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Abstract. When posed on a periodic domain in one space variable, linear
dispersive evolution equations with integral polynomial dispersion relations ex-
hibit strikingly different behaviors depending upon whether the time is rational
or irrational relative to the length of the interval, thus producing the Talbot ef-
fect of dispersive quantization and fractalization. The goal here is to show that
these remarkable phenomena extend to nonlinear dispersive evolution equations.
We will present numerical simulations, based on operator splitting methods, of
the nonlinear Schrödinger and Korteweg–deVries equations with step function
initial data and periodic boundary conditions. For the integrable nonlinear
Schrödinger equation, our observations have been rigorously confirmed in a
recent paper of Erdoğan and Tzirakis, [10].

1. Introduction

In the early 1990’s, Michael Berry, [1, 2], discovered that the time evolution of
rough initial data on periodic domains through the free space linear Schrödinger
equation exhibits radically different behavior depending upon whether the elapsed
time is a rational or irrational multiple of the length of the space interval. Specif-
ically, given a step function as initial conditions, one finds that, at rational times,
the solution is piecewise constant, but discontinuous, whereas at irrational times
it is a continuous but nowhere differentiable fractal-like functions. More generally,
when starting with more general initial data, the solution profile at rational times
is a linear combination of finitely many translates of the initial data, which ex-
plains the appearance of piecewise constant profiles obtained when starting with
a step function. Berry named this striking phenomenon the Talbot effect, after
an interesting optical experiment first performed by the inventor of the photo-
graphic negative, [27]. Berry’s discovery was then rigorously analyzed and further
investigated in [18, 23, 24, 25, 28].

In [22, 23], it was shown that the same Talbot effect of dispersive quantization
and fractalization appears in general periodic linear dispersive equations whose
dispersion relation is a multiple of a polynomial with integer coefficients (an “inte-
gral polynomial”), the prototypical example being the linearized Korteweg–deVries
equation. Subsequently, it was numerically observed, [6], that the effect per-
sists for more general dispersion relations which are asymptotically polynomial:
ω(k) ∼ c kn for large wave numbers k � 0, where c ∈ R and 2 ≤ n ∈ N. However,
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equations having other large wave dispersive asymptotics exhibit a wide variety
of fascinating and as yet poorly understood behaviors, including large scale os-
cillations with gradually accumulating waviness, dispersive oscillations leading to
a slightly fractal wave form superimposed over a slowly oscillating ocean, slowly
varying traveling waves, oscillatory waves that interact and eventually become
fractal, and fully fractal/quantized behavior. As yet, apart from the integral
polynomially dispersive case, all these results are based on numerical observations,
and, despite being simple linear partial differential equations, rigorous statements
and proofs appear to be very difficult. The paper [6] also displayed some pre-
liminary numerical computations that strongly indicate that the Talbot effect of
dispersive quantization and fractalization persists into the nonlinear regime —
for both integral and non-integrable evolution equations whose linear part has an
integral polynomial dispersion relation.

The goal of the present study is to continue our explorations of the effect of pe-
riodicity on rough initial data for nonlinear evolution equations in the context of
two important examples: the nonlinear Schrödinger (nlS) and Korteweg–deVries
(KdV) equations, possessing, respectively, elementary second and third order
monomial dispersion. Our basic numerical tool is the operator splitting method,
[13], which serves to highlight the interplay between the behaviors induced by
the linear and nonlinear parts of the equation. Earlier rigorous results concerning
the operator splitting method for the Korteweg–deVries, generalized Korteweg–
deVries, and nonlinear Schrödinger equations can be found in [14, 15, 17, 20]. We
also refer the reader to [16] and the references therein for a discussion of alterna-
tive numerical schemes and convergence thereof for L2 initial data on the real line.
See also [11] for additional results comparing the behavior of linear and nonlinear
dispersive equations.

Since a preliminary version of this paper appeared online, Erdoğan and Tzirakis,
[10], have now proved the Talbot effect for the integrable nonlinear Schrödinger
equation, showing that at rational times the solution is quantized, while at irra-
tional times it is a continuous, nowhere differentiable function with fractal pro-
file, thus confirming our numerical experiments. Rigorously establishing such ob-
served effects in the third order Korteweg–deVries equation, as well as nonlinear
Schrödinger equations with more general nonlinearities remains open problems.

