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ABSTRACT. We derive conditions on the initial data, including cases where the
initial momentum density is not of one sign, that produce blow-up of the induced
solution to the modified integrable Camassa-Holm equation with cubic nonlin-
earity. The blow-up conditions are formulated in terms of the initial momentum
density and the average initial energy.
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1. INTRODUCTION

In this paper, we are concerned with the behavior of solutions to the initial-value
problem for the modified Camassa-Holm (mCH) equation on the real line:

{
mt +

(
(u2 − u2

x)m
)
x
= 0,

u(0, x) = u0(x),
t > 0, x ∈ R, (1.1)

where
m = (1− ∂2

x)u = u− uxx (1.2)

represents themomentum densityof the system. This nonlinear partial differen-
tial equation was derived by applying the method of tri-Hamiltonian duality to the
bi-Hamiltonian representation of the modified Korteweg–deVries (mKdV) equa-
tion [13, 21], which implies that the mCH equation (1.1) is anintegrable system
possessing a bi-Hamiltonian structure. Subsequently, a Lax representation of (1.1)
was constructed [23], making the mCH equation amenable to the method of inverse
scattering. Equation (1.1) models the unidirectional propagation of surface waves
in shallow water over a flat bottom [11], whereu(t, x) represents the free surface
elevation in non-dimensional variables.

The Camassa-Holm (CH) equation

mt + umx + 2mux = 0, m = u− uxx, (1.3)

was also proposed [1] as a model describing the uni-directional propagation of shal-
low water waves. It was later shown to model the propagation of axially symmet-
ric waves in hyperelastic rods [8, 9]. The CH equation was originally constructed
by using the recursion operator method [14], and, in a similar vein, can also be
derived by applying tri-Hamiltonian duality to the bi-Hamiltonian structure of the
Korteweg–deVries (KdV) equation [21]. From this it followsthat the CH equation
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is completely integrable and can also be solved by the inverse scattering method
[1, 13]. In contrast to the KdV equation, the CH equation has three remarkable
distinctive properties. First, although completely integrable, it can describe wave
breaking phenomenon: the solution remains bounded while its slope becomes in-
finite in finite time. Second is the existence of peakons, which are nonanalytic
solitary waves that are global weak solutions, and, moreover, interact cleanly as
do solitons. Third is the variety of interesting geometric formulations of the CH
equation [2, 7, 16, 19].

Well-posedness and wave breaking of the CH equation were studied in a number
of papers. It has been shown [5, 17, 22] that the Cauchy problem is locally well-
posed for initial datau0 ∈ Hs(R) with s > 3/2 . Moreover, if the initial momentum
density

m0(x) = m(0, x) = (1− ∂2
x)u0 = u0(x)− u′′

0(x) (1.4)

does not change sign, the Cauchy problem admits global solution for certain initial
values [3, 5, 6], whereas solutions may blow up if their initial momentum densitym0

changes sign [3, 4, 5, 6]. The existence of global weak solutions was investigated
in [25, 26].

Like the KdV equation, the CH equation has quadratic nonlinear terms. Two
CH-type equations with cubic nonlinearities have been proposed: the modified CH
equation (1.1) [13, 21], and the Novikov equation [20]

mt + u2mx + 3muux = 0, m = u− uxx. (1.5)

Both equations have peaked solitons and can be used to model wave breaking.
The geometric formulation, integrability, local well-posedness, blow-up criteria and
wave breaking, existence of peaked solitons (peakons), andthe stability of single
peakons and periodic peakons to the modified CH equation (1.1) were studied re-
cently in [12, 15, 23, 24]. It is shown that even when the initial momentum density
m0(x) does not change sign, the solutions to the Cauchy problem (1.1) may blow up
in finite time, in contrast to the CH equation, the Degasperis–Procesi (DP) equation
[10, 18], or the Novikov equation (1.5).

