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Abstract. The evolution, through linear dispersion, of piecewise constant periodic
initial data leads to surprising quantized structures at rational times, and fractal, nondiffer-
entiable profiles at irrational times. Similar phenomena have been observed in optics and
quantum mechanics, and lead to intriguing connections with exponential sums arising in
number theory. Ramifications of these observations for numerics and nonlinear dispersion
are proposed as open problems.

1. Introduction.

The genesis of this note was a supposedly straightforward exercise, based on a simple
initial-boundary value problem for linearly dispersive waves in a periodic domain, that I
had devised for my forthcoming text in partial differential equations, [10]. Constructing
the Fourier series solution is not especially challenging, and so I also asked for graphs of
the solution at various times. In the course of writing up the solution, the initial plots
that I produced with Mathematica were more or less as predicted; however, when I
introduced a different time step, the solution exhibited a completely unexpected behavior.
Further experimentation revealed that the solution has a fractal-like, non-differentiable
structure at irrational times, but is piecewise constant at rational times! I had never
seen anything like this before, but the fact that the problem was so elementary convinced
me that it must be well known. Nevertheless, all of the leading experts in dispersive
waves to whom I showed these computations were similarly surprised, convincing me that
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I might be onto something new and of potential significance. Some further digging revealed
that such rational/irrational behavior had already been noted in the context of the linear
Schrödinger equation, and leads rapidly into the deep waters of advanced Fourier analysis
and exponential sums in number theory. This in turn pointed me towards a recent series
of papers by Michael Berry and his collaborators, [1, 3, 4], that describe the Talbot effect

in optics and in quantum revivals, which was named after a striking optical experiment,
[15], conducted in 1836 by William Henry Fox Talbot, one of the founders of photography.
Thus, the present note reveals that a similar Talbot-like quantized/fractal effect can also
be found in a broad range of dispersive media.

Although this paper only makes a modest mathematical contribution, the fact that
these phenomena are not well known has convinced me that it is worth setting down in
print. The paper contains more questions than results, and the implications for wave
mechanics, both linear and nonlinear, and numerics remain to be explored.

2. Dispersion in a Periodic Domain.

The starting point is the following periodic initial-boundary value problem on the
interval 0 ≤ x ≤ 2π for the most basic linearly dispersive wave equation:

∂u

∂t
=

∂3u

∂x3
, u(0, x) = f(x),

u(t, 0) = u(t, 2π),
∂u

∂x
(t, 0) =

∂u

∂x
(t, 2π),

∂2u

∂x2
(t, 0) =

∂2u

∂x2
(t, 2π).

(1)

The underlying partial differential equation is called dispersive because, as we shall see,
periodic waves of different frequencies move with different speeds. We take as initial data
the unit step function:

f(x) = σ(x) =

{
0, 0 < x < π,

1, π < x < 2π.
(2)

The precise values assigned at its discontinuities are not important, although choosing
f(x) = 1

2
at x = 0, π, 2π is consistent with Fourier analysis. The boundary conditions

allow us to extend the initial data and solution to be 2π periodic functions in x.

To construct the solution, we begin by expressing it as a time-dependent (complex)
Fourier series

u(t, x) ∼

∞∑

k=−∞

bk(t) e
ikx, (3)

where, in conformity with the conventions of Fourier analysis, we use ∼ rather than = to
indicate that the Fourier series is formal and, without additional assumptions or analysis,
its convergence is not guaranteed. Substituting (3) into the partial differential equation
in (1), and then equating the coefficients of the individual exponentials, we find that each
bk(t) satisfies an elementary linear ordinary differential equation:

dbk
dt

= − i k3 bk(t), and hence bk(t) = bk(0) e
− i k3t.
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We conclude that any 2π periodic solution to the dispersive wave equation has Fourier
expansion

u(t, x) ∼

∞∑

k=−∞

bk(0) e
i (kx−k3t). (4)

Observe that the solution (4) is 2π periodic in both t and x. Moreover, since the k-th
summand is a function of x − k2 t, periodic waves of frequency k move with wave speed
k2, thereby justifying the dispersive nature of the system.