2. Operator Splitting

Let us first summarize the basic ideas behind the operator splitting method for
approximating the solutions to nonlinear evolution equations. Details and proofs
can be found in various references, for example [13, 15].

Formally, consider the initial value problem for a dynamical differential equa-
tion:

ut = K[u ], u(0) = u0, (2.1)
where K is a differential operator in the spatial variable with no explicit time
dependence. We use ΦK(t) to denote the flow induced by the initial value problem,
whereby u(t) = ΦK(t)u0 is the solution to (2.1), which is defined on some time
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interval t ∈ [0, T ]. The time-independence of the right hand side and uniqueness
of solutions to the initial value problem implies the flow condition ΦK(t + s) =
ΦK(t) ΦK(s) for any t, s ≥ 0 such that the indicated flow operators are defined.

Suppose that we can write K = L+N , where L and N are “simpler” differential
operators, meaning that their corresponding flow operators ΦL(t),ΦN(t) can be
determined explicitly, or are easily approximated by a numerical scheme. In our
applications, L is a linear differential operator, while N is nonlinear. The basic
idea of operator splitting, [13], is to approximate the flow of their sum K = L+N
by repeated application of the individual simpler flows over a sequence of small
time steps. For simplicity, we adopt a uniform time step 0 < ∆t� 1, and seek to
approximate the solution u(tn) at the successive times tn = n∆t for n = 0, 1, 2, . . ..

The simplest version is the Godunov splitting scheme, which iteratively defines
the approximations

u∆(tn+1) = ΦL(∆t) ΦN(∆t)u∆(tn), n = 0, 1, 2, . . . , u∆(0) = u0. (2.2)

In other words,
u∆(tn) '

(
ΦL(∆t) ΦN(∆t)

)n
u0 (2.3)

Specification of a suitable function space norm allows one to prove that, under ap-
propriate hypotheses on the operators, K,L,N and the initial data, the Godunov
approximations converge to the true solution:

‖u∆(tn)− u(tn)‖ −→ 0 as ∆t −→ 0. (2.4)

A slightly more sophisticated method is the Strang splitting scheme, which replaces
the iterative step in (2.2) by

u∆(tn+1) = ΦN

(
1
2

∆t
)

ΦL(∆t) ΦN

(
1
2

∆t
)
u∆(tn). (2.5)

The Strang scheme typically enjoys a higher rate of convergence. However, to date,
we have found not much difference between the two schemes in our numerical
experiments, and most of our calculations are based on the Godunov splitting
scheme.

3. Dispersive Quantization in Schrödinger Equations

We first consider the free space linear Schrödinger equation

ut = iuxx, (3.1)

where i =
√
−1 . (Throughout the paper, we use subscript notation for deriva-

tives.) We are interested in the behavior of rough solutions on a periodic domain,
which we take to be 0 < x < 2π. This is epitomized by considering the step
function initial data

u(0, x) = f(x) =

{
−1, 0 < x < π,

1, π < x < 2π,
(3.2)

in analogy with the Riemann problem for first order hyperbolic systems, [26, 30].

It is straightforward to write an explicit Fourier series solution to the initial
value problem (3.1), (3.2), which takes the form of a number-theoretic Gauss
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sum, [29]. Michael Berry, [1, 2], discovered the Talbot phenomenon of dispersive
quantization and fractalization of this solution. Briefly, when the time is rational
(relative to π), so t/π ∈ Q, the real part, complex part, and norm of the solution
u(t, x) are discontinuous and piecewise constant, whereas when the time is irra-
tional, t/π 6∈ Q, the graphs of real part, complex part and norm of the solution
are continuous but nowhere differentiable fractal-like functions. Additional details
can be found in [18, 23, 24, 25].

Our goal here is to investigate to what extent the dispersive quantization and
fractalization phenomena persist into the nonlinear regime. We consider nonlinear
Schrödinger equations of the form

ut = i (uxx + |u|p u), (3.3)

subject to periodic boundary conditions on [0, 2π], and use the same step function
(3.2) as initial data. In (3.3), the power is assumed to satisfy p ≥ 1, with the
particular case p = 2 being an integrable, soliton equation, of importance in fiber
optics, [8, 30]. In this paper, numerical experiments for the integrable case p = 2
as well as the non-integrable cases p = 1 and 3 will be displayed. As we will
see, similar phenomena are observed in all three cases, and hence the qualitative
features are not dependent upon the underlying integrability of the evolution
equation.