The goal of the present paper is to derive sharp sufficient conditions on the initial
data that guarantees the formulation of singularities in the resulting solution in finite
time. We take a different approach from that used in [15]. Thefirst step is to rewrite
the mCH equation (1.1) as a transport equation for the momentum density (1.2):

mt + (u2 − u2
x)mx = −2m2ux. (1.6)

The theory of transport equations implies that the solutionm will remain regular
and not blow up as long as the slope

(u2 − u2
x)x = 2mux = 2ux(u− uxx) (1.7)

remains bounded, while the solution blows up in finite time when the slope (1.7)
is unbounded from below [12, 15]. The fact that the momentum density satisfies
a transport equation also implies that, provided it initially does not change sign,
thenm(t, x) and, in view of the Green’s function formula — see (3.4) below— the
solutionu(t, x) will maintain the same sign where defined.

Notation.For convenience, in the following, given a Banach spaceX, we denote
its norm by‖ · ‖X . If there is no ambiguity, we omit the domain of function spaces.
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The two basic conserved quantities

H0[u] =

∫

R

u dx, H1[u] =

∫

R

mudx =

∫

R

(u2 + u2
x) dx, (1.8)

are well-known and play an important role in all analysis of the solutions. When
the momentum densitym changes sign, the following novel conservation law

‖m‖L1 =

∫

R

|m| dx (1.9)

will play a crucial role in controlling the solutionu and its slopeux. This observa-
tion allows us to establish sharper results than were found in [15]; see Remarks 3.4
and 3.6 below for comparisons.

Let us now state the main results in the present paper. We begin with a blow-up
criteria that applies when the initial momentum densitym0(x) is of one sign.

Theorem 1.1. Supposeu0 ∈ Hs(R) ∩ L1(R) with s > 5
2
. Assume thatm0(x) ≥ 0

for all x ∈ R. Assume that there existsx1 ∈ R such that

m0(x1) = sup
x∈R

m0(x) > 0 and u′
0(x1) < −H0[u0]√

12
. (1.10)

Then the corresponding solutionu(t, x) to the initial value problem(1.1)blows up
at a finite timeT bounded by

0 < T ≤ T1 := − 1

2m0(x1) u′
0(x1)

. (1.11)

Our second blow-up criterion applies to the more challenging case when the ini-
tial momentum densitym0(x) changes sign.

Theorem 1.2.Supposem0 ∈ Hs(R) ∩ L1(R) with s > 1
2
. Assume that there exists

x2 ∈ R such that

m0(x2) = sup
x∈R

m0(x) > 0 and u′
0(x2) < −

√
11 ‖m0‖3L1

24m0(x2)
. (1.12)

Then the solutionu(t, x) blows up in finite timeT bounded by

0 < T ≤ T2 :=
24

11 ‖m0‖3L1


−u′

0(x2)−
√

u′
0(x2)2 −

11 ‖m0‖3L1

24m0(x2)


 . (1.13)

It is not hard to see that the blow-up time bound in Theorem 1.2exceeds that
in Theorem 1.1, soT1 ≤ T2, and hence, when the initial momentumm0 does not
change sign, the bound (1.11) is stronger than that in (1.13).

Finally, if we drop the assumption thatu0 ∈ L1(R), then, provided the initial
momentum density is of one sign, we can establish the following alternative blow-
up criterion, which is significantly stronger than that found in [15]; see Remark 3.6
for details.
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Theorem 1.3. Supposeu0 ∈ Hs(R) with s > 5
2
. Assume thatm0(x) ≥ 0 for all

x ∈ R. If there existsx3 such that

m0(x3) = sup
x∈R

m0(x) > 0 and u′
0(x3) < −

√√
2 ‖u0‖3H1

12m0(x3)
. (1.14)

Then the solutionu(t, x) blows up in finite timeT bounded by

0 < T ≤ T3 :=
−6

√
2 u′

0(x3)

‖u0‖3H1

−

√√√√
(
6
√
2 u′

0(x3)

‖u0‖3H1

)2

− 6
√
2

m0(x3)‖u0‖3H1

. (1.15)

Remark 1.4. Invariance of the mCH equation under the change of signu 7→ −u
and, hence,m 7→ −m allows one to easily establish additional blow-up criteria
by reversing the signs of the relevant quantities in the hypotheses in Theorems 1.1,
1.2, and 1.3. The resulting criteria and Theorems are left tothe reader to explicitly
formulate.

