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Abstract

This chapter contains a survey on Liouville correspondences between integrable
hierarchies. A Liouville transformation between the corresponding isospectral
problems induces a Liouville correspondence between their flows and Hamilto-
nian functionals. As prototypical examples, we construct Liouville correspon-
dences for the modified Camassa-Holm, the Novikov, the Degasperis-Procesi,
the two-component Camassa-Holm and the two-component Novikov (Geng-
Xue) hierarchies. In addition, a new Liouville correspondence for a certain
dual Schrödinger integrable hierarchy is presented.

1 Introduction

Due to the pioneering works [1] and [43], it is known that the spatial isospectral
problem in the Lax-pair formulation of an integrable system plays a fundamental role
when constructing the soliton solutions using the inverse scattering transform, as
well as analyzing the long-time behavior of solutions based on the Riemann-Hilbert
approach. The transition from one isospectral problem to another via a change of
variables can usually be identified as a form of Liouville transformation; see [61] and
[64] for this terminology. It is then expected that such a correspondence based on a
Liouville transformation, which we call a Liouville correspondence for brevity, can
be used to establish an inherent correspondence between associated integrability
properties including symmetries, conserved quantities, soliton solutions, Hamilto-
nian structures, etc. Indeed, this is a basic idea for investigating the integrability
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of a new system by establishing its relation to a known integrable system through
some kind of transformation, which, besides Liouville transformations, can include
Bäcklund transformations, Miura transformations, gauge transformations, Darboux
transformations, hodograph transformations, etc. [12, 15, 41, 59, 62, 66, 70, 74].
Applying an appropriate transformation enables one to adapt known solutions and
integrable structures in order to derive explicit solutions and investigate the inte-
grability properties for the transformed system.

In recent years, a great deal of attention has been devoted to integrable systems of
the Camassa-Holm type, following the discovery of their novel properties, including
the structure of nonlinear dispersion, which (as a rule) supports non-smooth soliton
solutions, such as peakons, cuspons, compactons, etc. [10, 52], and the ability of
such systems to model wave-breaking phenomena. Previous investigations demon-
strate that many integrable hierarchies of Camassa-Holm type admit a Liouville
correspondence with certain classical integrable hierarchies. In the following, recent
advances in the study of Liouville correspondences for the integrable hierarchies of
Camassa-Holm type and non-Camassa-Holm type are summarized.

Among integrable systems of Camassa-Holm type, the best-studied example is
the Camassa-Holm (CH) equation

nt + 2vxn+ vnx = 0, n = v − vxx, (1.1)

that has a quadratic nonlinearity [8, 9, 17, 27, 35], while the modified Camassa-Holm
(mCH) equation [67]

mt +
(
(u2 − u2x)m

)
x

= 0, m = u− uxx, (1.2)

is a prototypical integrable model with cubic nonlinearity, which presents several
novel properties, as described, for instance, in [7, 30, 53, 54, 58, 69]. The CH equa-
tion (1.1) appears as an integrable generalization of the Korteweg–de Vries (KdV)
equation possessing infinitely many symmetries [27], and is shown to correspond to
the first negative flow of the KdV integrable hierarchy using the Liouville trans-
formation [26]; see also [5, 6]. A novel link between the mCH equation (1.2) and
the modified KdV (mKdV) equation was found and used to obtain the multisoliton
solutions of (1.2) from the known multisoliton solutions of the mKdV equation in
[58]. In addition, all the equations in the CH, mCH, KdV, and mKdV hierarchies
have a classical bi-Hamiltonian form (see [67] for example). The interesting feature
here is that the two Hamiltonians for the CH and mCH integrable hierarchies can
be constructed from those of the KdV and mKdV hierarchies, respectively, using
the approach of tri-Hamiltonian duality [24, 26, 67]. This approach is based on the
observation that, by applying an appropriate scaling argument, many standard inte-
grable equations that possess a bi-Hamiltonian structure in fact admit a compatible
triple of Hamiltonian operators. Different combinations of the members of the com-
patible Hamiltonian triple can generate different types of integrable bi-Hamiltonian
systems, which admit a dual relation. In [72], another kind of duality by exploiting
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the zero curvature formulations of the CH and mCH hierarchies and the KdV and
mKdV hierarchies was also discussed.

As a consequence of these connections between the CH equation (1.1) and the
KdV equation, and between the mCH equation (1.2) and the mKdV equation, it is
anticipated that the KdV and mKdV hierarchies should be related to their respective
dual counterparts, the CH and mCH hierarchies, in a certain manner. A relationship
between the KdV and CH hierarchies provided by the approach of loop groups is
explored in [73]. Note that the Lax-pair formulations of equations in the CH, mCH,
KdV, and mKdV hierarchies are all based on a second order isospectral problem.
Using the Liouville transformation between the spatial isospectral problems of the
CH hierarchy and the KdV hierarchy, the Liouville correspondence between these
two integrable hierarchies is established in [44] and [60], and in addition gives rise to
a correspondence between the Hamiltonian functionals of the two hierarchies. The
analysis for the KdV-CH setting depends strongly on the subtle relation between
one of the original KdV Hamiltonian operators and one of the dual CH Hamiltonian
operators. Furthermore, the relation between the smooth traveling-wave solutions
of the CH equation and the KdV equation under the Liouville transformation was
investigated in [45]. In [36], we established the Liouville correspondence between the
integrable mCH hierarchy induced by (1.2) and the mKdV hierarchy, including the
explicit relations between their equations and Hamiltonian functionals. In contrast
to the CH-KdV setting, the analysis in [36] was based on the interrelation between
the respective recursion operators and the conservative structure of all the equations
in the mCH hierarchy. It is worth pointing out that the tri-Hamiltonian duality
relationships helps establish corresponding Liouville correspondences in both the
CH-KdV and mCH-mKdV cases as shown in [44] and [36]. As a by-product, we
constructed in [36] a novel transformation mapping the mCH equation (1.2) to the
CH equation (1.1) in terms of the respective Liouville correspondences between the
CH-KdV hierarchies and between the mCH-mKdV hierarchies.

In [67], the nonlinear Schrödinger equation

ut = i
(
uxx + u|u|2

)
,

was investigated using the method of tri-Hamiltonian duality, and the dual inte-
grable version

ut + iuxt = |u|2 ( iu− ux), (1.3)

was derived (see also [21]).The dual Schrödinger equation (1.3) has attracted much
interest in recent years for its soliton solutions, well-posedness, physical relevance,
etc. [23, 46, 47, 48, 75]. In this article, we present a new result of Liouville corre-
spondence for the integrable hierarchy induced by equation (1.3). We prove that
this dual integrable hierarchy can be related to the mKdV integrable hierarchy by a
different Liouville transformation compared to the transformation used to establish
the Liouville correspondence between the mCH hierarchy and the mKdV hierarchy.
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The tri-Hamiltonian duality theory is a fruitful approach for deriving new dual
integrable hierarchies from known integrable soliton hierarchies, provided that the
bi-Hamiltonian formulation of the latter hierarchy admits a compatible triple of
Hamiltonian operators through appropriate rescalings. For integrable soliton hier-
archies with generalized bi-Hamiltonian structures, i.e., compatible pairs of Dirac
structures [20], the corresponding Hamiltonian operators usually do not support
a decomposition as linear combination of different parts using the scaling argu-
ment, and so constructing the associated dual integrable hierarchy in this case is
unclear. On the other hand, other interesting CH-type integrable hierarchies with-
out tri-Hamiltonian duality structure can be found using some particular classifica-
tion procedure. Two representative examples are the Degasperis-Procesi (DP) and
Novikov integrable hierarchies.

