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ABSTRACT. We derive conditions on the initial data, including casé®ie the
initial momentum density is not of one sign, that producewblp of the induced
solution to the modified integrable Camassa-Holm equatidh aubic nonlin-
earity. The blow-up conditions are formulated in terms @& thitial momentum
density and the average initial energy.
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1. INTRODUCTION

In this paper, we are concerned with the behavior of solsttorthe initial-value
problem for the modified Camassa-Holm (mCH) equation one¢hélne:
{mt + ((u? - ui)m)m =0,

t>0, z€cR, 1.1
w0, 2) = w(), g 1)

where

m=(1-0")u=1u— Uy, (1.2)
represents thenomentum densitgf the system. This nonlinear partial differen-
tial equation was derived by applying the method of tri-Hiémnian duality to the
bi-Hamiltonian representation of the modified Kortewegdes (mKdV) equa-
tion [13, 21], which implies that the mCH equation (1.1) isiategrable system
possessing a bi-Hamiltonian structure. Subsequentlyxaé@aresentation of (1.1)
was constructed [23], making the mCH equation amenablestonéthod of inverse
scattering. Equation (1.1) models the unidirectional pggtion of surface waves
in shallow water over a flat bottom [11], wheuét, x) represents the free surface
elevation in non-dimensional variables.

The Camassa-Holm (CH) equation

my + umy + 2mu, = 0, m=u— Ugy, (1.3)

was also proposed [1] as a model describing the uni-dineatioropagation of shal-
low water waves. It was later shown to model the propagatfaxially symmet-

ric waves in hyperelastic rods [8, 9]. The CH equation waginaily constructed
by using the recursion operator method [14], and, in a smviéan, can also be
derived by applying tri-Hamiltonian duality to the bi-Hdtonian structure of the
Korteweg—deVries (KdV) equation [21]. From this it followsat the CH equation
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is completely integrable and can also be solved by the ievecattering method
[1, 13]. In contrast to the KdV equation, the CH equation Hasd remarkable
distinctive properties. First, although completely intdgle, it can describe wave
breaking phenomenon: the solution remains bounded whilgldafpe becomes in-
finite in finite time. Second is the existence of peakons, tldee nonanalytic

solitary waves that are global weak solutions, and, monganteract cleanly as
do solitons. Third is the variety of interesting geometoenfulations of the CH

equation [2, 7, 16, 19].

Well-posedness and wave breaking of the CH equation wedégestin a number
of papers. It has been shown [5, 17, 22] that the Cauchy proiddocally well-
posed for initial data, € H*(R) with s > 3/2. Moreover, if the initial momentum
density

mo(x) = m(0,z) = (1 — 0})uo = uo(r) — ug(x) (1.4)
does not change sign, the Cauchy problem admits globaligoliar certain initial
values [3, 5, 6], whereas solutions may blow up if their alithomentum density
changes sign [3, 4, 5, 6]. The existence of global weak swistivas investigated
in [25, 26].

Like the KdV equation, the CH equation has quadratic noalirterms. Two
CH-type equations with cubic nonlinearities have been gsed: the modified CH
equation (1.1) [13, 21], and the Novikov equation [20]

my + u?my + 3muu, = 0, m=1uU— Ugg. (1.5)

Both equations have peaked solitons and can be used to medtel bveaking.
The geometric formulation, integrability, local well-gamness, blow-up criteria and
wave breaking, existence of peaked solitons (peakons)itendtability of single
peakons and periodic peakons to the modified CH equatiof \(eefe studied re-
cently in [12, 15, 23, 24]. Itis shown that even when the alithomentum density
mo(x) does not change sign, the solutions to the Cauchy problértiay blow up
in finite time, in contrast to the CH equation, the Degaspé&hiecesi (DP) equation
[10, 18], or the Novikov equation (1.5).

The goal of the present paper is to derive sharp sufficierditions on the initial
data that guarantees the formulation of singularitiesérésulting solution in finite
time. We take a different approach from that used in [15]. fiiséstep is to rewrite
the mCH equation (1.1) as a transport equation for the mamedensity (1.2):

my + (u? — u2)m, = —2m2u,. (1.6)

The theory of transport equations implies that the solutiowill remain regular
and not blow up as long as the slope

(u2 — ui)x = 2mu, = 2ug(u — Ugy) (1.7)

remains bounded, while the solution blows up in finite timeewlthe slope (1.7)
is unbounded from below [12, 15]. The fact that the momentemsdy satisfies
a transport equation also implies that, provided it inyi@loes not change sign,
thenm(t, x) and, in view of the Green'’s function formula — see (3.4) belevthe
solutionu(t, =) will maintain the same sign where defined.

