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fied KdV hierarchy and its dual integrable modified Camassa-Holm hierarchy. A
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also relates their respective recursion operators, and serves to establish the Liou-
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1. Introduction

In this paper, we investigate the correspondence between the modified KdV (mKdV)
hierarchy, that is initiated with the (focusing) mKdV equation

Qτ +Qyyy + 6Q2Qy = 0, (1.1)

and its dual integrable hierarchy, initiated with the following nonlinear evolution equation

mt +
(
(u2 − u2x)m

)
x
= 0, m = u− uxx, (1.2)

known as the modified Camassa-Holm (mCH) equation [18, 21, 44].
Recent years have seen the appearance of a large number of papers devoted to equations of

Camassa-Holm type. The Camassa-Holm (CH) equation — see (1.4) below — and the mCH
equation (1.2) both support nonlinear dispersion, and can describe qualitative properties in
the fully nonlinear regime. In particular, these equations describe the breakdown of nonlinear
waves and support a notable variety of non-smooth soliton-like solutions. For instance, they
possess peakon and multi-peakon solutions, and can model wave-breaking phenomena for
appropriate initial data.

Several methods have been employed to construct integrable equations endowed with
nonlinear dispersion. In particular, a theory of tri-Hamiltonian duality was developed sys-
tematically in the references [21, 22, 44]. This approach starts from the basic observation
that most standard integrable soliton equations, which are known to exhibit a bi-Hamiltonian
structure, actually support a compatible trio of Hamiltonian structures through a particular
scaling argument. Different recombinations of the operators in such a compatible Hamilton-
ian triple yield different types of bi-Hamiltonian integrable systems, which are recognized
to admit a dual relationship. In [44], an explicit algorithm to construct dual integrable sys-
tems is provided. Typically, these dual systems are endowed with nonlinear dispersion and
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thus admit non-smooth solitons including compactons, cuspons, peakons, and more exotic
species, [32].

Indeed, applying tri-Hamiltonian duality to the bi-Hamiltonian representation of the KdV
equation

Pτ + Pyyy − 6PPy = 0 (1.3)

leads to the well-studied CH equation

ρt + 2vxρ+ vρx = 0, ρ = v − vxx, (1.4)

and justifies its status as a dual integrable bi-Hamiltonian system [21, 22, 44]. Equation (1.4)
originally appears as an abstract integrable system with an infinite number of higher-order
symmetries using the method of recursion operators [23]. The CH equation has attracted
enormous attention in the last two decades because of its many remarkable properties:
complete integrability [4, 5, 9, 12, 14], the existence of an infinite number of nontrivial local
conservation laws and a full Lie algebra of nonlocal symmetries [17, 25, 30, 48], physical
relevance of the nonlinear shallow-water waves [4, 13, 26], non-smooth soliton structures of
peaked solitons and multi-peakons [2, 4, 5, 15, 16, 27] and the presence of breaking waves
[8, 10, 31]. Furthermore, the CH equation (1.4) has nice geometric formulations: it describes
a geodesic flow on the diffeomorphism group on the circle S

1 [28] and arises naturally from
a non-stretching invariant planar curve flow in centro-equiaffine geometry [7].

Similarly, if one applies tri-Hamiltonian duality to the mKdV equation (1.1), then the
corresponding dual system is exactly the mCH equation (1.2) with cubic nonlinearity [18, 21,
44]. Physically, the mCH equation (1.2) models the unidirectional propagation of shallow-
water waves over a flat bottom, where the function u represents the free surface elevation;
it was derived from the two-dimensional hydrodynamical equations for surface waves by
Fokas [19]. Geometrically, the mCH equation is shown to arise from an intrinsic (arc-
length preserving) invariant planar curve flow in Euclidean geometry [24]. It also admits
non-smooth peakons and multi-peakon solutions, which are, in fact, stable configurations
[34, 47]. Moreover, it is worth mentioning that due to the higher-order nonlinearity, the mCH
equation (1.2) exhibits new features, including wave breaking and multi-peakon dynamics
[24, 35], that differ from the well-known properties of the CH equation (1.4).

In view of the dual relationship between the KdV equation and the CH equation, and
between the mKdV equation and the mCH equation, it is anticipated that the original soliton
hierarchies should be related to their dual counterparts in a certain manner. For instance,
in [29] and [37], the correspondence between the CH hierarchy and the KdV hierarchy is
established by the Liouville transformation; see also [1, 2]. More precisely, the positive and
negative flows of the CH hierarchy are generated by the negative and positive flows of the
KdV hierarchy respectively. The correspondence between the Hamiltonian conservation laws
of the CH hierarchy and the original KdV hierarchy is also derived in [29]. Such a relationship
was also explored by using the loop group approach [52]. And yet there were some questions
that remained unanswered. For instance, can one construct such a correspondence between
the mCH hierarchy and mKdV hierarchy? Is it possible to relate the conservation laws
of the mCH hierarchy to the mKdV hierarchy? The associated conservation laws play a
crucial role in the study of well-posedness, wave breaking and stability of peakons — see
[8, 10, 11, 15] for the CH equation and [24, 33, 34, 35, 47] for the mCH equation. Hence, the
induced relationship between the conservation laws for the dual integrable systems and their
original soliton counterparts turns out to be of value for revealing the relevant structure of
the former conservation laws.

The first topic of this paper is to study the Liouville correspondence between the in-
tegrable mKdV and the mCH hierarchies. In [29] and [37], the analysis for the KdV-CH
setting depends in a large part on the well-established relation between one of the origi-
nal KdV Hamiltonian operators and one of the dual CH Hamiltonian operators. For the
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mKdV-mCH setting considered here, it seems difficult to derive a similar relation linking
a Hamiltonian operator of the mKdV hierarchy with a dual Hamiltonian operator of the
mCH hierarchy. Nevertheless, based on the Liouville transformation between the isospectral
problems of the mKdV hierarchy and the mCH hierarchy, we are able to establish certain
nontrivial relations between the respective recursion operators. In contrast to the approach
used in [29] and [37], we combine a reciprocal transformation [49], which adheres to the
conservative structure of the mCH flows, with certain operator identities to establish a one-
to-one Liouville correspondence between the two integrable hierarchies. In addition, we
investigate the relationship between the Hamiltonian conservation laws for the mCH hier-
archy and those for the mKdV hierarchy, as well as their local nature and homogeneous
character.

The outline of the paper is as follows. In Section 2, we recall some known results on
integrability of the mKdV and mCH equations and the corresponding hierarchies. The
main results in this paper are also presented. In Section 3, we first derive the Liouville
transformation relating the isospectral problems of the mCH hierarchy and the mKdV hi-
erarchy in Section 3.1. Next in Section 3.2, based on the conservative structures of flows
in the mCH hierarchy, we exploit the Liouville transformation to establish the one-to-one
correspondence between the flows in the mCH and the mKdV hierarchies. Furthermore in
Section 3.3, we give a novel transformation which maps the mCH equation (1.2) into the
CH equation (1.4). Section 4 deals with the hierarchy of the Hamiltonian conservation laws
of the mCH equation. It is proved in Section 4.1 that the Liouville transformation estab-
lishes the correspondence between the series of Hamiltonian conservation laws of the mCH
equation and the mKdV equation. Finally in Section 4.2, we establish the homogeneity and
the local nature for the Hamiltonian conservation laws in the negative direction admitted
by the mCH equation.