The DP integrable equation with quadratic nonlinearity

nt = 3vxn+ vnx, n = v − vxx, (1.4)

was derived in [19] as a result of the asymptotic integrability method for classifying
(a class of) third-order nonlinear dispersive evolution equations. In such a clas-
sification framework, the CH equation and the KdV equation are two only other
integrable candidates. The DP equation (1.4) is integrable with a Lax pair involving
a 3× 3 isospectral problem as well as a bi-Hamiltonian structure [18]. In [18, 31], it
was pointed out that using the Liouville transformation, equation (1.4) is related to
the first negative flow of the Kaup-Kupershmidt (KK) hierarchy, which is initiated
from the classical KK integrable equation [40, 42]

Pτ + Pyyyyy + 10PPyyy + 25PyPyy + 80P 2Py = 0. (1.5)

The Novikov integrable equation with cubic nonlinearity

mt = 3uuxm+ u2mx, m = u− uxx, (1.6)

was discovered as a consequence of the symmetry classification of nonlocal partial
differential equations involving both cubic and quadratic nonlinearities in [63]. The
Lax pair formulation with 3 × 3 isospectral problem and bi-Hamiltonian structure
were established in [32]. It was shown in [32] that the Novikov equation (1.6) is
related by the Liouville transformation to the first negative flow of the Sawada-
Kotera (SK) hierarchy, which is initiated from the classical SK integrable equation
[11, 71]

Qτ +Qyyyyy + 5QQyyy + 5QyQyy + 5Q2Qy = 0. (1.7)

Although the DP and Novikov hierarchies are bi-Hamiltonian, the correspond-
ing Hamiltonian operators are not amenable to the tri-Hamiltonian duality con-
struction, in particular one that is related to the Hamiltonian operators of the
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KK and SK equations. In addition, the KK equation (1.5) and the SK equation
(1.7) both have generalized bi-Hamiltonian formulations with the corresponding
hierarchy generated by the respective recursion operators, which are obtained by
composing symplectic and implectic operators that fail to satisfy the conditions of
non-degeneracy or invertibility [28]. Therefore, studying a Liouville correspondence
for the DP or Novikov integrable hierarchies requires a more delicate analysis. In
[37], using the Liouville transformations and conservative structures in both the
DP and Novikov settings, we found the corresponding operator identities relating
the recursion operator of the DP/Novikov hierarchy and the adjoint operator of
the recursion operator of the KK/SK hierarchy, and then were able to establish the
Liouville correspondences between the DP and KK integrable hierarchies, as well
as the Novikov and SK integrable hierarchies. In particular, a nontrivial operator
factorization for the recursion operator of the SK equation discovered in [14] plays
a key role in constructing the Liouville correspondence for the Novikov hierarchy.
Note that the SK equation (1.5) and the KK equation (1.7) are related to the so-
called Fordy-Gibbons-Jimbo-Miwa equation via certain Miura transformations [25].
Exploiting such a relation, we also obtained in [37] a nontrivial link between the
Novikov equation (1.6) and the DP equation (1.4).

One can also investigate Liouville correspondences for multi-component inte-
grable hierarchies. The integrable two-component CH hierarchy and the integrable
two-component Novikov (Geng-Xue) hierarchy are two typical examples. The well-
studied two-component CH (2CH) system

mt + 2uxm+ umx + ρρx = 0, ρt + (ρu)x = 0, m = u− uxx, (1.8)

arises as the dual version for the integrable two-component Ito system

ut = uxxx + 3uux + vvx, vt = (uv)x,

introduced in [33] using the method of tri-Hamiltonian duality [67]. Such a duality
structure ensures that the system (1.8) is integrable, with bi-Hamiltonian formu-
lation and compatible Hamiltonians, which thereby recursively generate the entire
2CH integrable hierarchy, with (1.8) forming the second flow in the positive direc-
tion.

In [16], the 2CH system (1.8) was derived as a model describing shallow water
wave propagation. In [13], the Lax pair of system (1.8) was converted into a Lax
pair of the integrable system

Pτ = ρy, Qτ =
1

2
ρPy + ρyP, ρyyy + 2ρyQ+ 2(ρQ)y = 0, (1.9)

by a Liouville-type transformation introduced in [2, 3, 4]. In [13], this system was
found to be the first negative flow of the Ablowitz-Kaup-Newell-Segur hierarchy [1]
in terms of the spectral structure of its Lax-pair formulation. Although the 2CH
and Ito integrable systems are related by tri-Hamiltonian duality, in contrast to the
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CH-KdV and mCH-mKdV cases, the Liouville correspondence between these two
hierarchies is unexpected because the transformation between the corresponding
isospectral problems is not obvious.

It is anticipated that one can establish a Liouville correspondence between the
2CH hierarchy and a second integrable hierarchy involving the integrable system
(1.9) as one of flows in the negative direction. Nevertheless, the integrable structures
including the recursion operator and Hamiltonians for such a hierarchy are not clear.
The required integrability information was also not presented in [13]. In [38], we
elucidated this entire integrable hierarchy, which we call the hierarchy associated
with system (1.9) or the associated 2CH (a2CH) hierarchy for brevity. We show
that it has a bi-Hamiltonian structure and establish a Liouville correspondence
between the 2CH and a2CH hierarchies. As in the scalar case, verifying the Liouville
correspondence relies on analyzing the underlying operators, which have a matrix
form in the multi-component case, and a more careful calculation of the nonlinear
interplay among the various components is hence required. Furthermore, we find in
[38] that the second positive flow of the a2CH integrable hierarchy is closely related
to shallow water models studied in [34] and [39].

The Novikov equation (1.6) has the following two-component integrable gener-
alization

mt+3vuxm+uvmx = 0, nt+3uvxn+uvnx = 0, m = u−uxx, n = v−vxx, (1.10)

which was introduced by Geng and Xue [29], and is referred to as the GX system;
see [55] and references therein. As a prototypical multi-component integrable sys-
tem with cubic nonlinearity, the GX system (1.10) supports special multi-peakon
dynamics and has recently attracted much attention [49, 50, 51, 55, 56]. In [49], it
was shown that there exists a certain Liouville transformation converting the Lax
pair of GX system (1.10) into the Lax pair of the integrable system

Qτ =
3

2
(qy + py)− (q − p)P, pyy + 2pyP + pPy + pP 2 − pQ+ 1 = 0,

Pτ =
3

2
(q − p), qyy − 2qyP − qPy + qP 2 − qQ+ 1 = 0,

(1.11)

where q = vm2/3n−1/3 and p = um−1/3n2/3. The system (1.11) is bi-Hamiltonian,
whose bi-Hamiltonian structure is derived in [49]. In [38], the entire associated GX
(aGX) integrable hierarchy is investigated, in which (1.11) is the first negative flow.
The Liouville correspondence between the integrable GX hierarchy generated by
(1.10) and the aGX hierarchy is also established.

We conclude this section by outlining the rest of the survey. Section 2 is devoted
to the Liouville correspondence for the mCH integrable hierarchy. The Liouville
correspondences between the Novikov and SK hierarchies, and between the DP and
KK hierarchies are discussed in Section 3. In Section 4, multi-component cases are
discussed. Finally, we present the new result for the Liouville correspondence of the
dual Schrödinger hierarchy generated by (1.3).
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2 Liouville correspondences for the CH and mCH inte-
grable hierarchies

In this section, we present our procedure to establish the Liouville correspondence
between the mCH hierarchy and the (defocusing) mKdV hierarchy in details. A
novel transformation mapping the mCH equation (1.2) to the CH equation (1.1) in
terms of the respective Liouville correspondences between the CH-KdV hierarchies
and between the mCH-mKdV hierarchies found in [36] is also addressed.

2.1 Liouville correspondence for mCH integrable hierarchy

Let us begin by presenting the basic CH-KdV case. For the CH equation (1.1), the
bi-Hamiltonian structure takes the following form

nt = J δE2

δn
= L δE1

δn
,

where E1 = E1(n), E2 = E2(n) are Hamiltonian functionals, and the compatible
Hamiltonian operators are given by

J = −
(
∂x − ∂3x

)
, L = − (∂xn+ n∂x) .