We will numerically approximate the solutions to the nonlinear Schrödinger
equation (3.3) by use of operator splitting. We decompose its right hand side
K[u ] = L[u ] +N [u ] as the sum of its linear and nonlinear components:

L[u ] = iuxx, N [u ] = i |u|p u.

The resulting approximations to the solution have been previously analyzed in
[15, 20]. The flows of the linear dispersive operator L and the nonlinear operator
N are easily determined, and so we need to investigate their interaction in order
to understand the behavior of solutions to the full nonlinear initial value problem.

3.1. The Linear Schrödinger Equation. We begin by plotting some represen-
tative graphs of the solution to the periodic initial value problem (3.1), (3.2) for
the linear Schrödinger equation. These were obtained by using the Fast Fourier
Transform (FFT) based on 2048 space nodes. Each row in Figure 3.1 displays
the real part, the complex part, and the norm of the solution to the initial value
problem at the indicated time. The first three times t = .3, .31, and .314 are
irrational (relative to π) and increasingly close to the final rational time t = .1π,
at which time the solution can be rigorously proved to be piecewise constant, [22].
A small but noticeable Gibbs effect appears in the graphs due to the FFT approx-
imation. On the other hand, at each irrational time, the solution is a continuous,
but non-differentiable fractal-like function, [23]. Between times t = .31 and .314,
the sudden appearance of a noticeable quantization effect, albeit still modulated
by fractal behavior, is striking.

We remark that the periodic linear Schrödinger equation preserves the L2 norm
of the solution.
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Figure 3.1. The Solution to the Periodic Linear Schrödinger Equation.
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Lemma 1. If the initial data u(0, x) is in L2, then the L2 norm of the solution
to the linear Schrödinger equation (3.1) on a periodic domain is constant in time.

Proof. When u is sufficiently smooth, we have

d

dt

2πˆ

0

|u|2 dx =

2πˆ

0

[utu+ uut ] dx

= i

2πˆ

0

[uxxu− uuxx ]dx = i

2πˆ

0

(uxu− uux)x dx = 0,

(3.4)

owing to the periodicity of our problem.

When the initial data u(0, x) = f(x) is not smooth, we can smooth it using
mollification, and then apply the preceding argument. Specifically, let φ(x) be a
standard mollifier, e.g. a Gaussian, and let uε(0, x) be the mollified initial data
obtained by convolution of u(0, x) and φε(x) = ε−1φ(x/ε), so that

lim
ε→0
‖u(0, x)− uε(0, x)‖L2 = 0. (3.5)

By the preceding calculation, the L2 norm of the mollified solution uε(t, x) is
preserved. Moreover, by (3.5), the L2 norm of the mollified solution converges to
the L2 norm of u(t, x), which completes the proof. �

In particular, if the L2 norm of the initial data of (3.1) is small, so is the L2

norm of the solution, proving well-posedness.

3.2. The Nonlinear Schrödinger Equation. Splitting off the nonlinear part
of (3.3) leads to the evolution equation

ut = N [u ] = i |u|p u, (3.6)

Because no x derivatives are involved, (3.6) is effectively an ordinary differential
equation in which x serves as a parameter. Observe that

d

dt
|u|2 = utu+ uut = i |u|p uu− i |u|p uu = 0, (3.7)

and hence, for each fixed x, the modulus |u(t, x)| is constant as t evolves. This
implies that the solution to (3.6) is explicitly given by

u(t, x) = f(x) e i t |f(x)|p where u(0, x) = f(x) (3.8)

is the initial condition. Moreover, combining this observation with Lemma 1, we
see that the L2 norm is preserved under the full nonlinear Schrödinger flow (3.3).

3.3. Numerical Results. Figures 3.2, 3.3, 3.4, display the results of our numer-
ical integration of the initial value problem (3.2), for the powers p = 1, 2, and 3,
respectively, in the nonlinear Schrödinger equation (3.3).