To solve the initial value problem, we expand the initial condition in a Fourier series:

f(x) ∼

∞∑

k=−∞

ck e
i kx, where ck =

1

2π

∫ 2π

0

f(x) e− i kx dx. (5)

Equating u(0, x) = f(x), we conclude that bk(0) = ck are the Fourier coefficients of the
initial data. In the case of the step function (2), the Fourier coefficients are

bk(0) =





i /(πk), k odd,

1/2, k = 0,

0, 0 6= k even.

(6)

Inserting these particular values into the general solution formula (4), and rewriting the
result in terms of real trigonometric functions, we obtain the (formal) Fourier expansion
of the solution to the original initial-boundary value problem (1–2):

u⋆(t, x) ∼
1

2
−

2

π

∞∑

j=0

sin
(
(2j + 1)x− (2j + 1)3 t

)

2j + 1
. (7)

Let us now graph the solution. We will do this näıvely, using Mathematica to sum
the first 1000 terms in the Fourier series (7). The results, at several times uniformly spaced
by ∆t = .1, are plotted in the following pictures:

t = 0. t = .1 t = .2

t = .3 t = .4 t = .5

In the initial graph, you can see a tiny residual Gibbs phenomenon due to the Fourier
series approximation. The solution evidentally takes on a fractal-like profile, reminiscent
of Weierstrass’ continuous but nowhere differentiable function, [7; pp. 401–421]. The tem-
poral evolution continues in this fashion, seemingly at random, until reforming the initial
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data at t = 2π, after which the process periodically repeats. Incidentally, plotting the so-
lution at a much smaller time step makes the dispersive effects of the initial discontinuity
fully manifest:

t = .0001 t = .001 t = .01

So, while the fractal nature of the solution is mildly intriguing, most people with some
familiarity with dispersive wave phenomena would probably not be unduly surprised by
the observed behavior. However, let us instead graph the solution (7) at times spaced by
∆t = 1

30 π ≈ .10472. Now the results look startingly different:

t = 1
30 π t = 1

15 π t = 1
10 π

t = 2
15 π t = 1

6 π t = 1
5 π

Apparently, at these times, the solution is piecewise constant! Here are some additional
solution graphs at various rational multiples of π:

t = π t = 1
2
π t = 1

3
π

t = 1
4
π t = 1

5
π t = 1

6
π

t = 1
7 π t = 1

8 π t = 1
9 π

While the detailed structure of these solution profiles is not completely clear, it is
becoming evident that, at rational multiples of π, the solution to the initial value problem
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(1) is piecewise constant. Of course, one might be tempted to ascribe this to some strange
numerical artifact, but further computational experiments make this extremely unlikely.
And, indeed, there is a relatively easy proof of the relevant result.

Theorem 1. Let p/q ∈ Q be a rational number†. Then the solution (7) to the

initial-boundary value problem (1) at time t = πp/q is constant on every subinterval

π j/q < x < π(j + 1)/q for j = 0, . . . , 2q − 1.

Proof : The first step is to note that any function h(x) that satisfies the conclusions
of the theorem is a linear combination,

h(x) =

2q−1∑

j=0

ajσ
j,q(x), (8)

of the compressed box functions

σj,q(x) =

{
1, π j/q < x < π(j + 1)/q,

0, otherwise,
0 ≤ j ≤ 2q − 1. (9)

The box function (9) has Fourier coefficients

cj,qk =
1

2π

∫ 2π

0

σj,q(x) e− i kx dx =
1

2π

∫ π(j+1)/q

π j/q

e− i kx dx

=





i (e− i πk/q − 1)

2πk
e− iπ j k/q, k 6= 0,

1

2q
, k = 0.

(10)

Thus, the Fourier coefficients of the piecewise constant function (8) are

ck =

2q−1∑

j=0

ajc
j,q
k . (11)

As a consequence, Theorem 1 will be established if we can show that the Fourier coefficients
bk(t) of our solution (7) at time t = πp/q have the form (11) for suitable a0, . . . , a2q−1.
Let us analyze what this entails.

Observe that, given c−q , . . . , cq−1, the equations in (11) corresponding to indices k =
−q,−q+1, . . . , q−1 form a system of 2q linear equations for the 2q unknowns a0, . . . , a2q−1.
Moreover, by (10), the rescaled Fourier coefficients

ĉk =





c0, k = 0,

ck = 0, 0 6= k ≡ 0 mod 2q,

π k

i q (e− iπk/q − 1)
ck, k 6≡ 0 mod 2q,

(12)

† Throughout, we assume that the fraction p/q is in lowest terms, i.e., p and q have no common
factors.