Notation.For convenience, in the following, given a Banach sp&¢eve denote
its norm by|| - || x. If there is no ambiguity, we omit the domain of function spsc
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The two basic conserved quantities

%M:Amm ,mM:AWm:AW@ﬁML (1.8)

are well-known and play an important role in all analysisto# solutions. When
the momentum density: changes sign, the following novel conservation law

Imllz: = / jm] dz (1.9)
R

will play a crucial role in controlling the solutiom and its slope:,. This observa-
tion allows us to establish sharper results than were fonfit]; see Remarks 3.4
and 3.6 below for comparisons.

Let us now state the main results in the present paper. Wa et a blow-up
criteria that applies when the initial momentum densigyz) is of one sign.

Theorem 1.1. Supposey, € H*(R) N L'(R) with s > 2. Assume that,(z) > 0
for all z € R. Assume that there exists € R such that

!/

mo(x1) = supmg(x) > 0 and b (11) < _Ho [0]

z€R V12

Then the corresponding solutiarit, =) to the initial value problenfl.1) blows up
at a finite timel” bounded by

(1.10)

_ 1
2mo(z1) up(z1)

0<T<T = (1.11)

Our second blow-up criterion applies to the more challegpgise when the ini-
tial momentum densityh, (z) changes sign.

Theorem 1.2. Supposen, € H*(R) N L'(R) with s > ;. Assume that there exists
x5 € R such that

11 [|mo||3,
= 0 and ! —y 1.12
mo(x2) ilég mo(x) > uy(z2) < o) ( )
Then the solution (¢, z) blows up in finite tim@” bounded by
24 11 [[moll7,
0<T<Tyi=—F"— | —u — ! 2 L 1.13
<= g, | "0l x/uo(xQ) 24mo () (1.13)

It is not hard to see that the blow-up time bound in Theoremek&eds that
in Theorem 1.1, sd@) < T,, and hence, when the initial momentuny does not
change sign, the bound (1.11) is stronger than that in (1.13)

Finally, if we drop the assumption that € L'(R), then, provided the initial
momentum density is of one sign, we can establish the foligwaiternative blow-
up criterion, which is significantly stronger than that fdun [15]; see Remark 3.6
for details.
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Theorem 1.3.Supposer, € H*(R) with s > 2. Assume thatny(z) > 0 for all
x € R. If there exists; such that

/ V2 ||u0||§11
mo(x3) = :svlégmo(x) >0 and  ug(rz) < —4f Trmg(rg) (1.14)

Then the solution(¢, =) blows up in finite tim&@" bounded by

6V up(rs) (6\/5%(9:3))2 62

ol 3 ol 7 mo(3)|uoll 3

0<T <T3:= (1.15)
Remark 1.4. Invariance of the mCH equation under the change of sigr —u
and, hencem — —m allows one to easily establish additional blow-up criteria
by reversing the signs of the relevant quantities in the tygges in Theorems 1.1,
1.2, and 1.3. The resulting criteria and Theorems are lethreader to explicitly
formulate.

The remainder of the paper is organized as follows. In Se@jsome prelim-
inary estimates and results are recalled and presentetiols8ds devoted to the
proofs to our main results.

2. PRELIMINARIES

We begin by recalling some basic results concerning the m@kateon (1.1),
and refer the reader to [12, 15] for details and proofs. Werbegth local well-
posedness.

Lemma 2.1. Letu, € H*(R) with s > 3. Then there exists a tin#e > 0 such that
the initial-value problen{l.1) has a unique strong solutiane C([0, T]; H*(R)) N
C([0,T]; H*~*(R)). Moreover, the map, — u is continuous from a neighbor-
hood of the initial datay, in H*(R) into C([0, T]; H*(R)) N C'([0, T]; H*~'(R)).
Furthermore, if the solutiom has maximum time of existente: 7' < oo, then

/O 1m0 ) (0]l — 0.

Using the preceding criterion, the following blow up comalitwas obtained [15].

Lemma 2.2. Suppose that, € H*(R) with s > g Then the corresponding solu-
tion « to the initial value problen{l1.1) blows up in finite tim&" > 0 if and only
if

th_)n;g ;1;]12 {m(t,z) u,(t,z)} = —oo0.