These are related to the Hamiltonian pair

D = ∂y, L = 1
4∂

3
y − 1

2 (P∂y + ∂yP ) (2.1)

of the KdV equation

Pτ + Pyyy − 6PPy = 0. (2.2)

It was proved in [44] and [60] that the corresponding Liouville transformation re-
lating their isospectral problems transforms between the CH and KdV hierarchies.
The following identities

L−1 = − 1

2
√
n
D−1 1

n
, L =

1

4n
J 1√

n

relating the Hamiltonian operators under the Liouville transformation play an im-
portant role in the analysis used in [44] and [60].

The mCH equation (1.2) can be written in bi-Hamiltonian form [67]

mt = J δH2

δm
= K δH1

δm
, m = u− uxx,

where

J = −
(
∂x − ∂3x

)
, K = −∂xm∂−1

x m∂x (2.3)
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are compatible Hamiltonian operators, while the corresponding Hamiltonian func-
tionals are given by

H1(m) =

∫
mudx, H2(m) =

1

4

∫ (
u4 + 2u2u2x −

1

3
u4x

)
dx.

In general, for an integrable bi-Hamiltonian equation with two compatible Hamil-
tonian operators K and J , Magri’s theorem [57, 66] establishes the formal existence
of an infinite hierarchy

mt = Kn(m) = J δHn
δm

= K δHn−1

δm
, n = 1, 2, . . . , (2.4)

of higher-order commuting bi-Hamiltonian systems, based on the higher-order Hamil-
tonian functionals Hn = Hn(m), n = 0, 1, 2, . . ., common to all members of the hi-
erarchy. The members in the hierarchy (2.4) are obtained by applying successively
the recursion operator R = KJ −1 to a seed symmetry [65], which in the mCH
setting takes the following form:

mt = K1(m) = −2mx, with H0(m) =

∫
m dx.

The positive flows in the mCH hierarchy (2.4) are hence

mt +
(
KJ −1

)n
(2mx) = 0, n = 0, 1, . . . . (2.5)

Clearly, the mCH equation (1.2) appears in this hierarchy as

mt = K2(m) = −
(
(u2 − u2x)m

)
x

= RK1(m).

Similarly, one obtains an infinite number of higher-order commutative bi-Hamiltonian
systems in the negative direction:

mt = K−n(m) = J δH−n
δm

= K
δH−(n+1)

δm
, n = 1, 2, . . . ,

starting from the Casimir functional HC(m) =
∫

1/mdx of K. Then, the first
equation mt = K−1(m) in the negative direction of the mCH hierarchy is

mt = J δH−1

δm
= J δHC

δm
=

(
1

m2

)
x

−
(

1

m2

)
xxx

, (2.6)

which is called the Casimir equation in [67]. It was noted in [67] that equation
(2.6) has the form of a Lagrange transformation, modulo an appropriate complex
transformation, of the mKdV equation. Successively applying JK−1 produces the
hierarchy of negative flows, in which the n-th member is

mt = K−n(m) = −
(
JK−1

)n−1 J 1

m2
, n = 1, 2, . . . . (2.7)
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As the original soliton equation in the duality relationship with the mCH equa-
tion (1.2), the (defocusing) mKdV equation

Qτ +Qyyy − 6Q2Qy = 0 (2.8)

also admits a hierarchy consisting of an infinite number of integrable equations in
both the positive and negative directions. Each member in the positive direction
takes the form

Qτ = Kn(Q) = J δHn
δQ

= K δHn−1

δQ
, n = 1, 2, . . . , (2.9)

where

K = −1

4
∂3y + ∂yQ∂

−1
y Q∂y, J = −∂y, (2.10)

are the compatible Hamiltonian operators, and Hn = Hn(Q), n = 0, 1, 2, . . ., are the
corresponding Hamiltonian functionals. Using the recursion operator R = KJ −1,
the positive flows in (2.9) are

Qτ +
(
KJ −1

)n
(4Qy) = 0, n = 0, 1, . . . . (2.11)

The negative flow in the following form

RnQτ = 0, n = 1, 2, . . . ,

can be rewritten as

∂y
(
1
4∂y −Q∂

−1
y Q

) (
KJ −1

)n−1
Qτ = 0,

due to the forms of the Hamiltonian operators (2.10), and thus, for each n ≥ 1,(
1
4∂y −Q∂

−1
y Q

) (
KJ −1

)n−1
Qτ = C−n, (2.12)

with C−n being the corresponding constant of integration.
The zero curvature formulation [68, 72] for the mCH equation (1.2) is

Ψx =

(
−1

2
1
2λm

−1
2λm

1
2

)
Ψ, Ψ =

(
ψ1

ψ2

)
(2.13)

and

Ψt =

(
λ−2 + 1

2(u2 − u2x) −λ−1(u− ux)− 1
2λm(u2 − u2x)

λ−1(u+ ux) + 1
2λm(u2 − u2x) −λ−2 − 1

2(u2 − u2x)

)
Ψ.

On the other hand, the zero curvature formulation for (2.8) comes from the com-
patibility condition between

Φy =

(
− iµ iQ
− iQ iµ

)
Φ, Φ =

(
φ1
φ2

)
(2.14)
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and

Φτ =

(
−4 iµ3 − 2 iµQ2 4µ2 iQ+ 2 iQ3 − 2µQy − iQyy

−4µ2 iQ− 2 iQ3 − 2µQy + iQyy 4 iµ3 + 2 iµQ2

)
Φ.

One can verify that the following Liouville transformation

Φ =

(
−1 i
− i 1

)
Ψ, y =

x∫
m(ξ) dξ,

will convert the isospectral problem (2.13) into the isospectral problem (2.14), with

Q =
1

2m
, λ = −2µ.

We hence introduce the following transformation:

y =

x∫
m(t, ξ) dξ, τ = t, Q(τ, y) =

1

2m(t, x)
, (2.15)

and investigate how it affects the underlying correspondence between the flows of
the mCH and (defocusing) mKdV hierarchies.

Hereafter, for a non-negative integer n, we denote the n-th equation in the pos-
itive and negative directions of the mCH hierarchy by (mCH)n and (mCH)−n, re-
spectively, while the n-th positive and negative flows in the (defocusing) mKdV
hierarchy are denoted by (mKdV)n and (mKdV)−n, respectively. Applying the
Lemmas 3.2 and 3.3 in [36], we are able to establish a Liouville correspondence
between the (defocusing) mKdV and mCH hierarchies.

Theorem 1. Under the transformation (2.15), for each n ∈ Z, the (mCH)n+1

equation is related to the (mKdV)−n equation. More precisely, for each integer
n ≥ 0,

(i). m solves equation (2.5) if and only if Q satisfies Qτ = 0 for n = 0 or (2.12)
for n ≥ 1, with C−n = 1/(−4)n;

(ii). For n ≥ 1, the function m is a solution of the following rescaled version of
(2.7):

mt = K−n(m) =
(−1)n+1

22n−1

(
JK−1

)n−1 J 1

m2
, n = 1, 2, . . . ,

if and only if Q satisfies equation (2.11). In addition, for n = 0, the corresponding
equation mt = 0 is equivalent to Qτ + 4Qy = 0.

Magri’s bi-Hamiltonian scheme enables one to recursively construct an infinite
hierarchy of Hamiltonian functionals of the mCH equation (1.2). The Hamiltonian
functionals Hn = Hn(m) satisfy the recursive formula

J δHn
δm

= K δHn−1

δm
, n ∈ Z,
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where K and J are the two compatible Hamiltonian operators (2.3) admitted by
the mCH equation. On the other hand, the recursive formula

J δHn
δQ

= K δHn−1

δQ
, n ∈ Z

can be used to obtain Hamiltonian functionals of the (defocusing) mKdV equation
(2.8). Applying the Lemmas 4.1 and 4.2 in [36], we proved the following relation
between the sequences of the Hamiltonian functionals admitted by the mCH and
the (defocusing) mKdV equations.

Theorem 2. For any non-zero integer n, each Hamiltonian functionals Hn(Q) of
the (defocusing) mKdV equation yields the Hamiltonian functionals H−n(m) of the
mCH equation, under the Liouville transformation (2.15), according to the following
identity

H−n(m) = (−1)n22n−1Hn(Q), 0 6= n ∈ Z.