2. Preliminaries and main results

The modified Camassa-Holm equation (1.2) can be written in bi-Hamiltonian form [44]

mt = K δH1

δm
= J δH2

δm
, m = u− uxx, (2.1)

where
K = −∂xm∂−1

x m∂x and J = −
(
∂x − ∂3x

)
(2.2)

are compatible Hamiltonian operators, while the corresponding Hamiltonian functionals are
given by

H1[m] =

∫
mu dx =

∫ (
u2 + u2x

)
dx and H2[m] = 1

4

∫ (
u4 + 2u2u2x − 1

3u
4
x

)
dx. (2.3)

In general, for an integrable bi-Hamiltonian equation with two compatible Hamiltonian
operators K and J , Magri’s Theorem [36, 42] establishes the formal existence of an infinite
hierarchy

mt = Kn = K δHn−1

δm
= J δHn

δm
, n = 1, 2, . . . , (2.4)

of higher-order commuting bi-Hamiltonian systems, based on the higher-order Hamilton-
ian conservation laws Hn, n = 0, 1, 2, . . ., common to all members of the hierarchy. The
members in the hierarchy (2.4) are obtained by applying successively the recursion operator
R = KJ −1 to a seed symmetry [41], which in the mCH setting takes the following form:

mt = K1[m] = −2mx, with H0[m] =

∫
m dx.

Clearly, the mCH equation (1.2) in this hierarchy is exactly

mt = K2 = −
(
(u2 − u2x)m

)
x
= RK1[m].
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Similarly, one can also construct an infinite number of higher-order commuting bi-Hamiltonian
systems in the negative direction:

mt = K−n = K δH
−(n+1)

δm
= J δH−n

δm
, n = 1, 2, . . . , (2.5)

starting from the variational derivative of the Casimir functional associated with the Hamil-
tonian operator K, which, in the mCH setting, is given, up to constant multiple, by

HC [m] =

∫
1

m
dx with variational derivative

δHC

δm
= − 1

m2
. (2.6)

As the original soliton equation in the duality relationship with the mCH equation (1.2),
the mKdV equation (1.1) also admits a hierarchy consisting of an infinite number of inte-
grable equations in both the positive and negative directions. Each member in the positive
direction takes the form

Qτ = K̄n = K̄ δH̄n−1

δQ
= J̄ δH̄n

δQ
, n = 1, 2, . . . , (2.7)

where

K̄ = − 1
4∂

3
y − ∂yQ∂

−1
y Q∂y, J̄ = −∂y, (2.8)

are the compatible Hamiltonian operators, and H̄n, n = 0, 1, 2, . . ., are the corresponding
Hamiltonian conservation laws. However, in the negative direction, we exploit a similar
argument used to construct the negative KdV hierarchy in [22], and thus use the following
equivalence

Qτ = K̄−n = K̄δH̄−(n+1)

δQ
= J̄ δH̄−n

δQ
⇐⇒ R̄nQτ = 0, n = 1, 2, . . . , (2.9)

where R̄ = K̄ J̄ −1 is the recursion operator of the mKdV hierarchy.
The bi-Hamiltonian structures (2.1)-(2.2) and (2.7)-(2.8) reveal the underlying duality

between the mCH hierarchy and the mKdV hierarchy. Schiff [51] established a different
kind of duality by exploiting the zero curvature formulations of dual hierarchies and the
standard soliton equation hierarchies. From this perspective, we focus our attention on the
isospectral problems for the mCH hierarchy [46, 51]

Ψx =

(
− 1

2
1
2λm

− 1
2λm

1
2

)
Ψ, (2.10)

and the mKdV hierarchy [39]

Φy =

(
− iµ Q
−Q iµ

)
Φ, (2.11)

where λ and µ are the respective spectral parameters. First, we show that the Liouville
transformation

Q(y) =
i

2m(x)
, y =

∫ x

m(ξ) dξ, m = u− uxx, (2.12)

relating the isospectral problems (2.10) and (2.11) establishes the one-to-one correspondence
between the flows in the mCH hierarchy and the mKdV hierarchy. Usually, the process of
going from one spectral problem to another one by means of a change of variables has been
recognized as a form of the classical Liouville transformation, which arises naturally in the
context of the so-called WKB approximation; see [38, 40]. Note further that the second
equation in (2.12) has the form of a reciprocal transformation [49]. More precisely, we
establish the following theorem.
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Theorem 2.1. For any integer n, the (n+1)-st equation mt = Kn+1 in the mCH hierarchy
is mapped into (−n)-th equation Qτ = K̄−n in the mKdV hierarchy under the Liouville
transformation (2.12), and conversely.

Remark 2.1. The first equation mt = K−1[m] in the negative direction of the mCH hier-
archy takes the explicit form

mt = J δH−1

δm
= J δHC

δm
=

(
1

m2

)

x

−
(

1

m2

)

xxx

, (2.13)

which is called the Casimir equation in [44]; see also [6]. It was noted in [44] that equation
(2.13) has the form of a Lagrange transformation, modulo an appropriate complex trans-
formation, of the mKdV equation (1.1). We remark that the transformation (2.12) used in
this paper can be regarded as a complex version of the Lagrange transformation proposed by
Rosenau in [50].

Remark 2.2. The negative flows of the mKdV hierarchy are also generated from the Casimir
equation

Qτ = J̄ δH̄C

δQ
, (2.14)

where H̄C is the Casimir functional of the Hamiltonian operator K̄. Due to the form of the
Hamiltonian operators (2.8), equation (2.14) can be rewritten as

Qτ = −J̄ ∂−1
y

(
1
4∂y +Q∂−1

y Q
)
−1
∂−1
y 0 =

(
1
4∂y +Q∂−1

y Q
)
−1
C̄−1 (2.15)

with C̄−1 being the corresponding constant of integration. When C̄−1 = 0, the kernel of the
operator 1

4∂y +Q∂−1
y Q is spanned by sin(2 ∂−1

y Q), and so Q satisfies

Qτ = sin(2 ∂−1
y Q), (2.16)

which is just the potential form of the sine-Gordon equation

Uyτ = sin(2U) (2.17)

for the potential function U = ∂−1
y Q. Observe that the corresponding Casimir functional is

H̄S = −1

2

∫
cos(2 ∂−1

y Q) dy, with variational derivative
δH̄S

δQ
= − ∂−1

y sin(2 ∂−1
y Q).

(2.18)
However, we will see that the mCH equation is related, via the Liouville correspondence, to
(2.15) when C̄−1 6= 0, and not to the sine-Gordon hierarchy coming from C̄−1 = 0. In the
case C̄−1 6= 0, we do not know explicit elementary formulas for the corresponding Casimir
functional and flow.

Remark 2.3. More interestingly, combining Theorem 2.1 and the given results on the cor-
respondence between the CH equation and the first negative flow of the KdV hierarchy, and
the usual Miura transformation linking the KdV equation and the mKdV equation [42], we
are able to establish a non-obvious transformation mapping the mCH equation (1.2) into the
CH equation (1.4). The detailed analysis will be presented in Section 3.3.