The remainder of the paper is organized as follows. In Section 2, some prelim-
inary estimates and results are recalled and presented. Section 3 is devoted to the
proofs to our main results.

2. PRELIMINARIES

We begin by recalling some basic results concerning the mCH equation (1.1),
and refer the reader to [12, 15] for details and proofs. We begin with local well-
posedness.

Lemma 2.1. Letu0 ∈ Hs(R) with s > 5
2
. Then there exists a timeT > 0 such that

the initial-value problem(1.1)has a unique strong solutionu ∈ C([0, T ];Hs(R))∩
C1([0, T ];Hs−1(R)). Moreover, the mapu0 7→ u is continuous from a neighbor-
hood of the initial datau0 in Hs(R) into C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−1(R)).
Furthermore, if the solutionu has maximum time of existence0 < T < ∞, then

∫ T

0

‖(mux)(t)‖L∞dt = ∞.

Using the preceding criterion, the following blow up condition was obtained [15].

Lemma 2.2. Suppose thatu0 ∈ Hs(R) with s > 5
2
. Then the corresponding solu-

tion u to the initial value problem(1.1) blows up in finite timeT > 0 if and only
if

lim
t→T

inf
x∈R

{
m(t, x) ux(t, x)

}
= −∞.

A particular conservative property ofm plays a key role in establishing our new
blow-up criteria. First, note that application of the method of characteristics to the
transport equation (1.6) form requires analyzing the flow governed by the effec-
tive wave speedu2 − u2

x, namely the solutionq(t, x) to the parametrized family of
ordinary differential equations


dq(t, x)

dt
= u(t, q(t, x))2 − ux(t, q(t, x))

2,

q(0, x) = x, x ∈ R.
x ∈ R, t ∈ [0, T ), (2.1)
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Lemma 2.3. Supposeu0 ∈ Hs(R) with s > 5
2
, and letT > 0 be the maximal

existence time of the strong solutionu to the corresponding initial value problem
(1.1). Then(2.1)has a unique solutionq ∈ C1([0, T )×R,R) such thatq(t, ·) is an
increasing diffeomorphism ofR with

qx(t, x) = exp

(
2

∫ t

0

m(s, q(s, x)) ux(s, q(s, x)) ds

)
> 0

for all (t, x) ∈ [0, T )× R. Furthermore,

m(t, q(t, x)) qx(t, x) = m0(x) for all (t, x) ∈ [0, T )× R. (2.2)

Thus, by integrating the absolute value of (2.2) overx ∈ R, we are led to the
following unusual conservation law.

Proposition 2.1. Assumem0 ∈ Hs(R) ∩ L1(R) with s > 1
2
. Supposeu is the

corresponding solution to(1.1)with the initial datau0 with maximal existence time
T > 0. Then

‖m(t)‖L1(R) = ‖m0‖L1(R) =

∫ ∞

−∞
|m0(x)| dx, 0 ≤ t < T, (2.3)

is a constant, independent oft.

3. PROOFS OFTHEOREMS

The proofs of our main results are based on a series of lemmas.The first lemma
plays a crucial role in deriving differential inequalitiesthat enable us to improve
earlier blow-up results.