5



satisfy

ĉk =
1

2q

2q−1∑

j=0

aj e
− iπ jk/q. (13)

Thus, the 2q rescaled coefficients ĉ−q, . . . , ĉq−1 coincide with the discrete Fourier transform
(DFT), [11], of the data a0, . . . , a2q−1 specified by the piecewise constant function (8). We
immediately conclude that the linear system (11) has a unique solution, which is provided
by the DFT reconstruction formula

aj =

q−1∑

l=−q

ĉl e
iπ lj k/q, j = 0, . . . , 2q − 1. (14)

Finally, again thanks to (10), the rescaled Fourier coefficients (12) satisfy

ĉk = ĉl, k ≡ l 6≡ 0 mod 2q, ĉk = 0, 0 6= k ≡ 0 mod 2q. (15)

Thus, a Fourier series corresponds to a function that is constant on every subinterval
π j/q < x < π(j + 1)/q if and only if its Fourier coefficients satisfy (15). This connection
between the discrete Fourier transform and Fourier series of piecewise constant functions
is, of course, not new.

Now, the Fourier coefficients of our solution (7) at the rational time t = πp/q are

ck = bk

(
π
p
q

)
= bk(0) e

− i k3πp/q, (16)

where bk(0) are given by (6). The crucial observation is that

if k ≡ l mod 2q, then k3 ≡ l3 mod 2q, and so e− i k3πp/q = e− i l3πp/q. (17)

This implies that the corresponding rescaled Fourier coefficients (12) satisfy the piecewise
constant criteria (15), which justifies the statement of the Theorem. Q.E.D.

Remark : Although we have focussed on the step function, the argument immediately
generalizes to any initial data u(0, x) = f(x) that is piecewise constant on the same
subintervals of length π/q.

This explains most of the features of the preceding quantized solution graphs. Some-
times, the solution assumes identical values on adjacent subintervals, and so exhibits larger
regions of constancy. There is no doubt some number-theoretic characterization of the
lengths of such subintervals, but so far I haven’t spotted the pattern.

So what’s going on? At irrational times (relative to π) the solution has a non-
differentiable, fractal-like nature. On the other hand, at rational times, the solution is
piecewise constant — the dispersion has, curiously, “quantized” the solution. These quan-
tized solution profiles are densely embedded in the fractal regime, so that the fractalized,
irrational profiles are limits of quantized, rational profiles at progressively finer and finer
scales. And thus, somehow the dispersive evolution is able to distinguish rational from
irrational times.
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At this point, one might raise the objection that this particular solution is not contin-
uous, and so its status as a weak solution† to the dispersive wave equation is not entirely
clear. Of course, one can mollify the solution by convolution with a smooth, concentrated
kernel, which would effectively smooth out the coarser quantized times.

Since the underlying partial differential equation is linear, with constant coefficients,
derivatives and integrals of solutions are also solutions. In particular, integrating the
solution (7) with respect to x a couple of times (omitting the constant terms in order to
preserve periodicity) produces a bona fide classical solution whose derivatives exhibit such
quantization/fractalization behavior. Vice versa, differentiating the solution (7) once with
respect to x yields a linear combination of two fundamental solutions, which corresponds to
a pair of initial unit delta function impulses, of opposite strength, concentrated at positions
x = 0 and x = π.

Specifically, the fundamental solution u = F (t, x) based at the point x = π, say, cor-
responds to the initial data u(0, x) = δ(x−π), where δ(x) denotes the Dirac delta function
(or, more accurately, distribution), [9, 10]. Since the periodic boundary value problem
is translation-invariant, the fundamental solution resulting from a unit delta impulse at
another location x = ξ is simply u = F (t, x − ξ + π). Applying the preceding Fourier
analysis (3–5), we find that the fundamental solution has the formal Fourier expansion

F (t, x) ∼
1

2π

∞∑

k=−∞

(−1)k e i (kx−k3t) . (18)

The solution to the general initial value problem (1) is then provided by the superposition
formula

u(t, x) =

∫ 2π

0

F (t, x− ξ) f(ξ)dξ. (19)

Just as the step function solution is piecewise constant at rational times, the funda-
mental solution is a superposition of finitely many delta functions when t is a rational
multiple of π. On the other hand, when t is an irrational multiple of π, the convergence of
the fundamental solution’s Fourier series (18) is more problematic, being the “derivative
of a non-differentiable function”. To establish the former result, we invoke the following
lemma, whose proof follows a line of reasoning similar to that of Theorem 1; details are
left as an exercise.