2.2 Relationship between the mCH and CH equations

It is wellknown that the KdV equation and the mKdV equation are linked by the
Miura transformation. This leads to a question whether there exists a transforma-
tion relating their respective dual counterparts, in other words, a transformation
between the CH equation (1.1) and the mCH equation (1.2). From the viewpoint
of tri-Hamiltonian duality, the CH equation (1.1) is regarded as the dual integrable
counterpart of the KdV equation (2.2). The KdV equation (2.2) is related to the
(defocusing) mKdV equation (2.8) via the Miura transformation

B(P,Q) ≡ P −Q2 + Qy = 0. (2.16)

Furthermore, Fokas and Fuchssteiner [22] proved that all the positive members of
the KdV hierarchy admit the same Miura transformation. In addition, we have the
following result.

Proposition 1. Assume that Q satisfies the equation(
K J −1

)
Qτ = 0, (2.17)

where K and J are given in (2.10). Then P = Q2 − Qy satisfies(
L D−1

)
Pτ = 0, (2.18)

where L and D are defined by (2.1).
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Using Proposition 1, we are able to construct a transformation from the mCH
equation (1.2) to the CH equation (1.1). First, it was shown in [26, 44, 60] that the
following Liouville transformation

P (τ, y) =
1

n(t, x)

(1

4
− (n(t, x)−1/4)xx

n(t, x)−1/4

)
, y =

x∫ √
ndξ, n = v − vxx, τ = t, (2.19)

relating the respective isospectral problems for the CH hierarchy and the KdV
hierarchy, gives rise to the one-to-one correspondence between the CH equation
(1.1) and the first negative flow (2.18). On the other hand, from Theorem 1, m(t, x)
satisfies the mCH equation (1.2) if and only if

Q(τ, y) =
1

2m(t, x)
, y =

x∫
m(t, ξ) dξ, τ = t, (2.20)

is the solution of equation (2.17). We deduce that the composite transformation
including (2.16), (2.19), and (2.20) defines a map from the mCH equation (1.2) to
the CH equation (1.1), albeit not one-to-one.

Proposition 2. Assume m(t, x) is the solution of the mCH equation (1.2). Then,
n(t, x) satisfies the CH equation (1.1), where n(t, x) is determined by the relation
(2.19) with P (τ, y) = Q2(τ, y)−Qy(τ, y) and Q(τ, y) defined by (2.20).

3 Liouville correspondences for the Novikov and DP
integrable hierarchies

In this section, we first survey the main results on Liouville correspondences for
the Novikov and Degasperis-Procesi (DP) hierarchies, and then show the implicit
relationship which associates the Novikov and DP equations.

3.1 Liouville correspondences for the Novikov and DP hierarchies

The Novikov equation (1.6) can be expressed in bi-Hamiltonian form [32]

mt = K1(m) = J δH1

δm
= K δH0

δm
, m = u− uxx,

where

K =
1

2
m

1
3 ∂xm

2
3 (4∂x − ∂3x)−1m

2
3 ∂xm

1
3 , J = (1− ∂2x)m−1 ∂xm

−1 (1− ∂2x)

are the compatible Hamiltonian operators. The corresponding Hamiltonian func-
tionals are given by

H0(m) = 9

∫ (
u2 + u2x

)
dx, H1(m) =

1

6

∫
um∂−1

x m(1−∂2x)−1(u2mx+3uuxm) dx.
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As for the Novikov integrable hierarchy

mt = Kn(m) = J δHn
δm

= K δHn−1

δm
, n ∈ Z, (3.1)

the Novikov equation (1.6) serves as the first member in the positive direction of
(3.1). While, in the opposite direction, note that

K0(m) = J δH0

δm
= 0.

The first negative flow is the Casimir equation

mt = K−1(m) = 3J m− 1
3 .

In addition, the Lax pair for the Novikov equation (1.6) consists of [32]

Ψx =

0 λm 1
0 0 λm
1 0 0

Ψ, Ψ =

ψ1

ψ2

ψ3

 , (3.2)

and

Ψt =

1
3λ

−2 − uux λ−1ux − λu2m u2x
λ−1u −2

3λ
−2 −λ−1ux − λu2m

−u2 λ−1u 1
3λ

−2 + uux

Ψ.

It was proved in [32] that by the Liouville transformation

y =

x∫
m

2
3 (t, ξ) dξ, τ = t, Q =

4

9
m− 10

3 m2
x −

1

3
m− 7

3mxx −m− 4
3 , (3.3)

the isospectral problem (3.2) is transformed into

Φyyy +QΦy = µΦ, (3.4)

with Φ = ψ2 and µ = λ2. The linear system (3.4) is a third-order spectral problem
for the SK equation (1.7), which together with the corresponding time evolution of
Φ = ψ2 yields

Qτ = Wy, Wyy +QW = T, Ty = 0. (3.5)

As noted in [32], the system (3.5) is the first negative flow of the SK hierarchy.
Based on the Liouville transformation between the isospectral problems of Novikov
equation and the first negative flow of the SK hierarchy, we are inspired to establish
the Liouville correspondence for their entire hierarchies.
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As far as the SK equation (1.7) is concerned, it exhibits a generalized bi-Hamiltonian
structure, whose corresponding integrable hierarchy is generated by a recursion op-
erator R = KJ , with an implectic (Hamiltonian) operator

K = −
(
∂3y + 2Q∂y + 2∂y Q

)
and a symplectic operator

J = 2∂3y + 2∂2y Q∂
−1
y + 2∂−1

y Q∂2y +Q2 ∂−1
y + ∂−1

y Q2.

More precisely, the SK equation (1.7) can be written as

Qτ = K1(Q) = K δH0

δQ
,

where the Hamiltonian functional is

H0(Q) =
1

6

∫ (
Q3 − 3Q2

y

)
dy.

In conclusion, the positive flows of the SK hierarchy are given by

Qτ = Kn(Q) =
(
KJ

)n−1
K1, n = 1, 2, . . . .

On the other hand, in the negative direction, in view of the fact that the trivial
function f ≡ 0 satisfies the equation

J · f =
δH0

δQ
,

as proposed in [37], the n-th negative flow has the form

RnQτ = 0, n = 1, 2, . . . .

The following theorem is taken from [37] to illustrate the underlying one-to-one
correspondence between the flows in the Novikov and SK hierarchies. In this section,
for a positive integer n, the n-th equation in the positive and negative directions
of the Novikov hierarchy are denoted by (Nov)n and (Nov)−n, respectively, while
the n-th positive and negative flows of the SK hierarchy are denoted by (SK)n and
(SK)−n, respectively. Based on Lemmas 2.3 and 2.4 in [37], we are able to establish
the following result.

Theorem 3. Under the Liouville transformation (3.3), for each positive integer
n ∈ Z+, the n-th positive flow (Nov)n and negative flow (Nov)−n of the Novikov
hierarchy are mapped into the n-th negative flow (SK)−n and positive flow (SK)n,
respectively.
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In addition, in the Novikov-SK setting, in order to establish the explicit rela-
tionship between the flows in the positive Novikov hierarchy and the flows in the
negative SK hierarchy, the following factorization of the recursion operatorR = KJ
of the SK equation is necessary to identify the equations transformed from the pos-
itive flows in the Novikov hierarchy as the corresponding negative flows in the SK
hierarchy exactly. The factorization is based on the following operator identity [14]:

R = −2
(
∂4y + 5Q∂2y + 4Qy∂y +Qyy + 4Q2 + 2Qy∂

−1
y Q

) (
∂2y +Q+Qy∂

−1
y

)
.

Based on the Liouville correspondence, as shown in [37], there also exists a one-to-
one correspondence between the sequences of the Hamiltonian functionals {Hn(m)}
of the Novikov equation and {Hn(Q)} of the SK equation. In particular, with
their Hamiltonian pairs K, J and K, J in hand, the corresponding Hamiltonian
functionals {Hn(m)} and {Hn(Q)} are determined by the following two recursive
formulae:

J δHn
δm

= K δHn−1

δm
, J K δHn−1

δQ
=
δHn
δQ

, n ∈ Z,

respectively. Indeed, in [37], the relationship between the two hierarchies and the
effect of the Liouville transformation on the variational derivatives were investigated.
Applying Lemmas 2.5 and 2.6 in [37], we can prove the following theorem.