Lemma 3.1. Letu0 ∈ Hs(R), s ≥ 3. Then the quantity

M(t, x) = m(t, x) ux(t, x) (3.1)

satisfies the following integro-differential equation:

Mt + (u2 − u2
x)Mx

= −2M2 +m
(
2
3
u3 − uu2

x

)
− 1

6
me−x

∫ x

−∞
ey
(
2u3 + 3uu2

y − u3
y

)
dy

− 1
6
mex

∫ ∞

x

e−y
(
2u3 + 3uu2

y + u3
y

)
dy

= −2M2 +m
(
1
3
u3 − uu2

x

)

− 1
6
m

(∫ x

−∞
ey−x(u− uy)

3dy +

∫ ∞

x

ex−y(u+ uy)
3dy

)
.

(3.2)

Proof. We begin with a straightforward differentiation of (3.1) and use of (1.1) to
establish that the quantityM satisfies

Mt + (u2−u2
x)Mx

=− 2M2 − 2m(1− ∂2
x)

−1(u2
xm)− 2m∂x(1− ∂2

x)
−1(uuxm).

(3.3)
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We evaluate the second and third terms on the right hand side of (3.3) using the
Green’s functionG(x, y) = e−|x−y| for the differential operator1 − ∂2

x on the line,
whereby

u(t, x) = (1− ∂2
x)

−1m(t, x) = 1
2

∫ ∞

−∞
e−|x−y|m(t, y) dy, (3.4)

Thus,

(1−∂2
x)

−1(u2
xm) = 1

2

∫ ∞

−∞
e−|x−y|uy(t, y)

2m(t, y) dy = I11 + I12,

where, applying integration by parts,

I11 =
1
2
e−x

∫ x

−∞
ey(uu2

y − u2
yuyy) dy = 1

2
e−x

∫ x

−∞
eyuu2

ydy − 1
6
e−x

∫ x

−∞
eydu3

y

= 1
6
e−x

∫ x

−∞
ey(3uu2

y + u3
y)dy − 1

6
u3
x(t, x),

I12 =
1
2
ex
∫ ∞

x

e−y(uu2
y − u2

yuyy) dy = 1
2
ex
∫ ∞

x

e−yuu2
ydy − 1

6
ex
∫ ∞

x

e−ydu3
y

= 1
6
ex
∫ ∞

x

e−y(3uu2
y − u3

y)dy +
1
6
u3
x(t, x).

Similarly, the third term in (3.3) is

∂x(1−∂2
x)

−1(uuxm) = ∂x

(
1
2

∫ ∞

−∞
e−|x−y|u(t, y)uy(t, y)m(t, y) dy

)

= − 1
2
e−x

∫ x

−∞
eyuuymdy + 1

2
ex
∫ ∞

x

e−yuuymdy = I21 + I22 + I23 + I24,

where, by a similar computation,

I21 = −1
6
e−x

∫ x

−∞
ey du3 = −1

6
u3(t, x) + 1

6
e−x

∫ x

−∞
eyu3 dy,

I22 =
1
4
e−x

∫ x

−∞
eyu d(u2

y) =
1
4
u(t, x)u2

x(t, x)− 1
4
e−x

∫ x

−∞

(
eyu+ eyuy

)
u2
y dy

= 1
4
u(t, x)u2

x(t, x)− 1
4
e−x

∫ x

−∞
ey
(
uu2

y + u3
y

)
dy,

I23 =
1
6
ex
∫ ∞

x

e−y du3 = −1
6
u3(t, x) + 1

6
ex
∫ ∞

x

e−yu3 dy,

I24 = −1
4
ex
∫ ∞

x

e−yu d(u2
y) =

1
4
u(t, x)u2

x(t, x) +
1
4
ex
∫ ∞

x

(
−e−yu+ e−yuy

)
u2
y dy

= 1
4
u(t, x)u2

x(t, x)− 1
4
ex
∫ ∞

x

e−y
(
uu2

y − u3
y

)
dy.
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Combining the preceding expressions, we arrive at

2m(1− ∂2
x)