For the CH equation (1.4), the bi-Hamiltonian structure takes the following form

ρt = L δE1

δρ
= J δE2

δρ
, (2.19)

where the compatible Hamiltonian operators are given by

L = − (∂xρ+ ρ ∂x) and J = −
(
∂x − ∂3x

)
,

which are related to the Hamiltonian pair

L̄ = 1
4∂

3
y − 1

2 (P∂y + ∂yP ) and D̄ = ∂y
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of the KdV equation (1.3). It was proved in [29] and [37] that the corresponding Liouville
transformation relating the isospectral problems of the CH hierarchy and the KdV hierarchy
transforms one hierarchy into the other. The following identities

L−1 = − 1

2
√
ρ
D̄−1 1

ρ
and L̄ =

1

4ρ
J 1√

ρ
(2.20)

relating the Hamiltonian operators under the Liouville transformation play an important
role in the analysis used in [29] and [37]. In the present paper, we establish new identities

(
KJ −1

)n (
1− ∂2x

)
=

1

(−4)n

(
1− Qy

4Q3
∂y +

1

4Q2
∂2y

) (
J̄ K̄−1

)n
, n = 1, 2, . . . , (2.21)

relating the recursion operators for the mCH and the mKdV hierarchies under the Liouville
transformation (2.12). Theorem 2.1 is then a consequence of formula (2.21).

The compatible bi-Hamiltonian structure (2.4)-(2.5) produces the recursively constructed
bi-infinite sequence of functionals in both the negative and positive directions:

. . . ,H−2, H−1, H0, H1, H2, . . . , (2.22)

which are all conserved densities of the mCH equation (1.2). Similarly, the recursive formula

K̄ δH̄n

δQ
= J̄ δH̄n+1

δQ
, n ∈ Z,

where K̄ and J̄ are given by (2.8), gives rise to an infinite sequence of Hamiltonian functionals

. . . , H̄−2, H̄−1, H̄0, H̄1, H̄2, . . . , (2.23)

conserved under the mKdV flow (1.1) [36, 42]. We will study the correspondence between
the conserved quantities in the hierarchies (2.22) and (2.23), and prove that the Liouville
transformation (2.12) not only links the integrable flows in the respective hierarchies but also
relates the corresponding Hamiltonian conservation laws of the original soliton equation and
its dual counterpart. The following theorem is thus established to illustrate the preceding
claim.

Theorem 2.2. For any non-zero integer n, each Hamiltonian conservation law H̄n(Q) of
the mKdV equation in (2.23) yields the Hamiltonian conservation law H−n(m) of the mCH
equation in (2.22), under the Liouville transformation (2.12), according to the following
identity

H−n(m) = (−1)n22n−1 H̄n(Q), 0 6= n ∈ Z. (2.24)

Remark 2.4. A direct application of relation (2.24) is to derive another Casimir functional,
in addition to the Hamitonian functional (2.18) of the sine-Gordon equation (2.17), for the
Hamiltonian operator K̄ given by (2.8) in the mKdV bi-Hamiltonian structure. Indeed, with
Q and m related by (2.12), one exploits (2.3) and (2.24) to obtain

H̄−1(Q) = −8 H̄C(Q), where H̄C(Q) =

∫
m
(
1− ∂2x

)
−1
m dx

is another Casimir functional for K̄ that differs from H̄S given in (2.18).

In general, for an evolution equation or system, possession of a suitable collection of local
conservation laws is a key ingredient in the analysis of the qualitative properties such as
blow-up criteria, asymptotic behavior, and stability. Although, the mCH equation admits
infinitely many Hamiltonian conservation laws (2.22), their recursive construction requires
inverting either K or J in (2.4) and (2.5). Due to the specific forms of the operators K and
J defined in (2.2), nonlocal terms might appear and their structure and utility is generally
unclear.
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Furthermore, it is remarked that tri-Hamiltonian duality is based on the scaling properties
of the original Hamiltonian operators. This means that, after recombination, the resulting
dual Hamiltonian operator exhibits a particular homogeneity under the scaling transforma-
tions x 7→ ν x and/or u 7→ σ u. Because of the homogeneous nature of the Hamiltonian
operator triple, the recombined pair of compatible Hamiltonian operators and the resulting
Hamiltonian functionals admitted by the tri-Hamiltonian duality systems, such as the mCH
equation, the CH equation, etc., will maintain homogeneity.

In light of these considerations, we are led to establish the following theorem concern-
ing the locality and homogeneity of the Hamiltonian conservation laws (2.22) of the mCH
equation.

Theorem 2.3. For the mCH equation (1.2), each H−n[m], n ≥ 1, in (2.22) is a local
functional, meaning that it is the integral of a differential function depending on m and its
x-derivatives. Furthermore, H−n is homogenous of weight 1−2n with respect to the rescaling
m 7→ σm:

H−n[σm] = σ1−2n H−n[m], 0 6= σ ∈ R, n = 1, 2, . . . .

By introducing an associated CH equation, it was proved that the CH equation (1.4)
possesses an infinite sequence of conservation laws, both local and nonlocal [17]. In addition,
Reyes [48] proved, using a geometrical procedure based on the relationship between the CH
equation and pseudo-spherical surfaces, that all the Hamiltonian conservation laws in the
negative direction are local. Later, a more direct verification was given by Lenells [30] using
the bi-Hamiltonian structure (2.19). Our proof of Theorem 2.3 will be based on the bi-
Hamiltonian structure (2.1). In [3], the existence of an infinite hierarchy of local conservation
laws for the mCH equation (1.2) was constructed through a geometric reformulation of the
system.

Remark 2.5. Note that the inverse differentiation operator ∂−1
x occurs both in the expres-

sions for K = −∂xm∂−1
x m∂x and its inverse K−1 = −∂−1

x
1
m∂x

1
m∂

−1
x . For simplicity, we

usually prescribe the choice of the integration constant to be zero whenever the operator ∂−1
x

is applied. However, in the nonlocal setting, one needs to be quite careful, owing to the
possible appearance of ghost symmetries, [43, 45], which can produce apparent paradoxes in
the calculus of nonlocal symmetries and nonlocal equations.

3. The correspondence between the mCH and mKdV hierarchies

3.1. A Liouville transformation between the isospectral problems of the mCH
and mKdV equations. Our starting point is the isospectral problems associated to the
mCH equation (1.2) and the mKdV equation (1.1). The mCH equation (1.2) can be ex-
pressed as the compatibility condition ∂t(Ψx) = ∂x(Ψt) between

Ψx =

(
− 1

2
1
2λm

− 1
2λm

1
2

)
Ψ, Ψ =

(
ψ1

ψ2

)
(3.1)

and

Ψt =

(
λ−2 + 1

2 (u
2 − u2x) −λ−1(u− ux)− 1

2λm(u2 − u2x)

λ−1(u+ ux) +
1
2λm(u2 − u2x) −λ−2 − 1

2 (u
2 − u2x)

)
Ψ.

On the other hand, the zero curvature formulation for the mKdV equation (1.1) comes from
the compatibility condition ∂τ (Φy) = ∂y(Φτ ) between

Φy =

(
− iµ Q
−Q iµ

)
Φ, Φ =

(
φ1
φ2

)
, (3.2)
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and

Φτ =

(
−4 iµ3 + 2 iµQ2 4µ2Q− 2Q3 + 2 iµQy −Qyy

−4µ2Q+ 2Q3 + 2 iµQy +Qyy 4 iµ3 − 2 iµQ2

)
Φ.

One can verify that the following Liouville transformation

Φ =

(
−1 i
− i 1

)
Ψ, y =

∫ x

m(ξ) dξ,

will convert the isospectral problem (3.1) into the isospectral problem (3.2), with

Q =
i

2m
and λ = −2µ.

Motivated by this and the form of mCH equation (1.2), we introduce the following coordinate
transformations:

y =

∫ x

m(t, ξ) dξ, τ = t (3.3)

and

Q(τ, y) =
i

2m(t, x)
. (3.4)

The following subsection will investigate how the transformations (3.3) and (3.4) affect the
underlying correspondence between the flows of the mCH and mKdV hierarchies.