Lemma 2. The Fourier coefficients (5) of a function f(x) are q–periodic in their

indices, so ck+q = ck for all k, if and only if the series represents a linear combination of q

† By definition, a 2π periodic (in both t and x) function u(t, x) is a weak solution to the

dispersive wave equation (1) if and only if
∫ 2π
0

∫ 2π
0 u(t, x)

[

ϕt(t, x)− ϕxxx(t, x)
]

dx dt = 0 for

every 2π periodic smooth (C∞) function ϕ(t, x). A sufficiently smooth weak solution is a solution
in the classical sense — this can be deduced through integrating by parts. Weak solutions are
of great importance in the modern theory of partial differential equations, [9, 18], particularly
when dealing with solutions having discontinuities, e.g., shock waves. We leave it to the interested
reader to explore to what extent our solutions satisfy the weak solution criterion.
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(periodically extended) delta functions concentrated at the rational nodes xj = 2π j/q for

j = 0, 1, . . . , q − 1:

f(x) =

q−1∑

j=0

aj δ(x− 2π j/q),

for suitable a0, . . . , aq−1.

Combining Lemma 2 with (17), we deduce the aforementioned result.

Theorem 3. Suppose t = πp/q is a rational multiple of π. Then the fundamental

solution to the initial-boundary value problem (1) is a linear combination of periodically

extended delta functions. When p is odd, the 2q delta functions are concentrated at the

rational nodes xj = π j/q for j = 0, . . . , 2q − 1, whereas for p even, the q delta functions

are concentrated at xj = 2π j/q for j = 0, . . . , q − 1.

Observe that Theorem 1 can alternatively be deduced as a direct corollary of Theo-
rem 3. Furthermore, applying Theorem 3 to the superposition formula (19) produces the
following intriguing corollary:

Corollary 4. At a rational time, any solution profile u(πp/q, x) to the periodic

initial-boundary value problem depends on only finitely many values of the initial data,

namely u(0, x+ xj) = f(x+ xj) where xj = π j/q for j = 0, . . . , 2q − 1 when p is odd, or

xj = 2π j/q for j = 0, . . . , q − 1 when p is even.

Finally, integrating the fundamental solution (18) — leaving aside its constant term
to maintain periodicity — results in the Fourier series

G(t, x) =

∫ x

0

(
F (t, y)−

1

2π

)
dy ∼

1

2π i

∞∑

0 6=k=−∞

(−1)k

k
e i (kx−k3t), (20)

which solves the periodic initial-boundary value problem with piecewise affine initial data†

G(0, x) =

∫ x

0

(
F (0, y)−

1

2π

)
dy =

∫ x

0

(
δ(y − π)−

1

2π

)
dy = σ(x)−

x

2π
. (21)

Thus, when t = πp/q is a rational multiple of π, the integrated fundamental solution is
piecewise affine, with overall slope −1/(2π), while when t is an irrational multiple of π, it
is a fractalized, non-differentiable function. An intriguing observation is that, at rational
times t = πp/q, Fourier series of the form (20) play an important role in number theory
[17], where they are known as Weyl exponential sums .

3. Dispersion, the Schrödinger Equation, and the Talbot Effect.

The preceding observations can all be straightforwardly extended well beyond the
prototypical dispersive wave equation ut = uxxx. Recall, [18], that the dispersion rela-

tion ω(k) of a linear, scalar, constant coefficient partial differential equation in one space

† As always, the right hand side really means the 2π periodic extension of the indicated
function defined on the interval 0 < x ≤ 2π.
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dimension is obtained by substituting the exponential solution ansatz

u(t, x) = e i (k x−ω t),

and then solving the resulting algebraic equation for the frequency ω as a function of
the wave number k. The differential equation is dispersive if the resulting function ω(k) is
real. For example, the third order linearly dispersive wave equation (1) has cubic dispersion
relation ω(k) = k3. In general, if L is a scalar, constant coefficient differential operator

with purely imaginary Fourier transform L̂(k) = iϕ(k), then the dispersion relation for
the scalar evolution equation

∂u

∂t
= L[u ] (22)

is ω(k) = i L̂(k) = −ϕ(k). If the evolution equation is real, this requires that L involve
only odd order derivatives.