−1(u2
xm) + 2m∂x(1− ∂2

x)
−1(uuxm)

= 1
3
m

(
e−x

∫ x

−∞
ey
(
3uu2

y + u3
y

)
dy + ex

∫ ∞

x

e−y
(
3uu2

y − u3
y

)
dy

+ 1
2
e−x

∫ x

−∞
ey
(
2u3 − 3uu2

y − 3u3
y

)
dy

+ 1
2
ex
∫ ∞

x

e−y
(
2u3 − 3uu2

y + 3u3
y

)
dy + (3uu2

x − 2u3)(t, x)

)

= m
(
uu2

x − 2
3
u3
)
+ 1

6
me−x

∫ x

−∞
ey
(
2u3 + 3uu2

y − u3
y

)
dy

+ 1
6
mex

∫ ∞

x

e−y
(
2u3 + 3uu2

y + u3
y

)
dy.

(3.5)

Substituting back into (3.3) completes the proof of the firstformula on the right
hand side of (3.2). The second formula follows from the further manipulations of a
similar nature:

e−x

∫ x

−∞
ey
(
2u3+3uu2

y − u3
y

)
dy = e−x

∫ x

−∞
ey
(
u3 + (u− uy)

3 + 3u2uy

)
dy

= e−x

∫ x

−∞
ey
(
u3 + (u− uy)

3
)
dy + e−x

∫ x

−∞
eydu3

= e−x

∫ x

−∞
ey(u− uy)

3dy + u(t, x)3,

ex
∫ ∞

x

e−y
(
2u3+3uu2

y + u3
y

)
dy = ex

∫ ∞

x

e−y
(
u3 + (u+ uy)

3 + 3u2uy

)
dy

= ex
∫ ∞

x

e−y
(
u3 + (u+ uy)

3
)
dy + ex

∫ ∞

x

e−ydu3

= ex
∫ ∞

x

e−y(u+ uy)
3dy + u(t, x)3.

(3.6)

This completes the proof of (3.2). �

Lemma 3.2. Assume that the initial datau0 ∈ Hs(R), s > 5
2
. Let T > 0 be the

maximal existence time of the resulting solutionu(t, x) to the initial value problem
(1.1). If m0(x) ≥ 0, then

|ux(t, x)| ≤ u(t, x), (t, x) ∈ [0, T )× R. (3.7)

Moreover, ifm0 ∈ Hs(R) ∩ L1(R), then

u(t, x) ≤ 1
2
H0[u0], (t, x) ∈ [0, T )× R. (3.8)
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Proof. Lemma 2.3 implies thatm andu are nonnegative for any0 ≤ t < T , x ∈ R.
Using the Green’s function formula (3.4), we have

u(t, x) = 1
2
e−x

∫ x

−∞
eymdy + 1

2
ex
∫ ∞

x

e−ymdy,

ux(t, x) = −1
2
e−x

∫ x

−∞
eymdy + 1

2
ex
∫ ∞

x

e−ymdy.

(3.9)

Thus,

0 ≤ u(t, x)− ux(t, x) = e−x

∫ x

−∞
eymdy ≤

∫ x

−∞
mdy

0 ≤ u(t, x) + ux(t, x) = ex
∫ ∞

x

e−ymdy ≤
∫ ∞

x

mdy,

(3.10)

which imply (3.7). Moreover, assumingm0 ∈ Hs(R) ∩ L1(R), (3.10) implies that

2u(t, x) ≤
∫ ∞

−∞
mdy =

∫ ∞

−∞
u dy = H0[u0],

which proves (3.8). �

Remark 3.3. The proof of Lemma 3.2 implies the following further estimates:

u(t, x) + |ux(t, x)| ≤ H0[u0], u(t, x) ≤ 1
2
H0[u0] ≤ ux(t, x) +H0[u0].