3.2. The correspondence between the mCH and mKdV hierarchies. Let us now
consider the mCH and mKdV hierarchies. First of all, the positive flows in the mCH
hierarchy (2.4) are generated successively by applying the recursion operator KJ−1 to the
seed symmetry −2mx, namely,

mt +
(
KJ−1

)n
(2mx) = 0, n = 0, 1, . . . . (3.5)

On the other hand, since the Hamiltonian operator K admits the local Casimir functional
(2.6), the negative flows (2.5) begin with the corresponding Casimir equation (2.13). Suc-
cessively applying the inverse recursion operator J K−1 produces the hierarchy of negative
flows, in which the n-th member takes the form

mt = K−n = −
(
J K−1

)n−1 J 1

m2
, n = 1, 2, . . . . (3.6)

Similarly, for the mKdV hierarchy, the positive flows in (2.7) take the form

Qτ +
(
K̄ J̄−1

)n
(4Qy) = 0, n = 0, 1, . . . , (3.7)

where K̄ J̄ −1 is the recursion operator, whereas the negative flows
(
K̄ J̄−1

)n
Qτ = 0, n = 1, 2, . . . ,

can be rewritten as
∂y
(
1
4∂y +Q∂−1

y Q
) (

K̄ J̄ −1
)n−1

Qτ = 0,

due to the forms of the Hamiltonian operators (2.8). Thus, for each n ≥ 1,
(
1
4∂y +Q∂−1

y Q
) (

K̄ J̄ −1
)n−1

Qτ = C̄−n, (3.8)

with C̄−n being the corresponding constant of integration.

Remark 3.1. In view of (2.16), when the integration constant C̄−n = 0, the negative mKdV
flows (3.8) have the form

Qτ =
(
J̄ K̄−1

)n−1
sin(2 ∂−1

y Q). (3.9)

The associated potential function U = ∂−1
y Q satisfies

R̃n−1Uτ = ∂−1
y sin(2U),
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where

R̃ = 1
4∂

2
y + U2

y − Uy∂
−1
y Uyy

is the recursion operator of the sine-Gordon equation [41]. Furthermore, the equations

Uτ + R̃n−1(4Uy) = 0, for n = 1, 2, . . . ,

are the positive flows in the potential mKdV hierarchy, which starts, at n = 2, with

Uτ + Uyyy + 2U3
y = 0.

However, as mentioned in Remark 2.2, the mCH hierarchy is not related to the hierarchy
(3.9) under the Liouville transformations (3.3) and (3.4). Therefore, in what follows, we
only consider the negative mKdV hierarchy (3.8) with the integration constants C̄−n 6= 0.

Hereafter, for convenience, for each non-negative integer n, we denote the n-th equation
in the positive and negative directions of the mCH hierarchy by (mCH)n and (mCH)−n,
respectively, while the n-th positive and negative flows in the mKdV hierarchy are denoted
by (mKdV)n and (mKdV)−n respectively. With this notation, we are now in a position to
restate Theorem 2.1, establishing the correspondence between the two hierarchies.

Theorem 3.1. Under the transformations (3.3) and (3.4), for each l ∈ Z, the (mCH)l+1

equation is related to the (mKdV)−l equation. More precisely, for each integer n ≥ 0,
(i) m solves the equation (3.5) if and only if Q satisfies Qτ = 0 for n = 0 or (3.8) for

n ≥ 1, with C̄−n = i /(−4)n;
(ii) For n ≥ 1, m is a solution of the following rescaled version of (3.6),

mt = K−n =
(−1)n+1

22n−1

(
J K−1

)n−1 J 1

m2
, n = 1, 2, . . . , (3.10)

if and only if Q satisfies the equation (3.7). In addition, for n = 0, the corresponding
equation mt = 0 is equivalent to Qτ + 4Qy = 0.

Let us begin with some preliminary lemmas.

Lemma 3.1. Let m(t, x) and Q(τ, y) be related by the transformations (3.3), (3.4). Then

1− ∂2x = 1− Qy

4Q3
∂y +

1

4Q2
∂2y . (3.11)

Proof. First, it is easy to see from (3.3) that ∂x = m∂y. It follows that

∂2x = m∂ym∂y = m (my∂y +m∂2y). (3.12)

Next, using (3.4), we have my = − iQy/(2Q
2). Plugging the formulae for m and my into

(3.12) verifies (3.11). �

Lemma 3.2. Let K, J be the two compatible Hamiltonian operators (2.2) for the mCH
equation (1.2), and K̄, J̄ the two compatible Hamiltonian operators (2.8) for the mKdV
equation (1.1). Then, for each integer n ≥ 1,

(
KJ −1

)n (
1− ∂2x

)
=

1

(−4)n

(
1− Qy

4Q3
∂y +

1

4Q2
∂2y

) (
J̄ K̄−1

)n
(3.13)

under the transformations (3.3), (3.4).

Proof. Note first, in view of (3.11), that (3.13) is equivalent to the identity
(
J K−1

)n
(1− ∂2x) = (−4)n(1− ∂2x)

(
K̄ J̄−1

)n
. (3.14)
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We prove (3.14) by induction on n. For the case n = 1, on the one hand, using (3.11) and
the transformations (3.3), (3.4), we obtain

K̄ J̄−1 = 1
4∂

2
y +Qy∂

−1
y Q+Q2 = Q2

(
1− ∂2x − iQy

2Q2
∂x +

iQy

2Q2
∂−1
x

)

=

(
Q2 +

iQy

2
∂−1
x

)
(1− ∂2x) = ∂yQ∂

−1
y Q(1− ∂2x).

(3.15)

On the other hand, the identity

J K−1 = (1 − ∂2x)
1

m
∂x

1

m
∂−1
x = −4(1− ∂2x)∂yQ∂

−1
y Q

implies that (3.14) holds for n = 1. For the general case, we assume that (3.14) holds for
n = k. Then for n = k + 1, the result when n = 1 readily leads to
(
J K−1

)k+1
(1 − ∂2x) = (−4)k

(
J K−1

)
(1− ∂2x)

(
K̄ J̄−1

)k
= (−4)k+1(1 − ∂2x)

(
K̄ J̄ −1

)k+1
,

verifying that (3.13) holds for each n ≥ 1. �

Lemma 3.3. Under the transformations (3.3) and (3.4), the following formulae hold:
(i) For each n ≥ 1,

∂x
(
K−1J

)n
∂−1
x = (−4)n

(
K̄ J̄ −1

)n
. (3.16)

(ii) For each n ≥ 0,

(1− ∂2x)
(
K−1J

)n
= (−4)n

1

Q

(
1
4∂y +Q∂−1

y Q
) (

K̄ J̄−1
)n 1

Q
∂y. (3.17)

Proof. (i) Referring back to the forms of the Hamiltonian operators K and J , and using
the transformations (3.3) and (3.4), it is easy to verify that

∂xK−1J ∂−1
x = −4∂yQ∂

−1
y Q(1− ∂2x).

When combined with (3.15), this shows that (3.16) holds for n = 1. A straightforward
induction verifies (3.16) for any n ≥ 1.