Theorem 4. Under the Liouville transformation (3.3), for each n ∈ Z, the Hamil-
tonian functionals Hn(Q) of the SK equation are related to the Hamiltonian func-
tionals H−n(m) of the Novikov equation, according to the following identity

Hn(m) = 18H−(n+2)(Q), n ∈ Z.

In analogy with the Liouville correspondence between the Novikov and SK hier-
archies, there exists a similar correspondence between the DP and KK hierarchies,
as well as their respective hierarchies of the Hamiltonian functionals. The main
results are presented in the following two theorems. We refer the interested reader
to [37] for further details.

Theorem 5. Under the Liouville transformation

y =

x∫
n

1
3 (t, ξ) dξ, τ = t, P =

1

4

(
7

9
n−

8
3n2x −

2

3
n−

5
3nxx − n−

2
3

)
, (3.6)

for each positive integer l ∈ Z+, the l-th positive flow (DP)l and negative flow (DP)−l
of the DP hierarchy are mapped into the l-th negative flow (KK)−l and positive flow
(KK)l of the KK hierarchy, respectively.

Theorem 6. Under the Liouville transformations (3.6), for each l ∈ Z, the Hamil-
tonian functional E l(P ) of the KK equation (1.5) is related to that El(n) of the DP
equation (1.4), according to the following identity

El(n) = 36 E−(l+2)(P ), l ∈ Z.
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3.2 Relationship between the Novikov and DP equations

As proposed in [37], a further significant application of the Liouville correspondence
between the Novikov-SK and DP-KK hierarchies is to establish the relationship
between the Novikov and DP equations, which is motivated by the following issues.
Firstly, it has been shown in [25] that under the Miura transformations

Q− Vy + V 2 = 0, P + Vy +
1

2
V 2 = 0, (3.7)

the SK equation (1.7) and the KK equation (1.5) are respectively transformed into
the Fordy-Gibbons-Jimbo-Miwa equation

Vτ + Vyyyyy − 5
(
VyVyyy + V 2

yy + V 3
y + 4V VyVyy + V 2Vyyy − V 4Vy

)
= 0. (3.8)

In [37], this relationship was generalized to first negative flows of the SK and KK
hierarchies. Indeed, in view of (3.7), the recursion operator R of the SK equation
and the recursion operator R∗ of equation (3.8) satisfy

R∗ = T1RT−1
1 , with T1 = (2V − ∂y)−1 .

Similarly, the recursion operator R̂ of the KK equation is linked with the recursion
operator R∗ according to the identity

R∗ = T2R̂T−1
2 , with T2 = (V + ∂y)

−1 .

Based on this, one has the following result.

Lemma 1. Assume that V satisfies the equation

R∗ Vτ = 0. (3.9)

Then Q = Vy − V 2 and P = −Vy − V 2/2 satisfy the first negative flow of the

SK hierarchy RQτ = 0 and the first negative flow of the KK hierarchy R̂Pτ = 0,
respectively.

Finally, using Lemma 1, combined with the Liouville correspondences between
the Novikov-SK and DP-KK hierarchies, we establish the relationship between the
Novikov equation and the DP equation, which is summarized in the following the-
orem.

Theorem 7. Both the Novikov equation (1.6) and the DP equation (1.4) are linked
with equation (3.9) in the following sense. If V (τ, y) is a solution of equation (3.9),
then the function m(t, x) determined implicitly by the relation

Vy − V 2 = −m−1 (1− ∂2x)m− 1
3 , y =

x∫
m

2
3 (t, ξ) dξ, τ = t,
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satisfies the Novikov equation (1.6), while the function n(t, x) determined by

Vy +
1

2
V 2 =

1

4
n−

1
2
(
1− 4∂2x

)
n−

1
6 , y =

x∫
n

1
3 (t, ξ) dξ, τ = t,

satisfies the DP equation (1.4).

4 Liouville correspondences for multi-component inte-
grable hierarchies

In this section, we shall survey the main results concerning Liouville correspondences
for the 2CH and GX hierarchies.

4.1 Liouville correspondence for 2CH hierarchy

The 2CH system (1.8) is a bi-Hamiltonian integrable system [67](
m
ρ

)
t

= J δH2(m, ρ) = K δH1(m, ρ), δHn(m, ρ) =

(
δHn
δm

,
δHn
δρ

)T
, n = 1, 2,

with compatible Hamiltonian operators

K =

(
m∂x + ∂xm ρ∂x

∂xρ 0

)
, J =

(
∂x − ∂3x 0

0 ∂x

)
, (4.1)

and the associated Hamiltonian functionals

H1(m, ρ) = −1

2

∫
(u2 + u2x + ρ2) dx, H2(m, ρ) = −1

2

∫
u(u2 + u2x + ρ2) dx.

The Hamiltonian pair (4.1) induces the hierarchy(
m
ρ

)
t

= Kn = J δHn = KδHn−1, δHn =

(
δHn
δm

,
δHn
δρ

)T
, n ∈ Z, (4.2)

of commutative bi-Hamiltonian systems, based on the corresponding Hamiltonian
functionals Hn = Hn(m, ρ). The positive flows of (4.2) begin with the seed system(

m
ρ

)
t

= K1 = −
(
m
ρ

)
x

,

and the 2CH system (1.8) is the second member. On the other hand, the negative
flows start from the Casimir system(

m
ρ

)
t

= K−1 = J δHC ,
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with the associated Casimir functional HC(m, ρ) =
∫
m/ρdx for the Hamiltonian

operator K. The first negative flow for the hierarchy (4.2) has the explicit form

mt = (∂x − ∂3x)

(
1

ρ

)
, ρt = −

(
m

ρ2

)
x

, m = u− uxx,

which, together with the inverse recursion operator R−1 = J K−1 produces the
members in the negative direction of (4.2), namely(

m
ρ

)
t

= K−n = (J K−1)n−1 J
(

ρ−1

−mρ−2

)
, n = 1, 2, . . . .

In [38], we established the Liouville correspondence between the 2CH hierarchy
and another integrable hierarchy, called the associated 2CH (a2CH) hierarchy. The
transformation relating these hierarchies is motivated by the Liouville transforma-
tion [13]

τ = t, y =

x∫
ρ(t, ξ) dξ, P (τ, y) = −m(t, x) ρ(t, x)−2,

Q(τ, y) = −1

4
ρ(t, x)−2 +

3

4
ρ(t, x)−4ρ2x(t, x)− 1

2
ρ(t, x)−3ρxx(t, x),

(4.3)

which converts the isospectral problem

Ψxx +

(
−1

4
− λm+ λ2ρ2

)
Ψ = 0, Ψt =

(
1

2λ
− u
)

Ψx +
ux
2

Ψ

of the 2CH system into

Φyy + (Q+ λP + λ2)Φ = 0, Φτ −
1

2λ
ρΦy +

1

4λ
ρyΦ = 0, (4.4)

with Φ =
√
ρΨ.

We clarified in [38] some integrability properties of the a2CH hierarchy. This
hierarchy is generated by the recursion operator

R =
1

2

(
0 ∂2y + 4Q+ 2Qy∂

−1
y

−4 4P + 2Py∂
−1
y

)
,

and the corresponding positive flows and the negative flows are given by(
Q
P

)
τ

= Kn = Rn−1
K1, Rn

(
Q
P

)
τ

= K0, n = 1, 2, . . . ,

respectively, where K1 = (−Qy, −Py)T is the usual seed symmetry and the trivial

symmetry K0 = (0, 0)T is determined by RK0 = K1. Furthermore, the a2CH
hierarchy can be written in bi-Hamiltonian form(

Q
P

)
τ

= Kn = KδHn−1 = J δHn, δHn =

(
δHn
δQ

,
δHn
δP

)T
, n ∈ Z, (4.5)
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using the compatible Hamiltonian operators

K =
1

4

(
L ∂−1

y L 2L ∂−1
y (P∂y + ∂yP )

2(P∂y + ∂yP )∂−1
y L 4(P∂y + ∂yP )∂−1

y (P∂y + ∂yP ) + 2L

)
,

J =
1

2

(
0 L
L 2(P∂y + ∂yP )

)
, L = ∂3y + 2Q∂y + 2∂yQ.