Proof of Theorem 1.1.Let us abbreviate

û(t) := u(t, q(t, x1)), v̂(t) := ux(t, q(t, x1)),

m̂(t) := m(t, q(t, x1)), M̂(t) := M(t, q(t, x1)) = m̂(t) v̂(t),
(3.11)

wherex1 is defined in (1.10). Since

m̂(0) > 0 we have m̂(t) > 0 where defined. (3.12)

Then equations (1.1) and (2.1) imply that

d m̂

dt
= −2 m̂(t) M̂(t) = −2 m̂(t)2 v̂(t). (3.13)

Moreover, combining (3.2), (3.10), and the fact thatm ≥ 0, we see that

d M̂

dt
≤ −2 M̂(t)2 + m̂(t)

(
1
3
û(t)3 − v̂(t)2 û(t)

)
. (3.14)

Thus, using (3.11), (3.13), (3.14), and Lemma 3.2, we find

d v̂

dt
=

d

dt

(
M̂(t)

m̂(t)

)
=

m̂(t) M̂ ′(t)− m̂′(t) M̂(t)

m̂(t)2

=
1

m̂(t)

(
d M̂

dt
+ 2 M̂(t)2

)

≤ 1
3
û(t)3 − v̂(t)2 û(t) ≤ û(t)

(
1
12
H2

0 [u0]− v̂(t)2
)
.

(3.15)

Moreover, our assumption (1.10) implies that

v̂(0) < −H0[u0]√
12

< 0, (3.16)
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and hence the right hand side of (3.15) is negative att = 0. A straightforward
ordinary differential equation argument allows us to conclude thatv̂(t) must be
everywhere decreasing, with

v̂(t) < v̂(0) < −H0[u0]√
12

for all t ∈ [0, T ). (3.17)

Combining (3.17) with (3.13), we have

d

dt

(
1

m̂(t)

)
= 2 v̂(t) < 2 v̂(0) for all t ∈ [0, T ). (3.18)

Integrating from0 to t and using (3.12) produces

0 <
1

m̂(t)
<

1

m̂(0)
+ 2 v̂(0) t for all t ∈ [0, T ).

Thus (3.16) implies that there exists0 < T ≤ T1, whereT1 is given in (1.11), such
that

m̂(t) → +∞, as t → T ≤ T1 = − 1

2 m̂(0) v̂(0)
= − 1

2m0(x1)u
′
0(x1)

.

Furthermore, since

M̂(t) = v̂(t) m̂(t) < v̂(0) m̂(t) ≤ 0,

we conclude that

inf
x∈R

M(t, x) ≤ M̂(t) → −∞, as t → T ≤ T1, (3.19)

which demonstrates that the solutionu(t, x) blows up at a time0 < T ≤ T1. This
completes the proof of Theorem 1.1. �

Remark 3.4. The blow-up time bound in Theorem 1.1 is an improvement over the
bound in Theorem 5.2 of[15], which is

T̃1 :=
1

m0(x1)
· 1

−u′
0(x1) +

√
u′
0(x1)

2 − ‖u0‖3H1/
(√

2m0(x1)
)

> − 1

2m0(x1)u
′
0(x1)

= T1.

Proof of Theorem 1.2.We employ the same notation (3.11) as in the preceding
proof, but now withx2, as given in (1.12), replacingx1. Using the Green’s function
formulae (3.9), we have

|u(t, x)| ≤ 1

2

∫ ∞

−∞
|m(t, x)|dx =

1

2

∫ ∞

−∞
|m0(x)| dx =

1

2
‖m0‖L1,

|ux(t, x)| ≤
1

2

∫ ∞

−∞
|m(t, x)| dx =

1

2

∫ ∞

−∞
|m0(x)| dx =

1

2
‖m0‖L1 .