A particular conservative property of plays a key role in establishing our new
blow-up criteria. First, note that application of the medtad characteristics to the
transport equation (1.6) fon requires analyzing the flow governed by the effec-
tive wave speea? — u?, namely the solutiog(t, =) to the parametrized family of
ordinary differential equations

W) it g(t,2)) ~ el alt, )

q(0,2) =z, r e R.

zeR, tel0,T), (2.1)
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Lemma 2.3. Supposer, € H*(R) with s > 5, and letT > 0 be the maximal

existence time of the strong solutierto the corresponding initial value problem
(1.1). Then(2.1) has a unique solutionp € C'([0,T) x R, R) such that;(¢, -) is an
increasing diffeomorphism & with

wlt) = (2 | (s, 4, 2)) s s (s, ) ) >0

forall (¢,z) € [0,T) x R. Furthermore,
m(t,q(t,x)) g.(t,x) = mo(x) forall (t,x)€[0,T) x R. (2.2)

Thus, by integrating the absolute value of (2.2) ovee R, we are led to the
following unusual conservation law.

Proposition 2.1. Assumen, € H*(R) N L'(R) with s > 1. Suppose: is the

corresponding solution tél.1)with the initial datau, with maximal existence time
T > 0. Then

o0

Im(0)]| 1) = ||m0HL1(R):/ mo(@)|de,  0<t<T (2.3)

—00

Is a constant, independent of

3. PROOFS OFTHEOREMS

The proofs of our main results are based on a series of lemhhasfirst lemma
plays a crucial role in deriving differential inequalitigdsat enable us to improve
earlier blow-up results.

Lemma 3.1. Letuy € H*(R), s > 3. Then the quantity
M(t,z) = m(t, z) u.(t, x) (3.1)
satisfies the following integro-differential equation
M, + (u? — u2) M,

T

= —2M* +m (3u® —uul) — %me‘x/ e (2u® + 3uu§ - uZ) dy

— £ me” / e ¥ (2u® + 3uu 4 ul) dy (3.2)

=—2M*+m (%u3 — uui)

—sm (/ eV (u — uy)’dy + / " Y(u+ uy)3dy) :

Proof. We begin with a straightforward differentiation of (3.1)danse of (1.1) to
establish that the quantity/ satisfies

Mt -+ (u2—ui)Mx

=—2M? —2m(1 — 03 (uim) — 2mo,(1 — 0?)~ (uu,m). (3:3)
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We evaluate the second and third terms on the right hand $i{®&3) using the
Green’s function(z,y) = e~1#=¥! for the differential operator — 9? on the line,
whereby

u(t,r) = (1-38;)"'m(t,x) = 3 / e m(t,y) dy, (3.4)
Thus,
(1-82)" (u2m) = L / eV, (8, y)m(t, y) dy = Tt + Lo,

where, applying integration by parts,

x xT xT
_ 1 -z Y 2 2 _ 1 -z Y2 _ 1 -z Y J,,3
I = ze / e’ (uuy, — u,uy,) dy = e / euu,dy — ge / e’du,

—0o0 —00 —00

= 16”/ e¥ (Buu + u))dy — Ful(t, ),

—0o0
[e.e] [e.e] [e.e]
T —y 2 2 _ 1.z -y 2 _ 1 =z -y 3
e / e Y (uu, — uyuy,) dy = e / e Yuu,dy — ge / e Ydu,
xT xT xT

e:”/ e Y (Buul — ud)dy + Ful(t, ).

N = =2

D=

Similarly, the third termin (3.3) is

0,(1-32) uwm) =0, (3 |~ utt ) 1. )it ) dy)

%e‘x/ eYuu,mdy + %69”/ e Yuuymdy = Iy + Iao + Io3 + log,

—00

where, by a similar computation,

—_1
]21 = 66

_x/ eV du? = —%ug(t,x) + %6_:0/ eYu® dy,

—00 —00

Iy = ie_x/ ePud(ul) = ju(t, v)ui(t, ) — ie_x/ (ePu + e¥uy)u dy

= Ju(t, )u(t, z) — ie‘m/ e (uul 4 ul) dy,
I3 = %em/ e Vdu® = —1u’(t, ) + %ew/ e Yu? dy,
Iy = _ief"/ e Yud(ul) = u(t,)ul(t, z) + iex/ (—eYu+ e Yuy) ul dy

= tu(t, )u(t, z) — iew/ eV (uul —uy) dy.