In particular, as noted in [38], the second positive flow of the 2CH hierarchy takes
the explicit form

Qτ = −1

2
Pyyy − 2QPy −QyP, Pτ = 2Qy − 3PPy, (4.6)

which can be written as the bi-Hamiltonian form (4.5) with

H1 = −
∫
P dy, H2 = −

∫ (1

2
P 2 + 2Q

)
dy.

Moreover, the system (4.6) can be obtained from the y-component of the Lax-pair
formulation (4.4) together with

Φτ + (2λ+ P )Φy −
1

2
PyΦ = 0.

Based on this, system (4.6) is shown to be equivalent to the Kaup-Boussinesq system
[39].

The scheme of the Liouville correspondence between the 2CH and a2CH hierar-
chies as proposed in [38] is as follows, where, for a positive integer n, the (2CH)n,
(2CH)−n and (a2CH)n, (a2CH)−n denote the n-th positive and negative flows of
2CH hierarchy and the a2CH hierarchy, respectively.

Theorem 8. Under the Liouville transformation (4.3), for each integer n, the
(2CH)n+1 equation is mapped into the (a2CH)−n equation.

Furthermore, as a consequence of the Liouville transformation, we are led to the
one-to-one correspondence between the Hamiltonian functionals in the 2CH and
a2CH hierarchies.

Theorem 9. Under the Liouville transformation (4.3), for each nonzero integer
n, the Hamiltonian functionals Hn(m, ρ) of the 2CH hierarchy are related to the
Hamiltonian functionals Hn(Q,P ) of the a2CH hierarchy, according to

Hn(m, ρ) = H−n(Q,P ), 0 6= n ∈ Z.
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4.2 Liouville correspondence for the Geng-Xue hierarchy

The GX system (1.10) can be written in a bi-Hamiltonian form [50](
m
n

)
t

= KδH1(m, n) = J δH2(m, n),

where the compatible Hamiltonian operators are

K =
3

2

(
3m

1
3∂xm

2
3 Ω−1m

2
3∂xm

1
3 +m∂−1

x m 3m
1
3∂xm

2
3 Ω−1n

2
3∂xn

1
3 −m∂−1

x n

3n
1
3∂xn

2
3 Ω−1m

2
3∂xm

1
3 − n∂−1

x m 3n
1
3∂xn

2
3 Ω−1n

2
3∂xn

1
3 + 3n∂−1

x n

)
,

J =

(
0 ∂2x − 1

1− ∂2x 0

)
, Ω = ∂3x − 4 ∂x,

while

H1(m, n) =

∫
un dx, H2(m, n) =

∫
(uxv − uvx)un dx

are the initial Hamiltonian functionals. The GX integrable hierarchy can be ob-
tained by applying the resulting hereditary recursion operator R = KJ −1 to the
particular seed system(

m
n

)
t

= G1(m,n) =

(
−m
n

)
.

Hence, the l-th member in the positive direction of the GX hierarchy takes the form(
m
n

)
t

= Gl(m,n) = Rl−1 G1(m,n), l = 1, 2, . . . , (4.7)

and the GX system (1.10) is exactly the second positive flow. While, the l-th
negative flow of the GX hierarchy is(

m
n

)
t

= G−l(m,n) = (J K−1)l−1 J δHC , l = 1, 2, . . . , (4.8)

where

HC(m, n) = 3

∫
∆

1
3 dx, with δHC =

(
m− 2

3n
1
3 , m

1
3n−

2
3
)T
,

is the Casimir functional for the Hamiltonian operator K, and we set ∆ = mn
throughout this subsection.

The Lax-pair formulation for the GX system (1.10) takes the form [29]

Ψx =

0 λm 1
0 0 λn
1 0 0

Ψ, Ψ =

ψ1

ψ2

ψ3

 ,

Ψt =

−uxv λ−1ux − λuvm uxvx
λ−1v −λ−2 + uxv − uvx −λuvn− λ−1vx
−uv λ−1u uvx

Ψ.

(4.9)
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As is shown in [49], by the Liouville transformation

y =

x∫
∆

1
3 dξ, τ = t, Q =

1

∆
2
3

+
1

6

∆xx

∆
5
3

− 7

36

∆2
x

∆
8
3

, P =
1

2

n
2
3

m
4
3

(m
n

)
x
, (4.10)

the isospectral problem (4.9) is converted into

Φy =

0 λ Q
0 P λ
1 0 0

Φ, Φ =

φ1φ2
φ3

 ,

Φτ =
1

2

 A 2λ−1(py + pP ) p+ q
2λ−1q A− 2λ−2 2λ−1(Pq − qy)

0 2λ−1p A

Φ,

where

A = qyp− qpy − 2pqP, q = vm
2
3n−

1
3 , p = um− 1

3n
2
3 .

The compatibility condition Φyτ = Φτy gives rise to the following integrable system

Qτ =
3

2
(qy + py)− (q − p)P, pyy + 2pyP + pPy + pP 2 − pQ+ 1 = 0,

Pτ =
3

2
(q − p), qyy − 2qyP − qPy + qP 2 − qQ+ 1 = 0,

which can be viewed as a negative flow of an integrable hierarchy, namely the
associated Geng-Xue (aGX) integrable hierarchy. In addition, the Hamiltonian pair
admitted by the aGX hierarchy are

K = Γ

(
0 Θ
−Θ∗ 0

)
Γ∗ and J =

1

2

(
E 0
0 −3∂y

)
, (4.11)

where the matrix operator Γ, and operators Θ, E are defined by

Γ = −1

6

(
E∂−1

y E∂−1
y

(3∂2y − 2∂yP )∂−1
y −(3∂2y + 2∂yP )∂−1

y

)
,

Θ = ∂2y + P∂y + ∂yP + P 2 −Q,
E = ∂3y − 2Q∂y − 2∂yQ.

Consequently, the l-th positive flow and negative flow of the aGX integrable hier-
archy have the form(
Q
P

)
τ

= Gl = −Rl−1
(
Q
P

)
y

, Rl
(
Q
P

)
τ

= G0 =

(
0
0

)
, l = 1, 2, . . . , (4.12)

respectively.
The main result on the Liouville correspondence between the GX and aGX in-

tegrable hierarchies given in [38] is described in the following theorem. Adopting
a similar notation as above, the l-th positive and negative flows of the GX and
aGX hierarchies are denoted by (GX)l and (GX)−l, and by (aGX)l and (aGX)−l,
respectively.
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Theorem 10. Under the Liouville transformation (4.10), for each integer l ≥ 1,
(i). If

(
m(t, x), n(t, x)

)
is a solution of the (GX)l system (4.7), then the corre-

sponding
(
Q(τ, y), P (τ, y)

)
satisfies the (aGX)−l system (4.12);

(ii). If
(
m(t, x), n(t, x)

)
is a solution of the (GX)−l system (4.8), then the

corresponding
(
Q(τ, y), P (τ, y)

)
satisfies the (aGX)l+1 system (4.12).

Considering the correspondence between the two hierarchies of Hamiltonian func-
tionals admitted by these two integrable hierarchies, we have the following theorem.

Theorem 11. For any nonzero integer l, each Hamiltonian functionals Hl(m,n) of
the GX hierarchy relates the Hamiltonian functionals Hl(Q,P ), under the Liouville
transformation (4.10), according to the following identity

Hl(m,n) = 6(−1)l+1H−(l+1)(Q,P ), 0 6= l ∈ Z.