(3.20)

Plugging these estimates into (3.2) produces

d M̂(t)

dt
≤ −2 M̂(t)2 − m̂(t)

[(
û(t) v̂(t)2 − 1

3
û(t)3

)
− 1

3
‖m0‖3L1

]
. (3.21)
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As in (3.15), but now using the inequalities (3.20), (3.21),we find

d v̂(t)

dt
≤ 1

3
û(t)3 − v̂(t)2 û(t) + 1

3
‖m0‖3L1 ≤ 11

24
‖m0‖3L1 . (3.22)

Integrating twice from0 to t produces, first,

1

2

d

dt

(
1

m̂(t)

)
=

M̂(t)

m̂(t)
= v̂(t) ≤ 11

24
‖m0‖3L1 t+ v̂(0), (3.23)

and then
1

m̂(t)
≤ 11

24
‖m0‖3L1 t2 + 2 v̂(0) t+

1

m̂(0)

= 11
24
‖m0‖3L1 t2 + 2 u′

0(x2) t+
1

m0(x2)
.

(3.24)

The assumption (1.12) implies that the quadratic polynomial on the right hand side
of (3.24) starts out positive att = 0, and becomes zero at timet = T2, as prescribed
in (1.13). Since0 < m̂(t) = m(t, q(t, x2)), cf. (3.12), it follows that there exists
0 < T ≤ T2 such thatm̂(t) → +∞ as t → T . On the other hand, (3.23) also
implies that

M̂(t) ≤ m̂(t)
(
11
24
‖m0‖3L1 t+ v̂(0)

)
= m̂(t)

(
11
24
‖m0‖3L1 t + u′

0(x2)
)
, (3.25)

which, in turn, implies that

inf
x∈R

M(t, x) ≤ M̂(t) → −∞, as t → T ≤ T2.

We conclude that the solution̂u(t) blows up at the finite timeT ≤ T2, and completes
the proof of Theorem 1.2. �

Remark 3.5. When the initial momentumm0 does not change sign, the blow-up
time bound given in Theorem 1.1 is located before the blow up time bound given in
Theorem 1.2, that is,T1 ≤ T2. In the other words, in this situation, the result given
in Theorem 1.1 is an improvement over that in Theorem 1.2.

Finally, we remark that the proof of Theorem 1.3 is completely analogous to
that of Theorem 1.2, and can be carried out by replacingx2 by x3, while the key
inequality (3.22) becomes

d v̂

dt
≤ 1

12
√
2
‖u0‖3H1. (3.26)

Remark 3.6. In Theorem 5.2 in[15], the blow-up time bound of

T̃3 = − u′
0(x3)√

2 ‖u0‖3H1

− 1

2

√√√√
(√

2 u′
0(x3)

‖u0‖3H1

)2

− 2
√
2

m0(x3)‖u0‖3H1

was established. We can easily see that the bound in(1.15)satisfiesT3 < T̃3, and
hence Theorem 1.3 is a stronger result. To establish the inequality, note that

g(x) = u′
0(x3) +

√
u′
0(x3)2 −

2x

m0(x3)
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is a decreasing function on the interval0 ≤ x ≤ 1
2
u′
0(x3)

2m0(x3). Thus,

f(x) =
1

m0(x3) g(x)
=

1

2

(
u′
0(x3)

x
−
√

u′
0(x3)2

x2
− 2

xm0(x3)

)

is an increasing function on the same interval and satisfies

T3 = f
(√

2
12

‖u0‖3H1

)
< f

(
1√
2
‖u0‖3H1

)
= T̃3.

Finally, we note that the preceding proofs imply that there is at least one point
whereM = mux becomes infinite exactly at the time of blow up.

Corollary 3.7. Suppose that the assumptions of Theorems 1.1, 1.2, or 1.3 hold for
the solutionu(t, x) of (1.1) with initial data satisfyingm0(x⋆) = sup

x∈R
m0(x) > 0,

for some pointx⋆ ∈ R. If T < ∞ is the finite blow-up time of the corresponding
solutionu(t, x), thenlim

t→T
M(t, q(t, x⋆)) = −∞.
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