(ii) The identity

K̄ J̄−1 = 1
4∂

2
y + ∂yQ∂

−1
y Q = ∂y

(
1
4∂y +Q∂−1

y Q
)

implies that

1
4∂y +Q∂−1

y Q = ∂−1
y K̄ J̄ −1,

which shows that (3.17) is equivalent to

(
K̄ J̄ −1

)n+1
=

1

(−4)n
∂yQ(1− ∂2x)

(
K−1J

)n
∂−1
y Q. (3.18)

Hence, it suffices to prove (3.18). In view of (3.16) with n = 1, the case n = 0 is obvious.
Next, we assume (3.18) holds for n = k − 1, say

(
K̄ J̄−1

)k
=

1

(−4)k−1
∂yQ(1− ∂2x)

(
K−1J

)k−1
∂−1
y Q.

Then,

(
K̄ J̄ −1

)k+1
=

1

(−4)k−1
K̄ J̄ −1∂yQ(1− ∂2x)

(
K−1J

)k−1
∂−1
y Q

=
1

(−4)k−1
∂yQ(1− ∂2x)∂

−1
y Q∂yQ(1− ∂2x)

(
K−1J

)k−1
∂−1
y Q

=
1

(−4)k
∂yQ(1− ∂2x)

(
K−1J

)k
∂−1
y Q,
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where the formulae K−1J = −4∂−1
y Q∂yQ(1 − ∂2x) and (3.18) with n = 0 are used. This

completes the proof of the lemma in general. �

Proof of Theorem 3.1. (i) We begin with the (mCH)n+1 equation for n ≥ 1, which can
be written as

mt =
(
KJ −1

)n
(−2mx) = ∂xm∂

−1
x m(1 − ∂2x)

−1
(
KJ −1

)n−1
(−2mx). (3.19)

Therefore, by the transformation (3.3), and using (3.19), we find

mt = mτ +my

∫ x

mt(t, ξ) dξ = mτ +mym∂
−1
x m(1− ∂2x)

−1
(
KJ −1

)n−1
(−2mx),

and then

mτ +mym∂
−1
x m(1− ∂2x)

−1
(
KJ−1

)n−1
(−2mx)

− ∂xm∂
−1
x m(1− ∂2x)

−1
(
KJ −1

)n−1
(−2mx) = 0,

which yields

mτ −m2(1− ∂2x)
−1
(
KJ−1

)n−1
(−2mx) = 0.

Next, according to Lemma 3.2, the preceding equation reduces to

− i

2Q2

[
Qτ +

i

(−4)n
(
J̄ K̄−1

)n−1
(1− ∂2x)

−1

(
Qy

Q3

)]
= 0

under the Liouville correspondence (3.4). Formula (3.11) allows us to conclude that Q(τ, y)
satisfies (

1− Qy

4Q3
∂y +

1

4Q2
∂2y

)(
K̄ J̄−1

)n−1
Qτ +

i

(−4)n

(
Qy

Q3

)
= 0. (3.20)

On the other hand, for the (mKdV)−n equation (3.8), a nonzero solution Q(τ, y) satisfies
(

1

4Q
∂y + ∂−1

y Q

)(
K̄ J̄−1

)n−1
Qτ −

C̄−n

Q
= 0.

Differentiating with respect to y and multiplying the resulting equation by 1/Q yields
(
1 +

1

4Q
∂y

1

Q
∂y

)(
K̄ J̄−1

)n−1
Qτ + C̄−n

Qy

Q3
= 0. (3.21)

Comparing (3.20) and (3.21) immediately reveals that ifm(t, x) is a solution of the (mCH)n+1

equation for n ≥ 1, then the corresponding Q(τ, y) satisfies the (mKdV)−n equation (3.8),
with C̄−n = i /(−4)n.

For the remaining case n = 0, the substitution of (3.3) into the (mCH)1 equation

mt + 2mx = 0

yields

mt = mτ +my

∫ x

(−2mξ) dξ = mτ − 2mym = −2mx = −2mym,

so mτ = 0. Then (3.4) gives rise to Qτ = 0, which means that if m(t, x) is a solution of the
(mCH)1 equation, then the corresponding Q(τ, y) solves the (mKdV)0 equation.

Conversely, if Q(τ, y) is a solution of the (mKdV)−n equation for n ≥ 0, since the trans-
formations (3.3) and (3.4) are the bijections, tracing the previous steps backwards suffices
to verify the reverse argument is also true. Part (i) is thereby proved.
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(ii) Now, assume that m is the solution of a rescaled version of the (mCH)−n equation
(3.10) for n ≥ 1, then, subject to the transformation (3.3),

mt = mτ +my

∫ x

mt(t, ξ) dξ = mτ +
(−1)n+1

22n−1
my

∫ x(
J K−1

)n−1 J 1

m2
dξ

= mτ − (−1)n+1

22n−1
my(1− ∂2x)

(
K−1J

)n−1 1

m2
.

Thus,

0 = mτ −
(−1)n+1

22n−1
my(1− ∂2x)

(
K−1J

)n−1 1

m2
+

(−1)n+1

22n−1
∂x(1− ∂2x)

(
K−1J

)n−1 1

m2

= mτ −
(−1)n+1

22n−1
(my −m∂y)(1− ∂2x)

(
K−1J

)n−1 1

m2
.

Next, plugging (3.4) into the preceding equation, we find
(
− i

2Q2

)[
Qτ +

(−1)n+1

22n−3
(Qy +Q∂y)(1− ∂2x)

(
K−1J

)n−1
Q2

]
= 0,

which implies that Q(τ, y) solves the equation

Qτ +
(−1)n+1

22n−3
∂yQ(1− ∂2x)

(
K−1J

)n−1
Q2 = 0.

Finally, thanks to (3.17), we conclude that Q(τ, y) satisfies

Qτ + ∂y
(
1
4∂y +Q∂−1

y Q
) (

K̄ J̄ −1
)n−1

(4Qy) = Qτ +
(
K̄ J̄ −1

)n
(4Qy) = 0,

which is exactly the (mKdV)n+1 equation (3.7). This proves the first statement.
For n = 0, applying the transformations (3.3) and (3.4) to the (mCH)0 equation mt = 0

produces
mt = mτ + Cmy = 0,

where C is the integration constant, and hence

− i

2Q2
(Qτ + CQy) = 0.

This shows that the (mCH)0 equation is mapped into the (mKdV)1 equation, provided that
we choose C = 4. In analogy with the proof of part (i), the reverse argument follows from
the fact that (3.3) and (3.4) are the bijections. We thus complete the proof of Theorem 3.1
for all l ∈ Z. �

3.3. The correspondence between the mCH equation and the CH equation. The
well-known fact that the KdV equation and the mKdV equation are linked by the celebrated
Miura transformation, which is a particular Bäcklund transformation [49], motivates asking
whether there exists a transformation relating their respective dual counterparts. In other
words, our aim is to find a transformation between the CH equation (1.4) and the mCH
equation (1.2).