BLOW-UP SOLUTIONS OF THE MODIFIED CH EQUATION 7

Combining the preceding expressions, we arrive at
2m(1 — 02 (uim) + 2mo,(1 — 02)~(uu,m)

=1im (e‘x/ e (Buul +u)) dy + e“’”/ e (Buul, —u)) dy

—00

+ %e_x/ e’ (2u3 — 3uu§ — 3u3) dy

oo (3.5)
+ %ew/ e ¥ (2u® — Buul + 3uy) dy + (Buul — 2u®)(t, x))

T

= m (u? — 26®) + L me / e (2u® 4 Buu? — ) dy

— 00

+ % me” / eV (2u3 + 3uu§ + ug) dy.

Substituting back into (3.3) completes the proof of the fiestmula on the right
hand side of (3.2). The second formula follows from the fertmanipulations of a
similar nature:

e_x/ e¥ (2u°+3unl — ud)dy = e_x/ e’ (u® + (u — uy)® + 3uuy) dy

= e_“"’/ e’ (v + (u—uy)®) dy + e_x/ evdu®

—00 —00

=e " / e¥(u — uy)>dy + u(t, x)?,
- - - (3.6)
e“"’/ eV (20’ +3un + ul)dy = ex/ eV (u® + (u+uy)® + 3u’y,) dy
= ex/ eV (vl + (u+uy)®) dy + ex/ e Vdu?
=e" / e Y(u+ u,)’dy + u(t,z)’.
This completes the proof of (3.2). O

Lemma 3.2. Assume that the initial data, € H*(R), s > 2. LetT > 0 be the
maximal existence time of the resulting solutign, x) to the initial value problem
(1.2). If mo(z) > 0, then

(b, 2) <ult,x), (L) €[0,T) x R, (37)
Moreover, ifmy € H*(R) N L'(R), then

u(t, z) < § Holuo), (t,z) € [0,T) x R. (3.8)
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Proof. Lemma 2.3 implies that: andu are nonnegative forany<t¢ < 7,z € R.
Using the Green’s function formula (3.4), we have

u(t,z) = %e‘x/ e!mdy + 3 ex/ e Ymdy,

s o0 (3.9)
uy(t, ) = —3 e_“"’/ eymdy+%ex/ e Ymdy.

—00

Thus,

T

0 < ult, o) — uy(t, ) = e_x/

—00

e!mdy < / mdy
0 (3.10)

0 <u(t,z)+ u.(t,z) = em/ e Ymdy < / mdy,

which imply (3.7). Moreover, assuming, € H*(R) N L'(R), (3.10) implies that

2u(t. ) < [ mdy= [ udy = Holuo
which proves (3.8). 0J
Remark 3.3. The proof of Lemma 3.2 implies the following further estesat
u(t, ) + |u(t, x)| < Holug), u(t,x) < 1 Holug] < ug(t,z) + Holug).

Proof of Theorem 1.1Let us abbreviate

u(t) == u(t, q(t, z1)), 0(t) == ug(t, q(t, 21)),

(t) == m(tq(t, 1)), M) = M(t.q(t,21)) = (1) (2),
wherezx; is defined in (1.10). Since

(3.11)

m(0) >0 wehave m(t) >0 where defined. (3.12)
Then equations (1.1) and (2.1) imply that
dd—T = —2m(t) J\/Z(t) = —2m(t)*(t). (3.13)
Moreover, combining (3.2), (3.10), and the fact that> 0, we see that
% < 2T + m(t) (2a()® — s ac)). (3.14)

Thus, using (3.11), (3.13), (3.14), and Lemma 3.2, we find
A d (ﬁ(t)) _ () M(t) — (1) M(t)

dt  dt \ m(t) m(t)?
o (o) 615

< 2u(t)® — o) alt) < at) (SH;uo] —0(t)?).
Moreover, our assumption (1.10) implies that

. Holuo]
0(0) < — Nivi

<0, (3.16)
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and hence the right hand side of (3.15) is negative at 0. A straightforward
ordinary differential equation argument allows us to cadel thatv(¢) must be
everywhere decreasing, with

~ ~ Ho[uo]
t) <v(0) < ——— for all tel0,7). 3.17
o) < 20) < -~ 0.7) (3.17)
Combining (3.17) with (3.13), we have
d 1 . -
pr (m) =20(t) < 20(0) forall ¢t€]0,7). (3.18)
Integrating from0 to ¢ and using (3.12) produces
1 1 -
0<%<m+2v(0)t for all te|0,7).