Remark 1. Notably, as claimed in [38] that the recursion operator R for the aGX
hierarchy satisfies the following composition identity

R = U V, (4.13)

where U and V are the matrix operators defined by

U =

(
E E

F + 3 ∂2y F − 3∂2y

)
, F = −(2P∂y + 2Py),

V =
1

54

(
3 ∂−1

y Θ ∂−1
y ∂−1

y Θ ∂−1
y (2P − 3 ∂y)

−3 ∂−1
y Θ∗ ∂−1

y −∂−1
y Θ∗ ∂−1

y (2P + 3 ∂y)

)
.

Formula (4.13) can be viewed as a new operator factorization for R, which is dif-

ferent with the decomposition of R = KJ −1
using the Hamiltonian pair given

in (4.11). It is worth mentioning that such a novel factorization is a key issue in
the proof of Theorem 10, especially in identifying the systems transformed from
the negative (positive) flows of the GX hierarchy to be the corresponding positive
(negative) flows of the aGX hierarchy.

5 Liouville correspondences for the dual Schrödinger
and (defocusing) mKdV hierarchies

The nonlinear Schrödinger (NLS) equation

iut + uxx + σu |u|2 = 0, σ = ±1 (5.1)

is a reduction of a bi-Hamiltonian system(
u
v

)
t

= LD−1

(
u
v

)
x

, (5.2)
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where

L =

(
∂x + u∂−1

x v −u∂−1
x u

−v∂−1
x v ∂x + v∂−1

x u

)
, D =

(
− i 0
0 i

)
are compatible Hamiltonian operators. System (5.2) reduces to the NLS equation
(5.1) when v = σu. In spirit of the general approach of tri-Hamiltonian duality, we
introduce the following Hamiltonian pair

K =

(
m∂−1

x m −m∂−1
x n

−n∂−1
x m n∂−1

x n

)
, J =

(
0 i − ∂x

−( i + ∂x) 0

)
, (5.3)

and define m = u+ iux, n = v − i vx, which leads to the integrable system

mt = imuv, nt = − inuv. (5.4)

If we let v = u and then n = m, system (5.4) reduces to

mt = ut + iuxt = |u|2 ( iu− ux), (5.5)

which is exactly the dual version (1.3) derived in [67]. Hence, we call system (5.4)
the dual Schrödinger equation and the integrable hierarchy generated by (5.4) the
dual Schrödinger hierarchy.

In general, the bi-Hamiltonian integrable hierarchy initiated with the dual NLS
(dNLS) equation takes the form(

m
n

)
t

= Fl = K δHl−1(m, n) = J δHl(m, n), n = m, l = 1, 2, . . . , (5.6)

with δHl(m, n) =
(
δHl/δm, δHl/δn

)T
, which is governed by the usual recursion

procedure using the resulting hereditary recursion operator R = KJ −1. More
precisely, the dNLS equation serves as the second member corresponding to l = 2
in (5.6), where the Hamiltonian functionals are

H1 = i

∫
mux dx, H2 =

1

2

∫
mu|u|2 dx,

and the seed Hamiltonian system is(
m
n

)
t

= F1 = J δH1(m, n) =

(
m
n

)
x

.

To obtain the negative hierarchy, note that (5.4) admits a conserved functional

H−1 =

∫
(mn)

1
2 dx,

which satisfies

F0 = K δH−1(m, n) =
(
cm, −cn

)T
,
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where c is the integration constant. This means that one can take(
m
n

)
t

= F0 = J δH0(m, n), H0 = −c i

∫
(uv − iuxv) dx,

as the initial equation. Then the l-th negative flow of the dNLS hierarchy is given
by

Rl
(
m
n

)
t

= F0, l = 1, 2, . . . . (5.7)

We now focus our attention on the isospectral problem associated with the dNLS
equation in [47]:

Ψx =

(
i
2 λm

λn − i
2

)
Ψ, Ψ =

(
ψ1

ψ2

)
,

Ψt =

(
i
2 (uv + 1

2λ2
) u

2λ
v
2λ − i

2 (uv + 1
2λ2

)

)
Ψ.

(5.8)

One can verify that the following Liouville transformation

Φ =

(
(n/m)

1
4 (n/m)−

1
4

(n/m)
1
4 − (n/m)−

1
4

)
Ψ, y =

x∫
(mn)

1
2 (ξ) dξ

will convert the isospectral problem (5.8) into the isospectral problem

Φy =

(
− iµ Q
Q iµ

)
Φ, Φ =

(
φ1
φ2

)
, (5.9)

with

λ = − iµ, Q =
1

4
(mn)−

1
2

(
2 i +

(m
n

)( n
m

)
x

)
.

It is remarked that (5.9) is the isospectral problem of the (defocusing) mKdV equa-
tion

Qτ +
1

4
Qyyy −

3

2
Q2Qy = 0. (5.10)

Motivated by these results, we are led to establish the Liouville correspondence
between the dNLS hierarchy and the (defocusing) mKdV hierarchy by utilizing the
Liouville transformation

y =

x∫
∆(t, ξ)dξ, τ = t,

Q =
1

4∆

(
2 i +

(m
n

)( n
m

)
x

)
, ∆ = (mn)

1
2 = |m|.

(5.11)
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First of all, under the coordinate transformation (5.11), the Hamiltonian pair K
and J (5.3) of the dNLS hierarchy will yield the Hamiltonian pair of the (defocus-
ing) mKdV hierarchy. The following theorem is thus established to illustrate the
preceding claim.

Theorem 12. By the coordinate transformation (5.11), the Hamiltonian pair K
and J (5.3) admitted by the dNLS equation (5.5) is related to the Hamiltonian pair

K = −1

8
∂3y +

1

2
∂y Q∂

−1
y Q∂y and J = −1

4
∂y. (5.12)

Proof. In view of the transformation (5.11), one has

∂x = ∆∂y, (5.13)

and then further concludes that the operator identity:

∆−1
( n
m

)−β (
2 i +

1

β
∂x

) ( n
m

)β
= 4Q+

1

β
∂y (5.14)

holds for arbitary nonzero constant β. Next, define

T = −1

4
∆
(

(∂y + 2Q+ 2Qy ∂
−1
y )m−1(−∂y + 2Q+ 2Qy ∂

−1
y )n−1

)
,

T∗ = −1

4

(
(n/m)

1
2 (2∂−1

y Q∂y − ∂y)
(n/m)−

1
2 (2∂−1

y Q∂y + ∂y)

)
.

(5.15)

Hence, the Hamiltonian operatorsK and J follow from the formulaeK = ∆−1TJT∗

and J = ∆−1TKT∗, respectively, where the identities (5.13) and (5.14) are used.
This completes the proof of the theorem. �

It is worth noting that K and J , as given in (5.12), are the compatible operators
admitted by the hierarchy initiated with the (defocusing) mKdV equation (5.10),
whose bi-Hamiltonian structure takes the following form

Qτ = K δH1

δQ
= J δH2

δQ
,

with

H1 =

∫
Q2 dy, H2 = −1

2

∫
(Q2

y +Q4) dy.

As for the (defocusing) mKdV hierarchy, each member in the positive direction
takes the form

Qτ = F l = K δHl−1

δQ
= J δHl

δQ
, l = 1, 2, . . . , (5.16)
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where, the (defocusing) mKdV equation (5.10) is the second member in (5.16) and
the seed equation corresponding to l = 1 is

Qτ = F 1 = −1

2
Qy = J δH1

δQ
.

However, in the negative direction, the l-th negative flow is

RlQτ = 0, l = 1, 2, . . . , where R = KJ −1 =
1

2
∂2y − 2∂y Q∂

−1
y Q

is the recursion operator of the (defocusing) mKdV hierarchy.
Hereafter, for each positive integer l, we denote the l-th equation in the positive

and negative directions of the dNLS hierarchy by (dNLS)l and (dNLS)−l, respec-
tively, while the l-th positive and negative flows in the (defocusing) mKdV hierarchy
are denoted by (mKdV)l and (mKdV)−l, respectively. With this notation, we are
now in a position to establish the following theorem, illustrating the Liouville cor-
respondence between the two hierarchies.