From the viewpoint of tri-Hamiltonian duality, the CH equation (1.4) is regarded as the
dual integrable counterpart of the KdV equation (1.3). The corresponding KdV hierarchy
takes the form

Pτ +
(
L̄ D̄−1

)n
(4Py) = 0, n = 0, 1, . . . , (3.22)

where
L̄ = 1

4∂
3
y − 1

2 (P∂y + ∂yP ) and D̄ = ∂y,

are the compatible bi-Hamiltonian operators. It is well-known that the KdV equation (1.3)
is related to the mKdV equation (1.1) via the Miura transformation

B(P,Q) ≡ P +Q2 − i Qy = 0. (3.23)
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Furthermore, Fokas and Fuchssteiner [20] proved that all the members of the KdV hierarchy
(3.22) admit the same Miura transformation. More precisely, B(P,Q) = 0 defines, for each
integer n ≥ 0, a Bäcklund transformation between (3.22) and (3.7). The key to prove this
claim is the fact that the corresponding recursion operators K̄ J̄−1 and L̄ D̄−1 are related
through (3.23). Indeed, set

T ≡ B−1
Q BP = (2Q− i ∂y)

−1 , (3.24)

where, for any “test function” φ

BPφ =
d

dǫ

∣∣∣
ǫ=0

B(P + ǫφ,Q) = φ and BQφ =
d

dǫ

∣∣∣
ǫ=0

B(P,Q+ ǫφ) = (2Q− i ∂y)φ

are the Fréchet derivatives of P,Q, respectively, [42]. Then, assuming (3.23),

K̄ J̄ −1 = T
(
L̄ D̄−1

)
T−1. (3.25)

In view of this relation, we claim that the first negative flow of the mKdV hierarchy can
be mapped into the first negative flow of the KdV hierarchy by the Miura transformation
(3.23). Indeed, we have the following result.

Proposition 3.1. Assume that Q satisfies the equation
(
K̄ J̄ −1

)
Qτ = 0. (3.26)

Then P = −Q2 + i Qy satisfies (
L̄ D̄−1

)
Pτ = 0. (3.27)

Proof. Using (3.23) and (3.24), we obtain

Pτ = − (2Q− i ∂y)Qτ = −T−1Qτ . (3.28)

This, together with (3.25), yields
(
L̄ D̄−1

)
Pτ = −

(
L̄ D̄−1

)
T−1Qτ = −T−1

(
K̄ J̄−1

)
Qτ .

Therefore, if K̄ J̄ −1Qτ = 0, then
(
L̄ D̄−1

)
Pτ = − (2Q− i ∂y) 0 = 0,

proving the proposition. �

Remark 3.2. In general, applying (3.25) successively implies that, for each integer n ≥ 1,
(3.23) maps the equation

(
K̄ J̄ −1

)
nQτ = 0 to

(
L̄ D̄−1

)
n Pτ = 0.

Remark 3.3. Note that the Bäcklund transformation (3.23) does not define a bijection
between the respective negative hierarchies. Indeed, for example, suppose P = −Q2 + i Qy

satisfies (3.27). Using (3.25) and (3.28), we find

(2Q− i ∂y) K̄ J̄−1Qτ = 0,

which, clearly, is not equivalent to equation (3.26) .

Using Proposition 3.1, we are able to construct a transformation from the mCH equation
(1.2) to the CH equation (1.4). First, it was shown in [22, 29, 37] that the following Liouville
transformation

P (y) =
1

ρ(x)

(
1

4
−
(
ρ(x)−1/4

)
xx

ρ(x)−1/4

)
, where y =

∫ x√
ρ(ξ) dξ, ρ = v− vxx, (3.29)

relating the respective isospectral problems for the CH hierarchy and the KdV hierarchy,
gives rise to the one-to-one correspondence between the CH equation (1.4) and the first
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negative flow (3.27). On the other hand, from Theorem 3.1, m(t, x) satisfies the mCH
equation (1.2) if and only if

Q(τ, y) =
i

2m(t, x)
, where y =

∫ x

m(t, ξ) dξ, τ = t, (3.30)

is the solution of equation (3.26). We deduce that the composite transformation including
(3.23), (3.29), and (3.30) defines a map from the mCH equation (1.2) to the CH equation
(1.4), albeit not univalent.

Proposition 3.2. Assume m(t, x) is the solution of the mCH equation (1.2). Then, ρ(t, x)
satisfies the CH equation (1.4), where ρ(t, x) is determined by the relation (3.29) with
P (τ, y) = −Q2(τ, y) + i Qy(τ, y) and Q(τ, y) defined by (3.30).

4. Hamiltonian conservation laws of the mCH equation

4.1. The correspondence between the Hamiltonian conservation laws of the mCH
and mKdV equations. The Magri scheme enables one to recursively construct an infinite
hierarchy of Hamiltonian conservation laws of any bi-Hamiltonian system. In particular, for
the mCH equation (1.2), at the n-th stage we determine the Hamiltonian conservation laws
Hn satisfying the recursive formula

K δHn−1

δm
= J δHn

δm
, n ∈ Z, (4.1)

where K and J are the two compatible Hamiltonian operators (2.2) admitted by the mCH
equation. On the other hand, the recursive formula

K̄ δH̄n−1

δQ
= J̄ δH̄n

δQ
, n ∈ Z (4.2)

will formally provide an infinite collection of Hamiltonian conservation laws for the mKdV
equation (1.1), using the Hamiltonian operators K̄ and J̄ defined in (2.8) .

In this subsection we investigate the effect of the transformations (3.3) and (3.4) on the
two hierarchies of Hamiltonian conservation laws.

Lemma 4.1. Let {Hn} and {H̄n} be the hierarchies of conserved functionals determined
by the recursive formulae (4.1) and (4.2), respectively. Then their corresponding variational
derivatives satisfy the relation

δH−n

δm
= (−1)n−122n−1J̄ −1QJ̄ δH̄n

δQ
, 0 6= n ∈ Z. (4.3)

Proof. We first prove (4.3) for n ≥ 1 by induction. Since δH−1/δm = −1/m2 and δH̄1/δQ =
4Q, it’s easy to see (4.3) holds for n = 1. Assume now (4.3) holds for n = k with k ≥ 1, say

δH−k

δm
= (−1)k−122k−1J̄ −1QJ̄ δH̄k

δQ
.

Then, for n = k + 1, thanks to (4.1) and (4.2), we find

δH
−(k+1)

δm
= K−1J δH−k

δm
= (−1)k−122k−1K−1J J̄−1QJ̄ δH̄k

δQ

= (−1)k22k+1∂−1
y QK̄ J̄ −1 1

Q
∂yJ̄ −1QJ̄ K̄−1J̄ δH̄k+1

δQ
= (−1)k22k+1J̄ −1QJ̄ δH̄k+1

δQ
,

where we have made use of the formula (3.16). This verifies (4.3) for n ≥ 1, completing the
first step.
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Next, note that, in the case of n = −1, formula (4.3) is equivalent to

δH̄−1

δQ
= 8 J̄−1 1

Q
J̄ δH1

δm
. (4.4)

To prove (4.4), if we use the fact that H̄−1 is a Casimir functional of the Hamiltonian
operator K̄, we only need to verify that

h(m) = 8 J̄−1 1

Q
J̄ δH1

δm

is the variational derivative of the Casimir functional admitted by K̄. In fact, since

δH1

δm
= 2u = 2

(
1− ∂2x

)
−1
m,

one has

h(m) = −32 i ∂−1
x m∂x

(
1− ∂2x

)
−1
m.

Moreover, by (3.16),

K̄ = 1
4∂xK

−1J ∂−1
x

1

m
∂x.

Hence

K̄h(m) = 8 i
1

m
∂x

1

m
∂−1
x

(
1− ∂2x

)
∂x
(
1− ∂2x

)
−1
m = 8 i

1

m
∂x 1 = 0,

which proves the claim, and shows (4.3) holds in the case of n = −1.
Finally, to prove (4.3) holds for all n ≤ −1, we proceed by induction on n, so assume that

(4.3) holds for n = k. Then for n = k− 1, in view of (4.1) and (4.2) and using (3.16) again,
we arrive at

δH
−(k−1)

δm
= J−1KδH−k

δm
= (−1)k−122k−1J −1KJ̄ −1QJ̄ δH̄k

δQ

= (−1)k−222k−3∂−1
y QJ̄ K̄−1 1

Q
∂yJ̄ −1QJ̄ J̄ −1K̄δH̄k−1

δQ
= (−1)k−222k−3J̄ −1QJ̄ δH̄k−1

δQ
,

which completes the induction step, and thus establishes (4.3) for n ≤ −1. This verifies
(4.3) holds for all 0 6= n ∈ Z, proving the lemma. �

In addition, in order to establish the correspondence between the conserved functionals
admitted by the mCH and the mKdV equations, we require a formula for the change of the
variational derivative under (3.3) and (3.4).