In all cases, we use Godunov splitting to approximate the solution to the pe-
riodic initial value problem with step function initial data. Although the Strang
splitting method has higher rate of convergence, all the numerical results that it
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Figure 3.2. The Solution to the Periodic Nonlinear Schrödinger
Equation, p = 1.
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Figure 3.3. The Solution to the Periodic Nonlinear Schrödinger
Equation, p = 2.
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Figure 3.4. The Solution to the Periodic Nonlinear Schrödinger
Equation, p = 3.
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generated turned out to be extremely similar to those obtained via the simpler
Godunov scheme, and so we concentrate on the latter approximations. The non-
linear flow is computed exactly using (3.8), while the linear flow is computed
through use of the FFT based on n = 2048 space nodes. The time step is
∆t = .00005π ≈ .00015708 and, as before, we display our numerical approxi-
mations at the irrational times t = .3, .31, .314 and the rational time t = .1π.
To be certain that a subtle rational/irrational dichotomy does not affect the nu-
merical computations, we also ran some simulations with irrational1 time steps
∆t = .00016 and .0002, and, as expected, did not observe any appreciable differ-
ences among the computed solutions.

All three sets of plots are fairly similar to those from the linear evolution in
Figure 3.1, although closer inspection will reveal small differences. The most
noticeable is that, at the rational time t = .1π, the quantized solution is no
longer piecewise constant, and its shape exhibits the effect of the nonlinearity.

To analyze the numerical solution, we consider the phenomenon caused by the
linear and nonlinear components separately. When time is a rational multiple of
π, the linear evolution (3.1) will generate a piecewise constant solution profile.
Because the nonlinear equation (3.6) is effectively an ordinary differential equa-
tion, with explicit solution formula (3.8), its effect is simply to shift the solution
graph vertically by an amount depending upon the initial height, and hence pre-
serves the piecewise constant nature of the solution. On the other hand, when
the time is an irrational multiple of π, the linear term will generate a continuous
but nowhere differential profile. The subsequent vertical movement caused by the
nonlinear term will be uniform, which means that, on a small time interval, the
resulting graph will be very close to nowhere differentiable.

The presumed convergence of the operator splitting scheme then implies that
the solution of the nonlinear Schrödinger equation will exhibit the same quan-
tization/fractalization Talbot phenomenon, an observation that is confirmed by
recent rigorous results of Erdoğan and Tzirakis, [10], for the integrable case p = 2.
While their methods do not as yet apply to when p > 2, our numerical experi-
ments indicate that, as long as there is no blow-up, the Talbot phenomenon in
fact appears for all exponents p ≥ 1 (at least). In particular, at rational times,
the numerical solution profile exhibits a finite number of jump discontinuities,
between which it is no longer constant, but appears to assume, roughly, a para-
bolic shape, although we do not know the precise analytic forms of these rational
solution profiles. Further, as the power p increases, the parabolic profile becomes
increasingly curved.

4. Dispersive Quantization for the Korteweg–deVries Equation

Our second example is the Korteweg–deVries (KdV) equation, [8], a justly fa-
mous integrable evolution equation modeling shallow water waves, plasma waves,

1Of course, a digital computer can only work with rational (indeed, dyadic) numbers. How-
ever, the robustness of the results coming from our computations shows that this is also not an
issue.
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etc. We will take the KdV equation in the normalized form

ut + uxxx − uux = 0, (4.1)

and consider the periodic initial-boundary value problem on the interval [0, 2 π].
For the linearized KdV equation

ut + uxxx = 0, (4.2)

(also known as the Airy partial differential equation), the solution to the periodic
initial value problem can be easily expressed in Fourier series form. In particular,
the dispersive quantization and fractalization phenomenon for the step function
initial data were established in [22, 23].

4.1. Numerical Solutions. The authors’ previous paper, [6], presented the re-
sults of numerical experiments on the periodic problem with the step function
(3.2) as initial data, using operator splitting to numerically approximate the so-
lution. It was found that the effects of dispersive quantization and fractalization
persist into the nonlinear regime. In Figures 4.1 and 4.2 we display some repre-
sentative graphs of the numerical solution at, respectively, some irrational times,
which exhibit a fractal, non-differentiable profile, and at some rational times,
whose profiles appear to be quantized and (almost) smoothly varying between the
jumps. It is not clear whether the small oscillations appearing between the jumps
are due to numerical error or the persistence of a small fractal contribution.

