(n),

for some k ∈ Z. Then from Lemma 3.4, we conclude, for each k ∈ Z,

δEl
δn

=
1

6
n−

2
3 ∂−1

y L̄
δG̃k

δP
,

which, in comparision with (3.25) produces

El(n) = G̃k(P ) = 36 Ē−(l+2)(P ).

As a consequence, the following theorem is thereby proved.

Theorem 3.2. Under the Liouville transformations (3.9) and (3.10), for each l ∈ Z, the
Hamiltonian conservation law Ēl(P ) of the KK equation is related to that El(n) of the DP
equation, according to the following identity

El(n) = 36 Ē−(l+2)(P ), l ∈ Z.

For example, in the case of l = −2, it is inferred from (3.15) and (3.16), and using the
fact D̄ · 0 = δĒ0/δP = (Pyy + 8P 2), that

δE−2

δn
= L−1D

δE−1

δn
= 6n−

2
3 ∂−1

y L̄ D̄ · 0 = −6n−
2
3

(
Pyyyy + 20PPyy + 15P 2

y +
80

3
P 3

)
,

with P satisfying (3.10). Consequently, we arrive at

E−2(n) =
18

5

∫
n

1
3

(
Pyyyy + 20PPyy + 15P 2

y +
80

3
P 3

)
dx

= 36

∫ (
8

3
P 3 −

1

2
P 2
y

)
dy = 36 Ē0(P ),

which is in accordance with Theorem 3.2.
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4. The relationship between the Novikov equation and the DP equation

It has been shown in [23] that under the Miura transformations

B1(Q, V ) ≡ Q− Vy + V 2 = 0 (4.1)

and

B2(P, V ) ≡ P + Vy +
1

2
V 2 = 0, (4.2)

the SK equation (2.19) and the KK equation (3.5) are respectively transformed into the
Fordy-Gibbons-Jimbo-Miwa equation

Vτ + Vyyyyy − 5(VyVyyy + V 2
yy + V 3

y + 4V VyVyy + V 2Vyyy − V 4Vy) = 0. (4.3)

This, together with the fact that there exist the Liouville correspondences between the
Novikov and SK hierarchies, as well as between the DP and KK hierarchies, inspires a
natural question as to whether there exists some relationship between the Novikov equation
(2.1) and the DP equation (3.1).

We can regard (4.1) and (4.2) as Bäcklund transformations. According to Fokas and
Fuchssteiner [21], all the positive flows in the SK hierarchy admit the same transformation
(4.1). More precisely, set

T1 ≡ B−1
1,V B1,Q = (2V − ∂y)

−1
, (4.4)

where B1,V and B1,Q are the Fréchet derivatives of (4.1) with respect to V and Q, respec-
tively. Then, the recursion operator R̄ of the SK equation and the recursion operator R∗ of
equation (4.3) satisfy

R∗ = T1R̄T
−1
1 .

Similarly, each member in the KK hierarchy admits the Miura transformation (4.2), and its

corresponding recursion operator R̂ is linked with the recursion operator R∗ according to
the identity

R∗ = T2R̂T
−1
2 ,

where

T2 ≡ B−1
2,V B2,P = (V + ∂y)

−1

is the operator arising from the function (4.2).
In light of these relations, we claim that both the first negative flow of the SK hierarchy

and the KK hierarchy are related to the same equation

R∗ Vτ = 0, (4.5)

via the Miura transformations (4.1) and (4.2), respectively. Indeed, we have the following
result.

Proposition 4.1. Assume that V satisfies the equation (4.5). Then Q = Vy − V 2 and
P = −Vy − 1

2 V
2 satisfy the first negative flow of the SK hierarchy R̄Qτ = 0 and the first

negative flow of the KK hierarchy R̂Pτ = 0, respectively.

Proof. Thanks to (4.1), one has

Qτ = Vyτ − 2V Vτ = −T−1
1 Vτ .

This, together with (4.4), implies

R̄Qτ = −R̄T−1
1 Vτ = −T−1

1 R∗ Vτ .

Therefore, if R∗ Vτ = 0, then R̄Qτ = −(2V − ∂y)R
∗ Vτ = 0, proving the SK part of the

proposition. The KK part can be proved by in a similar manner. �
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Finally, using Proposition 4.1, combined with Theorems 2.1 and 3.1, we are able to
establish a relationship between the Novikov equation (2.1) and the DP equation (3.1).
This fact is summarized in the following proposition.

Proposition 4.2. Both the Novikov equation (2.1) and the DP equation (3.1) are linked
with the equation (4.5) in the following sense. If V (τ, y) is a solution of equation (4.5),
then the function m(t, x) determined implicitly by the relation

Vy − V 2 = −m−1 (1− ∂2x)m
−

1
3 , y =

∫ x

m
2
3 (t, ξ) dξ, τ = t,

satisfies the Novikov equation (2.1), while the function n(t, x) determined by

Vy +
1

2
V 2 =

1

4
n−

1
2

(
1− 4∂2x

)
n−

1
6 , y =

∫ x

n
1
3 (t, ξ) dξ, τ = t,

satisfies the DP equation (3.1).
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