Lemma 4.2. Let m(t, x) and Q(τ, y) be related by the transformations (3.3) and (3.4). If
H(m) = H̄(Q), then

δH
δm

=
1

Q

(
1
4 J̄

2 − J̄−1K̄
) δH̄
δQ

, (4.5)

where J̄ and K̄ are the Hamiltonian operators given by (2.8).

Proof. Referring back to (3.3) and denoting

Q(τ, y) = F [m(t, x)] ≡ i

2m(t, x)
,

we arrive at
d

dǫ

∣∣∣
ǫ=0

y(m+ ǫv) = ∂−1
x v = −2 i ∂−1

y Qv.
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Then, on the one hand,

d

dǫ

∣∣∣
ǫ=0

F [m+ ǫv] = Qy
d

dǫ

∣∣∣
ǫ=0

y(m+ ǫv) +
d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫv]

= −2 i Qy∂
−1
y Qv +

d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫv].

On the other hand, by the definition of the Fréchet derivative

d

dǫ

∣∣∣
ǫ=0

F [m+ ǫv] = DF [m](v) = − i

2m2
v = 2 i Q2v.

Therefore,
d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫv] = 2 i (Q2 +Qy∂

−1
y Q)v.

Furthermore, by the assumption, we find

d

dǫ

∣∣∣
ǫ=0

H(m+ ǫv) =
d

dǫ

∣∣∣
ǫ=0

H̄ (F [m+ ǫv]) ,

where we use the usual definition

d

dǫ

∣∣∣
ǫ=0

H(m+ ǫv) =

∫
δH
δm

· v dx (4.6)

of the variational derivative. Since the Hamiltonian operators J̄ and K̄ are skew-adjoint,
we obtain

d

dǫ

∣∣∣
ǫ=0

H̄ (F [m+ ǫv]) =

∫
δH̄
δQ

· d

dǫ

∣∣∣
y fixed

ǫ=0
F [m+ ǫv] dy = 2 i

∫
δH̄
δQ

· (Q2 +Qy∂
−1
y Q)v dy

= 2 i

∫ (
K̄ J̄ −1 − 1

4 J̄
2
)
∗ δH̄
δQ

· v dy =

∫
1

Q

(
1
4 J̄

2 − J̄ −1K̄
) δH̄
δQ

· v dx,

which, on comparison with (4.6) verifies (4.5), proving the lemma. �

Finally, under the hypothesis of Lemma 4.2, we define the functional

Gn(Q) ≡ H−n(m),

for each 0 6= n ∈ Z. Thanks to Lemma 4.2,

δH−n

δm
=

1

Q

(
1
4 J̄

2 − J̄ −1K̄
) δGn

δQ
.

while according to Lemma 4.1,

δH−n

δm
= (−1)n−122n−1J̄−1QJ̄ δH̄n

δQ
.

It follows that

(−1)n−122n−1J̄ −1QJ̄ δH̄n

δQ
=

1

Q

(
1
4 J̄

2 − J̄−1K̄
) δGn

δQ

=
1

Q

(
1
4∂

2
y − ∂−1

y

(
1
4∂

3
y + ∂yQ∂

−1
y Q∂y

)) δGn

δQ
= −∂−1

y Q∂y
δGn

δQ
= −J̄ −1QJ̄ δGn

δQ
,

which yields
δGn

δQ
= (−1)n22n−1 δH̄n

δQ
,

from which
Gn(Q) = (−1)n22n−1H̄n(Q) (4.7)

follows. Consequently, we conclude that formula (4.7), combined with our hypothesis, pro-
duces the correspondence between the sequences of the Hamiltonian conservation laws ad-
mitted by the mCH and the mKdV equations. Thus we have now proved Theorem 2.2.
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4.2. Hamiltonian conservation laws of the mCH equation. In this subsection, we
study the Hamiltonian conservation laws (2.22) of the mCH equation based on its bi-
Hamiltonian representation. We focus our attention on the sequence of conserved functionals
H−n, n ≥ 1, in the negative direction of the hierarchy. Hereafter, for simplicity, we denote
the variational derivative of the functional H−n by V−n = δH−n/δm. Hence, starting from

V−1[m] =
δH−1[m]

δm
= − 1

m2
,

and using the recursive construction (4.1), the sequence of variational derivatives satisfies,
successively,

V
−(n+1) = K−1J V−n, n = 1, 2, . . . . (4.8)

Our aim is to identify the local nature and homogeneity of H−n. The main result is presented
in Theorem 2.3, whose proof relies on two propositions.

First, the following lemma is a corollary of Theorem 4.7 in [42]; see also [30].

Lemma 4.3. If a local functional with the corresponding differential function P [m] satisfies
∫
P [m] dx = 0, m ∈ X,

then there exists a local differential function R[m], unique up to addition of a constant, such
that P [m] = DxR[m] is its total x−derivative.

The first proposition is concerned with the local character of the V−n’s.

Proposition 4.1. All variational derivatives V−n (n ≥ 1) in the sequence (4.8) are differ-
ential functions of m.

Proof. We use an inductive argument. First of all, in view of the explicit forms of operators
K and J in (2.2), the equality (4.8) can be written as

∂xV−(n+1) =
1

m
∂x

1

m

(
1− ∂2x

)
V−n. (4.9)

In terms of the inverse operator K−1 along with (4.8), we deduce from (4.9) that the sequence
V−n’s satisfy the following equality

∂xV−(n+1) =
1

m
∂x

1

m

(
1− ∂2x

) (
K−1J

)n−1
V−1 = − 1

m
∂x

1

m

(
1− ∂2x

) (
K−1J

)n−1 1

m2
,

(4.10)
for n ≥ 1. In particular,

V−2 = − 3

4m4
+ 5

m2
x

m6
− 2

mxx

m5
, (4.11)

is a differential function of m.
Now suppose, by induction, that V−n is a differential function of m. Define the local

differential function

X−n =
1

m
∂x

1

m

(
1− ∂2x

)
V−n = − 1

m
∂x

1

m

(
1− ∂2x

) (
K−1J

)n−1 1

m2
, (4.12)

so that

X−n = DxV−(n+1). (4.13)

We claim that
∫
X−n dx = 0. Lemma 4.3 then implies that V

−(n+1) is a differential function,
which establishes the induction step and thus proves the proposition.

To verify the claim, first note that, since both the operators J and K are skew-adjoint,
[(
K−1J

)n]∗
=
(
J K−1

)n
, n = 1, 2, . . . .
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Applying integration by parts,
∫
X−n dx = −

∫
1

m
∂x

1

m

(
1− ∂2x

)(
K−1J

)n−1
( 1

m2

)
dx

= −
∫
mx

m3

(
1− ∂2x

)(
K−1J

)n−1
( 1

m2

)
dx

= −
∫

1

m2

(
J K−1

)n−1(
1− ∂2x

)(mx

m3

)
dx

= −1

2

∫ (
J K−1

)n−1J
( 1

m2

)
· 1

m2
dx

= −1

2

∫ (
1− ∂2x

)(
K−1J

)n−1
( 1

m2

)
· ∂x
( 1

m2

)
dx = −

∫
X−n dx.