Now, the only place in the proof of Theorem 1 where the specific form of the partial
differential equation played a role was in the key observation (17), whose form follows
from the dispersion relation ω(k) = k3 of the underlying partial differential equation.
Consequently, the argument retains its validity when the dispersion relation is any poly-
nomial with integer coefficients: ω(k) ∈ Z[k]. As a result, Theorem 1 remains true for
any scalar evolution equation (22) with integral dispersion relation, when subject to the
same piecewise constant initial conditions and periodic boundary conditions. Moreover,
the conclusions of Theorem 3 and Corollary 4, describing the form of the fundamental
solution and the dependence of general solutions on the initial data at rational times, are
also valid. By rescaling time, these results can be readily extended to the case when the
coefficients of ω(k) are integer multiples of a common real number.

These arguments are equally applicable to complex differential operators with integral
dispersion relations, and hence, in particular, to the elementary Schrödinger equation

i
∂u

∂t
=

∂2u

∂x2
, (23)

whose dispersion relation is ω(k) = − k2. We conclude that periodic solutions to the
Schrödinger equation (23) exhibit the same quantization/fractalization phenomena at ra-
tional/irrational times (relative to the length of the interval). The conclusions also apply
to any of the standard homogeneous boundary value problems: Dirichlet, Neumann, or
mixed, since their solutions can be obtained by restricting suitably periodic extensions.
This leads to intriguing implications for basic quantum mechanics on bounded domains.

Now it turns out that such phenomena have already been observed in the context
of the linear Schrödinger equation (23). As before, let us concentrate on the periodic
initial-boundary value problem

u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π). (24)

As in [12], the Fourier series for the integrated fundamental solution is given by

u = G(t, x) =
1

2π i

∞∑

0 6=k=−∞

(−1)k

k
e i (kx+k2t). (25)
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The preceding arguments will demonstrate that, when t = πp/q is a rational multiple of π,
the solution G(πp/q, x) is piecewise affine on the appropriate subintervals of length π/q,
and hence the fundamental solution is a linear combination of delta functions concentrated
at rational nodes xj = π j/q. On the other hand, when t is an irrational multiple of π,
(25) takes on a fractal nature, spread out over the entire interval. Oskolkov, [12], in fact
proves that, at irrational times, the solution is a continuous but nowhere differentiable
function, confirming (at least in the Schrödinger context) our earlier contention for the
dispersive wave equation. A contemporaneous paper by Kapitanski and Rodnianski, [8],
proves that solutions to the periodic Schrödinger equation have better analytic properties,
as measured by Gevrey norms, at irrational times, a result that inspired them to speculate
whether a quantum particle “knows the time”. The quantization phenomenon at rational
times was explicitly noted by Michael Taylor, [16], who applied this fact to deduce sharp
estimates on the Schrödinger solution operator at such times.

It is worth pointing out that, when t = πp/q is rational, the integrated fundamental
solution (25) has the form of a Gauss sum, a concept of great importance in number
theory, [17]. Oskolkov, [12], goes on to show how certain basic reciprocity relations for
Gauss sums follow from the invariance of the Schrödinger operator under spatial inversions.
The relevance of such number-theoretic Gauss and Weyl exponential sums to quantum
mechanics can be traced back to work of Berry, Goldberg, and Hannay, [2, 6]. The paper
[6] offers a physical interpretation of the dispersive quantization/fractalization phenomena
induced by Fresnel diffraction by periodic gratings. The intricate fractal images, dubbed
curlicues , traced by partial Gauss sums in the complex plane are investigated in [2].