Thus (3.16) implies that there exisis< T' < 71, whereT; is given in (1.11), such

that
1 1

m(t) — t—>T<TH=-— =— :
t) = Foo, s ST T2m0)80)  2mo(an)up(an)

Furthermore, since

—

M(t) = B(t) m(t) < 5(0) m(t) <0,

we conclude that

inf M (t, z) < M(t) = —c0, as t—T<T, (3.19)
TE

which demonstrates that the solutioft, =) blows up at atim& < 7" < T;. This
completes the proof of Theorem 1.1. O

Remark 3.4. The blow-up time bound in Theorem 1.1 is an improvement tner t
bound in Theorem 5.2 ¢15], which is

N 1 1
T1 = :
mo(TL) g (1) 4 (0)? — ol / (V2 o)
1
~ _2m0($1)ulo($1) =h

Proof of Theorem 1.2We employ the same notation (3.11) as in the preceding
proof, but now withz,, as given in (1.12), replacing,. Using the Green'’s function
formulae (3.9), we have

1 [ 1 [~ 1
uta) <5 [ miallde =5 [ Imofa)lde = 3 lmoll,

e I 1 (3.20)
() <5 [ Imto)de =5 [ mo@)dz = Slmollur

[e.e] o0

Plugging these estimates into (3.2) produces

dM(t)
dt

< =2 M(17 = ()| @0 50)* ~ §a(0)*) = Smollls].  (3:20)
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As in (3.15), but now using the inequalities (3.20), (3.248,find

do(t) N IR
— < () =00 A) + 3 ImollZs < 57 ImollZ:- (3.22)
Integrating twice fron? to ¢ produces, first,
1 d 1 M(t) N " \ -
2 dt = me WS 3.23
2 dt <ﬁ1(t)) m(t) u(t) < 37 [lmol[1: ¢ +v(0), ( )
and then
! 1
——— < D {mo|f} 2 +20(0) t + =
" ) o (3.24)
1 :
— L3082 + 2y (wa) £ + et

The assumption (1.12) implies that the quadratic polynbamahe right hand side

of (3.24) starts out positive at= 0, and becomes zero at time= 7, as prescribed

in (1.13). Sinced < m(t) = m(t,q(t, z2)), cf. (3.12), it follows that there exists
0 < T < T; such thatn(t) — 400 ast — 7. On the other hand, (3.23) also
implies that

M(t) < m(t) (g llmollza t +0(0))
which, in turn, implies that

m(t) (5 [Imoll3r t + ug(z2)),  (3.25)

inf M(t,z) < M) = —oc0, as t—T <T.
xe

We conclude that the solutiatit) blows up at the finite tim& < 75, and completes
the proof of Theorem 1.2. O

Remark 3.5. When the initial momentum, does not change sign, the blow-up
time bound given in Theorem 1.1 is located before the blovinug bound given in
Theorem 1.2, that ig]; < T5. In the other words, in this situation, the result given
in Theorem 1.1 is an improvement over that in Theorem 1.2.

Finally, we remark that the proof of Theorem 1.3 is compiethalogous to
that of Theorem 1.2, and can be carried out by replagingy x5, while the key
inequality (3.22) becomes

90 Ll
dt = 1242 " MY
Remark 3.6. In Theorem 5.2 irj15], the blow-up time bound of

2
7o olws) 1| (V2up(es))  2v2
V2 w3, 2 [[woll 32 mo(xs3)||uol|3:

was established. We can easily see that the boui(dl. irb) satisfiesls < Ty, and
hence Theorem 1.3 is a stronger result. To establish theusléy, note that

(3.26)

2z

mo ($3)

9(w) = ug(ws) + \/U’o(xs)2 -



BLOW-UP SOLUTIONS OF THE MODIFIED CH EQUATION 11

is a decreasing function on the intenvak = < Zuf(x3)*mg(x3). Thus,

- ; _ 1 up(xs) _ ug(xs)? _ 2
f(«T) a mo(xg) g([L’) 2 < x \/ 72 l'mo(l'g))

is an increasing function on the same interval and satisfies
Ty = [ (% luwolltn) < £(Z5 lluollfn) = Ts.

Finally, we note that the preceding proofs imply that therati least one point
whereM = mu, becomes infinite exactly at the time of blow up.

Corollary 3.7. Suppose that the assumptions of Theorems 1.1, 1.2, or d3drol
the solutionu(t, ) of (1.1) with initial data satisfyingn(z,) = sup mo(z) > 0,

for some pointz, € R. If T" < oo is the finite blow-up time of the corresponding
solutionu(t, ), thentlnr% M(t,q(t,z,)) = —oc.
—
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