Theorem 13. Under the transformation (5.11), for each integer l ∈ Z+, the
(dNLS)−l equation is mapped into the (mKdV)l equation, and the (dNLS)l equa-
tion is mapped into the (mKdV)−(l−1) equation.

In order to prove Theorem 13, a relation identity with regard to the two recursion
operators admitted by the dNLS and (defocusing) mKdV hierarchies is required.

Lemma 2. Let R = KJ −1 and R = KJ −1 be the recursion operators admitted by
the dNLS and (defocusing) mKdV hierarchies, respectively. Define

D =

(
m 0
0 n

)
. (5.17)

Then, for each integer l ≥ 1,

Rl
(
∂y −∂y

)
D−1Rl = −4∆−1 T (5.18)

under the transformation (5.11), where T is the matrix differential operator defined
in (5.15).

Proof. Note first, in the case of l = 1, equation (5.18) is equivalent to

∆−1 TJ = −1

4
R
(
∂y −∂y

)
D−1K,

which can be directly verified by utilizing the formulae (5.13) and (5.14).
In addition, using the relations between K, J and K, J allows us to deduce that

R satisfies

R∆−1 TK = ∆−1 TJ and then R∆−1 TR = ∆−1 T. (5.19)
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Hence, for the general case, we assume that (5.18) holds for l = k. Then for
l = k + 1,

−1

4
Rl+1

(
∂y − ∂y

)
D−1Rl+1 = −1

4
RRl

(
∂y − ∂y

)
D−1RlR = R∆−1 TR = ∆−1T,

which completes the induction step and thus establishes (5.18) for l ≥ 1. We thus
verify (5.18) holds in general, proving the lemma. �

Proof of Theorem 13. As the first step, we deduce from the relation between Q
and m given in transformation (5.11) that

Qτ = ∆−1 T

(
m
n

)
t

, (5.20)

where T is the matrix differential operator given in (5.15).

Next, we consider the (dNLS)−l equation for l ≥ 1. Note first that the (dNLS)−1

equation corresponding to l = 1 in (5.7) can be written as(
m
n

)
t

=
1

2
J

(
(n/m)

1
2

(n/m)−
1
2

)
=

(
mQ
−nQ

)
.

Substituting it into (5.20) yields

Qτ = ∆−1 T

(
mQ
−nQ

)
= −1

2
Qy,

which reveals that, under the transformation (5.11), the (dNLS)−1 equation is
mapped into the (mKdV)1 equation.

Furthermore, it follows from (5.18) that, for each l ≥ 2, equation (5.20) can be
rewritten as

Qτ = −1

4
Rl
(
∂y −∂y

)
D−1Rl

(
m
n

)
t

,

with D defined in (5.17). Hence, in general, if m(t, x) is a solution of (dNLS)−l
equation, and n(t, x) = m(t, x), so that (5.7) holds for each l ≥ 2, then the corre-
sponding Q(τ, y) satisfies

Qτ = −1

4
Rl
(
∂y −∂y

)
D−1 F0 = −1

4
Rl
(
∂y −∂y

) ( c
−c

)
= Rl−1

(
−1

2
Qy

)
,

which means that Q(τ, y) solves the (mKdV)l equation (5.16), completing the first
part.

Finally, concerning the opposite direction, it is worth noting that

∆−1 T

(
mx

nx

)
= −(Q∆)y +

1

4
∂y

(m
n

( n
m

)
x

)
= 0.
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Hence, if m(t, x) is a solution of (dNLS)l equation (5.6), and n(t, x) = m(t, x), i.e.,(
m
n

)
t

= (KJ )l−1

(
m
n

)
x

, l = 1, 2, . . . ,

then in view of (5.20), the corresponding Q(τ, y) satisfies

Qτ = ∆−1 T (KJ )l−1

(
m
n

)
x

,

and then

Rl−1Qτ = Rl−1∆−1TRl−1

(
m
n

)
x

= ∆−1T

(
m
n

)
x

= 0.

This allows us to draw the conclusion that Q(τ, y) is a solution of the (mKdV)−(l−1)

equation for l ≥ 1. We thus complete the proof of Theorem 13 in general. �

In what follows, we investigate the effect of the transformation (5.11) on the two
hierarchies of the Hamiltonian functionals {Hl} and {Hl} of the dNLS equation and
the (defocusing) mKdV equation. With the two pairs of Hamiltonian operators K
and J admitted by the dNLS equation and K and J admitted by the (defocusing)
mKdV equation, {Hl} and {Hl} are determined by the recursive formulae

K δHl = J δHl+1, δHl =

(
δHl
δm

,
δHl
δn

)T
, K δHl

δQ
= J δHl+1

δQ
, l ∈ Z. (5.21)

Lemma 3. Let {Hn} and {Hn} be the hierarchies of conserved functionals de-
termined by the recursive formulae (5.21). Then, for each l ∈ Z, their respective
variational derivatives satisfy the relation

∆−1 TJ δHl = J δH−l
δQ

. (5.22)

Proof. We first prove (5.22) for l ≥ 0 by induction on l. In the case of l = 0, equa-

tion (5.22) follows from the fact J δH0 =
(
cm, −cn

)T
and ∆−1 T

(
cm, −cn

)T
= 0.

Assume now (5.22) holds for l = k with k ≥ 1, say

∆−1 TJ δHk = J δH−k
δQ

.

Then, on the one hand, by the assumption and in view of (5.19)

R∆−1 TK δHk = ∆−1 TJ δHk = J δH−k
δQ

= K
δH−(k+1)

δQ
, (5.23)

while, on the other hand, by the recursive formula (5.21),

R∆−1 TK δHk = R∆−1 TJ δHk+1,
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which, in comparison with (5.23) produces

J −1 ∆−1 TJ δHk+1 =
δH−(k+1)

δQ
.

Then

∆−1 TJ δHk+1 = J
δH−(k+1)

δQ

follows, establishing (5.22) for l ≥ 0.

Next, in the case of l = −1, the fact J δH1/δQ = −Qy/2 and J δH−1 =

D
(
Q, −Q

)T
shows that (5.22) holds for l = −1. Finally, we prove (5.22) for

all l ≤ −1 by induction. Assume that it holds for l = k, then, for l = k − 1,
according to the assumption and using the formula (5.19) again, we arrive at

∆−1 TJ δHk−1 = R∆−1 TK δHk−1 = R∆−1 TJ δHk = K δH−k
δQ

,

which completes the induction step and verifies (5.22) holds for all l ∈ Z, proving
the lemma. �

In addition, we deduce a formula which reveals the change of the variational
derivative under the transformation (5.11).

Lemma 4. Let m(t, x), n(t, x) = m(t, x) and Q(τ, y) be related by the Liouville
transformation (5.11). If the Hamiltonian functionals H(m,n) = H(Q), then

δH(m,n) =
(
δH/δm, δH/δn

)T
= T∗ δH

δQ
,

where T∗ is the formal adjoint of T given in (5.15).

Finally, under the hypothesis of Lemma 4, we define a functional

Gk(Q) ≡ Hl(m,n),

for some k ∈ Z. Then, it follows from Lemma 3 and Lemma 4 that

K
δH−(l+1)

δQ
= ∆−1 TJ δHl(m,n) = ∆−1 TJ T∗ δGk

δQ
= K δGk

δQ
,

which immediately leads to

δH−(l+1)

δQ
=
δGk
δQ

,
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and then

Hl(m,n) = Gk(Q) = H−(l+1)(Q)

follows. Consequently, we conclude that there also exists a one-to-one correspon-
dence between the Hamiltonian functionals admitted by the dNLS and (defocusing)
mKdV equations.

Theorem 14. Under the transformation (5.11), for each integer l, the Hamiltonian
conservation law Hl(m,n) of the dNLS equation is related to the Hamiltonian con-
servation law Hl(Q) of the (defocusing) mKdV equation, according to the following
identity

Hl(m,n) = H−(l+1)(Q), l ∈ Z.
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