In fact, as Michael Berry and his collaborators subsequently discovered, [1, 3, 4], the
rational/irrational dichotomy has its origins in a fascinating optical experiment performed
in 1836 by Talbot, [15]. Talbot looked through a magnifying lens at images produced
by white light passing through a diffraction grating. When the lens was placed close to
the grating, the image, as expected, was blurred. However, surprisingly, moving the lens
farther away led to a sharply focussed pattern, whose complementary colors changed with
distance. Talbot’s experiment was revisited by Lord Rayleigh, [13], who calculated the
Talbot distance to be d2/λ, where d is the grating’s spacing and λ is the light’s wavelength.
In 1996, Berry and Klein, [3], mathematically justified the Talbot effect by writing the
wave function due to an evenly spaced diffraction grating as a Gauss sum of the form (25).
Moreover, they discovered that, at rational fractions of the Talbot distance, the sharp
image reappears in multiple smaller copies, while at irrational multiples it has a fractal,
non-differentiable profile. Indeed, rigorous results on the fractal dimension of the solution
graph at irrational times can be found in [14].

The full optical image forms a remarkable multi-hued “Talbot carpet”; some examples
can be found in [4]. On the next page we display the “dispersive carpets” corresponding to
the particular solutions (7) and (25). The horizontal axis is 0 ≤ x ≤ 2π, while the vertical
axis is a half period 0 ≤ t ≤ π. The colors (gray scale) represent solution values, with
red (light) being positive and blue (dark) negative. In both cases, despite the presence of
complicated quantized/fractal behavior, there is a discernible wave that moves across the
interval with unit speed. An explanation of the repeating tilted stripes, though, is less
apparent.
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Dispersive Carpet Schrödinger Carpet

Berry and Klein, [3], further noted that the quantized/fractal Talbot effect also ap-
pears in the phenomenon of quantum revival , in which an initially concentrated wave
function, representing, say, an electron in an atomic orbit, at first spreads out but sub-
sequently relocalizes. Experimental confirmations of the Talbot effect in both optics and
atoms are described in [4]. Thus, the observations contained in this note can be viewed as
extending the quantized/fractal Talbot effect to a broad range of linearly dispersive wave
equations on periodic domains.

4. Further Directions.

The elementary but surprising results described here raise many more questions than
they answer. Here are a few possible directions for further research.

• We can clearly extend these results to linearly dispersive equations in higher space
dimensions. With the appropriate integrality hypothesis on the dispersion rela-
tion, the periodic initial-boundary value problem on a rectangle whose initial data
is constant on rational subrectangles will result in a solution that is quantized at
rational times and fractalized at irrational times. Taylor, [16], establishes similar
results for the linear Schrödinger equation on tori, spheres, and even Zoll mani-
folds. An interesting question is whether similar phenomena arise on more general
compact domains. The case of dispersive waves on a sphere, e.g., the earth, is
particularly deserving of further investigation.

• It would be interesting to see whether invariance properties of dispersive wave equa-
tions lead to novel reciprocity relations and other identities for the associated
number-theoretic Weyl exponential sums.

• We have concentrated on the periodic boundary value problem for linearly dispersive
wave equations. The behavior under other boundary conditions, e.g., u(t, 0) =
ux(t, 0) = u(t, 2π) = 0, is not so clear because, unlike the Schrödinger equation,
these boundary value problems are not naturally embedded in the periodic version.
Fokas, [5], has developed a new solution technique for linear partial differential
equations based on novel integral representations, and it would be instructive to
see how such effects are manifested in his approach.

• How does this complicated analytic behavior impact numerical solution techniques?
The fact that different time steps (rational versus irrational) result in radically dif-
ferent solution profiles indicates that the design of numerical solution schemes that
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accurately capture the phenomena will be a challenge. However, practical testing
remains to be done. See [20] for a recent survey on the numerics of dispersive
partial differential equations.

• Another issue is whether quantization/fractalization impacts dispersive nonlinear par-
tial differential equations on bounded domains. The numerical solution of the pe-
riodic Korteweg–deVries equation, first implemented by Zabusky and Kruskal in
their seminal discovery of the soliton, [19], appears not to exhibit such behavior.
Why doesn’t one see such effects in, say, periodic solutions to the Korteweg–deVries
or nonlinear Schrödinger equations? Perhaps the nonlinear term suffices to over-
ride the anomalous effects of the linear dispersion. Or is the behavior there, and
we just haven’t looked carefully enough?

• The Talbot effect has been experimentally observed in both optics and atoms, [4].
Can one design experiments that exhibit such behavior in other dispersive media?
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