4.2. Operator Splitting. In order to apply operator splitting to the KdV flow,
we decompose K[u ] = −uxxx +uux into the sum of its linear part L[u ] = −uxxx,
leading to the linearized KdV equation (4.2), and its nonlinear part N [u ] = uux,
whose corresponding evolution equations is the nonlinear transport equation

ut = uux, (4.3)

also known as the Riemann equation or inviscid Burgers’ equation, [30]. Unfor-
tunately, we have similarly been unable to rigorously establish convergence of the
operator splitting method for the periodic KdV equation with rough initial data.

Let us present what is known about this problem and some discussion of how
one might proceed. First of all, convergence for sufficiently smooth initial data
has been established in [14].

Theorem 2. Fix T > 0. Given initial data u0 ∈ Hs with s ≥ 5, let u be the exact
solution and u∆ the numerical solution of the periodic Korteweg–deVries equation
(4.1) obtained through Godunov splitting based on the linear and nonlinear parts.
Then, for sufficiently small ∆t� 1,

‖u∆(t)− u(t)‖Hs−3 ≤ C∆t, 0 ≤ t ≤ T, (4.4)

where C depends only on s, T , and the initial data u0.

The difficulty that is preventing us from extending this result to rough data,
such as the step function, is fairly subtle. The key stumbling block is that one
can control the L2 behavior of the linear KdV flow (4.2), and the L1 behavior of
the nonlinear transport flow (4.3). More specifically, the difference between two
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Figure 4.1. Solution to the KdV equation at irrational times.
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Figure 4.2. Solution to the KdV equation at rational times.
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solutions to the nonlinear component will behave well in L1 whereas the difference
between two solutions of the linear flow behaves well in L2. However, there is not
an evident method that will allow us to interpolate between these two different
Banach spaces.

Nevertheless, the following theorem concerning convergence of the operator
splitting scheme to weak solutions has been proved in [15]. Moreover, Zhou, [31],
proves that weak solutions to the KdV equation are uniquely determined by their
initial data.

Theorem 3. Suppose that u0 ∈ L2. Suppose that the sequence of numerical
solutions {u∆} generated by the operator splitting method converges strongly in
L2
(

[0, 2π]× [0, T ]
)
to the solution u as ∆t → 0+, Then u ∈ L∞

(
[0, T ];L2

)
is a

weak solution of the KdV equation that has u0 as its initial data.

4.3. Well-posedness. Next, recall that the well-posedness of the periodic Korteweg–
deVries equation in L2 has been established by Bourgain, [5].

Theorem 4. The periodic KdV equation is well-posed in L2.

On the other hand, the well-posedness of the periodic linearized KdV equation
in L2 is easily established, using the conservation of L2 norm.

Theorem 5. Given initial data u(0) = u0 and v(0) = v0, let uL(t) = ΦL(t)u0

and vL(t) = ΦL(t)v0 be the corresponding periodic solutions of the linearized KdV
equation (4.2). Then

‖uL(t)− vL(t)‖L2 ≤ ‖u0 − v0‖L2 .

Now, if we know that our solution uL(t) has bounded L∞ norm, then the
estimate in Theorem 5 implies that the flow is L1 contractive. Moreover, Oskolkov,
[23], has established a global boundedness result for suitable initial data.

Theorem 6. If the initial data has bounded BV norm, then the resulting solution
to the periodic linearized KdV equation is uniformly bounded in L∞, the bound
depending on the BV and L∞ norms of the initial data.

Furthermore, Oskolkov proves that when time is irrational (relative to π), the
solution of the linearized KdV is nowhere differentiable, and has unbounded BV
norm. The difficulty is that the L∞ bound in Oskolkov’s result depends upon the
BV norm of the initial data. It is hard to apply this theorem in our case since we
do not have good control of the BV norm for the nonlinear flow.

On the other hand, consider the nonlinear transport equation (4.3), whose flow
is denoted by ΦN(t). Of course, the formation of shock waves implies that ΦN(t)
does not preserve smoothness or continuity of the initial data. In [14], the authors
state that the flow is both L1 contractive and uniformly bounded.