This immediately implies that
∫
X−n dx = 0, as claimed. �

The homogeneity of the dual Hamiltonian operator K implies that the variational deriva-
tives of Hamiltonian conservation laws H−n (n ≥ 1) constructed by (4.8) are all homogeneous
under scaling transformation m 7→ σm.

Proposition 4.2. The differential functions V−n[m] = δH−n[m]/δm, n ≥ 1, satisfy

V−n[σm] = σ−2nV−n[m], 0 6= σ ∈ R. (4.14)

Proof. Clearly (4.14) holds when n = 1. Assume that (4.14) holds for n = j. Then for
n = j + 1, formula (4.8) implies that

V
−(j+1)[σm] = K−1(σm)J (σm)V−j [σm]

= ∂−1
x

1

σm
∂x

1

σm

(
1− ∂2x

) (
σ−2jV−j [m]

)
= σ−2(j+1)V

−(j+1)[m].

Therefore, the proposition follows by induction. �

In addition, it is necessary to show that their Fréchet derivatives, DV
−n

, are self-adjoint
operators. Since the Hamiltonian operator K is non-degenerate, we have a slight variant of
a lemma given in [42].

Lemma 4.4. Suppose K and J are the two compatible Hamiltonian operators for the mCH
equation defined by (2.2). Assume that there are three differential functions P [m], Q[m] and
R[m] satisfying

KP = JQ and KR = JP.
If P [m] = δP [m]/δm and Q[m] = δQ[m]/δm are variational derivatives of local functionals
P [m] and Q[m], respectively, then the Fréchet derivative DR[m] is self-adjoint and hence
R[m] = δR[m]/δm is also a variational derivative for some local functional R[m].

Since the sequence of differential functions V−n satisfies

KV−n = J V−n+1, KV
−(n+1) = J V−n,

Lemma 4.4 implies that, if

V−n+1 =
δH−n+1

δm
and V−n =

δH−n

δm
, then V

−(n+1) =
δH

−(n+1)

δm

for some local functional H
−(n+1)[m]. Since we already know the local functional H−1[m] =∫

(1/m) dx has V−1[m] = −1/m2 as its variational derivative, and the local functional

H−2[m] =
∫ (

1/(4m3) +m2
x/m

5
)
dx has V−2[m] given by (4.11) as its variational deriv-

ative, we are able to recursively construct all higher-order local functionals.
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Proof of Theorem 2.3. Since the Fréchet derivative of V−n[m] is self-adjoint: D∗

V
−n

= DV
−n

,

the homotopy formula, [42, (5.123)]:

H−n[m] =

∫ 1

0

∫
mV−n[λm] dxdλ

defines a local functional H−n[m] which admits the corresponding variational derivative
δH−n/δm = V−n[m] for n ≥ 1. Furthermore, using the homogeneity of V−n given in (4.14),

H−n[m] =

(∫ 1

0

λ−2n dλ

)(∫
mV−n[m] dx

)
=

1

1− 2n

∫
mV−n[m] dx.

Finally, the homogeneity of H−n[m] directly follows from that of the variational derivatives.
In fact, it follows from above and (4.14) that

H−n[σm] =
1

1− 2n

∫
σmV−n[σm] dx =

σ1−2n

1− 2n

∫
mV−n[m] dx = σ1−2nH−n[m],

which completes the proof. �

Remark 4.1. The preceding proof implies the explicit formulae

H−n[m] =
1

1− 2n

∫
m
δH−n

δm
dx, n = 1, 2, . . . ,

for the conservation laws, whose variational derivatives are constructed recursively by

δH
−(n+1)

δm
= K−1J δH−n

δm
, n = 1, 2, . . . ,

starting from δH−1/δm = −1/m2.

As for the positive hierarchy, Hn for n ≥ 0 in (2.22), we begin with the sequence of their
variational derivatives Vn = δHn/δm, which satisfy the recursion formulae (4.1). Then (4.1)
yields for n ≥ 0,

Vn+1 = J −1K Vn = (1− ∂2x)
−1m∂−1

x m∂x
(
J −1K

)n
V0. (4.15)

Now, consider Fn = K
(
J −1K

)n
V0, n ≥ 0, we claim that

∫
Fn(m) dx = 0

holds for each n ≥ 0. In fact, since V0 = 1,
∫
Fn(m) dx =

∫
K
(
J −1K

)n
(1) dx =

∫
1 ·
(
KJ−1

)nK (1) dx

= −
∫

K
(
J−1K

)n
(1) dx = −

∫
Fn(m) dx,

which immediately implies the preceding claim. Since we cannot show that Fn are differential
functions in m, except for the special case that F0 = −2mx, Lemma 4.3 cannot be applied to
verify that Fn are of the form of the total x−derivatives. So we cannot make the same claim
that the corresponding variational derivatives are differential functions of m, neither can
we obtain a constructive scheme and algorithm for computing the sequences of conservation
laws Hn in analogy with Theorem 2.3. Nevertheless, no matter whether they are local or
nonlocal, the variational derivatives Vn are still homogeneous functions. In analogy with
Proposition 4.2, we have the following result.

Proposition 4.3. Each Vn in the hierarchy of the variational derivatives determined by the
recursion formulae (4.15) satisfies Vn(σm) = σ2n−1Vn(m), n = 1, 2, . . ..
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5. Concluding remarks

In this paper, an explicit correspondence between the integrable mKdV hierarchy and
its dual integrable mCH hierarchy is set up through a Liouville transformation between the
isospectral problems of the two hierarchies. In addition, we show that the Liouville trans-
formation also relates their respective recursion operators and Hamiltonian conservation
laws. Finally, we have constructed an implicit transformation that maps the mCH equation
directly to the CH equation.

It is worth noting that the mKdV hierarchy studied in this paper is the focusing type.
We can show that the Liouville correspondence also persists in the defocusing case. Indeed,
for the defocusing mKdV equation

Qτ +Qyyy − 6Q2Qy = 0,

the corresponding isospectral problem is

Φy =

(
− iµ Q
Q iµ

)
Φ.

While the corresponding Liouville transformation analogous to (2.12) takes the form

Q(y) =
1

2m(x)
, y =

∫ x

m(ξ) dξ, m = u− uxx.

The corresponding results to the defocusing case can be obtained and proved similarly.
In [44], several dual integrable systems have been discovered by using the tri-Hamitonian

duality approach. It is anticipated that a large number of dual integrable systems can be
generated from other soliton hierarchies, such as the general AKNS systems, the three wave
interaction equations, and others. It is well-known that the KdV, mKdV and Schrödinger
hierarchies belong to the subclasses of AKNS hierarchy. The Liouville transformation re-
lating the KdV hierarchy and its dual hierarchy has been derived in [29, 37]. It is of great
interest to develop the approaches in this paper and [29, 37] to study the general AKNS
system and other integrable systems.

For the AKNS system {
qt = i

(
qxx − q2r

)
,

rt = i
(
−rxx + r2q

)
,

its dual system can be derived by the tri-Hamitonian duality approach, and takes the form
{

ut = i (r + i rx) r q,

vt = − i (q − i qx) r q,
(5.1)

where u = r + i rx and v = q − i qx. A natural question arises: what is the Liouville
transformation of the AKNS hierarchy and its dual integrable hierarchy? This will be one
of the future projects in our continuing study of these remarkable integrable hierarchies.
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