Theorem 7. The solution operator to the nonlinear transport equation (4.3) is
L1 contractive. In other words, given solutions uN(t) = ΦN(t)u0 and vN(t) =
ΦN(t)v0, we have

‖uN(t)− vN(t)‖L1 ≤ ‖u0 − v0‖L1 .
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Moreover, the solutions remain uniformly bounded in L∞ norm:

‖uN(t)‖∞ ≤ ‖u0‖∞ .

However, when attempting to interpolate these estimates between L1 and L2,
at each step in the iterative procedure we will introduce a factor that we are
unable to control as the time step goes to 0 and the number of iterations goes to
infinity. For example, although we can bound the nonlinear flow, the known BV
norm bound is not easy to apply in the context of Oskolkov’s Theorem 6.

Results on the decay of solutions to conservation laws, [7], imply the decay of
the total variation of entropy solutions of nonlinear transport equation:

Theorem 8. Suppose that the initial data to the nonlinear transport equation on
a periodic domain satisfies u0 ∈ L∞

(
[0, 2π]

)
. Then the total variation (TV) of

the resulting entropy solution uN(t) = ΦN(t)u0 over the interval will satisfy the
decay estimate: TV [uN(t) ] < c/t, where c is a constant that is independent of the
initial data.

However, as the time step ∆t → 0, we lose the control of the constant which
will appear when we interpolate between L1 and L2. At this point, we do not have
any sharper estimate for the BV norm of the nonlinear flow, since, when the time
step is irrational, the linear flow will generate the initial data for the nonlinear
flow whose BV norm is unbounded.

Motivated by Theorem 5, we can try some other ways to show the compactness
of the sequence of numerical solutions in L2. A standard approach is based on
the Kolmogorov–Riesz Lp compactness theorem, [12].

Definition 9. Let 1 ≤ p < ∞. A subset F of Lp(Rn) is totally bounded if and
only if

(1) F is bounded
(2) for every ε > 0, there is an R > 0 such thatˆ

|x|>R

|f(x)|pdx < εp, for every f ∈ F . (4.5)

(3) for every ε > 0 there is a ρ > 0 such thatˆ

Rn

|f(x+ y)− f(x)|pdx < εp, for every f ∈ F and y ∈ Rn such that |y| < ρ.

(4.6)

Our goal is to prove compactness in L2. In our case, condition 2 is redundant.
Condition 1 is clear since boundness in L2 is straightforward: The solution of
nonlinear part is stable in L2 and the L2 norm of the solution of linear part
is preserved. So, no matter many iterations we take, the family of numerical
solutions will be uniformly bounded in L2. Thus, the remaining task is to verify
condition 3. As we can see, when we iterate, the linear flow will behave well in
L2 but we are unable to rigorously control the nonlinear flow as before. On the
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other hand, our numerical experiments indicate that the numerical solutions are
bounded in L∞, which will effectively make condition 3 immediate. Motivated
by this fact, we can try to prove the uniform boundedness in L∞ of the solution
to the nonlinear part. However, the problem is that we do not have a Maximum
Principle, and so cannot uniformly control the L∞ norm for the linear flow when
we perform the iterative step. Thus, we are left tantalizingly short of our goal
to prove convergence of the operator splitting scheme for the KdV evolution of
periodic rough initial data. We hope to report further on the convergence for
nonlinear dispersive equations in a subsequent publication.

4.4. Final Remarks. Although we are as yet unable to prove the convergence of
the numerical scheme, we can intuitively understand the behavior of the nonlinear
KdV from the behavior of its linearization. The well-known studies of the “zero
dispersion limit” initiated by Lax and Levermore, [19], are complemented by the
following recent result of Erdoğan and Tzirakis, [9] that compares solutions to the
linear and nonlinear equations.

Theorem 10. Consider the Korteweg-de Vries (KdV ) equation with periodic
boundary conditions. For Hs initial data, s > −1

2
, and for any r < min(3s +

1, s + 1), the difference between the nonlinear and linear evolutions is in Hr for
all times, with at most polynomially growing Hr norm.

This result implies that we can regard the nonlinear KdV flow as a pertur-
bation of the linearized KdV flow. Therefore, the observed persistence of the
fractalization and quantization behaviors is to be expected.
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