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We show how the restriction of certain bidirectional hamiltonian systems modelling nonlinear, one-dimensional wave propa- 

gation to waves moving in a single direction preserves the hamiltonian structure, even though the perturbation expansion of the 

bidirectional hamiltonian is not correct. A combination of the two approaches of direct hamiltonian perturbation theory and the 

method of multiple scales helps explain the apperance of integrable bihamiltonian wave models. 

The most famous example of “unidirectionaliza- 
tion” is the derivation of the Korteweg-de Vries 
equation as a model equation for the unidirectional 
propagation of long waves in shallow water. There 
are two basic perturbation methods which lead to this 
model. The classical Boussinesq expansion (cf. ref. 
[ 11, $ 13.11) rests on the direct introduction of a 
small parameter E into the problem, and then tnm- 
eating the resulting perturbation expansion at order 
E. An alternative method, based on multiple time 
scales and the suppression of secular terms has been 
used by Ablowitz and Segur (see ref. [ 21, $ 4. la). 
The multiple scales method has the advantage that 
Zakharov’s hamiltonian structure of the full water 
wave system [3] immediately restricts to the first 
(Gardner) hamiltonian structure of the Kor- 
teweg-de Vries model. On the other hand, Olver 
[ 4,5] noticed that since the Boussinesq expansion is 
not canonical, the direct perturbation expansion does 
not preserve the water wave hamiltonian structure, 
and instead leads to a linear combination of the two 
hamiltonian structures of the Korteweg-de Vries 
equation itself. In this paper, we reconcile the two 
perturbation theories by showing how general uni- 
directional models inherit their first hamiltonian 
structure from the hamiltonian structure of the cor- 
responding bidirectional (Boussinesq) model via the 
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multiple scales method, and, moreover, in many cases 
acquire an additional hamiltonian structure from the 
direct hamiltonian perturbation method. Thus, as 
argued earlier in ref. [ 51, a wide variety of unidi- 
rectional wave models arising from noncanonical 
perturbation expansions of physical systems are au- 
tomatically bihamiltonian systems, and thereby can 
be viewed as “completely integrable” according to 
Magri’s theorem (see ref. [6] and ref. [ 71, theorem 
7.24). This helps further explain the remarkable pre- 
ponderance of soliton equations as the model equa- 
tions for such a wide variety of physical systems. In 
either perturbation method, the key phase in under- 
standing the loss or the retention of hamiltonian 
structure is the specialization from a bidirectional 
Boussinesq model to the unidirectional Kor- 
teweg-de Vries model. (The multiple scales method 
usually manages to bypass the Boussinesq models, 
but the key issue is most easily seen without revert- 
ing back to the full free boundary problem for water 
waves.) Therefore, we will concentrate on the uni- 
directionalization of bidirectional wave models like 
the Boussinesq system. 

Consider a general evolutionary system in ham- 
iltonian form, 

u< = 9.E”(H) ) (1) 

where 9 is the hamiltonian operator, 
X[U] =IH[u] dx the hamiltonian functional, and 
E, the Euler operator or variational derivative (cf. 
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ref. [ 71, ch. 7). In the cases of interest here, XER, 

u(x, l) = 
u(x, t) ( > v(x, t) 

&’ 

’ 

the hamiltonian operator is the matrix differential 
operator 

0 D, 

( > D, 0 ’ 

and the hamiltonian density H[ u] is a smooth func- 
tion of u and v and their derivatives with respect to 
x, which we denote by u, = 8ulCW. The system con- 
stitutes a two-dimensional hyperbolic system of con- 
servation laws, 

u/ =D,&(H) > v/ =D&SH) . (2) 

Such models arise in gas dynamics [ 81 and visco- 
elasticity [ 91, but we will concentrate on those which 
model bidirectional wave propagation. Usually these 
come themselves from a perturbation expansion of 
the full physical problem, e.g. the Boussinesq equa- 
tions for the problem of surface waves. Let t denote 
the small parameter in the problem. (In the Kor- 
teweg-de Vries equation, E is proportional to the ra- 
tios of wave amplitude to depth and of depth squared 
to wave length squared.) Normalizing the linearized 
wave speed to 1, we postulate the system be in the 
form 

u, + u, + tD,E,( H) = 0 , 

v, + u,~ + cD,~E,( H) = 0 , 

where the hamiltonian density is now 

.K[u]=-j(;u’+;u”+tH[u,u])dx. 

(3) 

(4) 

Some, but not all, of the variants of the Boussinesq 
equations [ 4, lo] are of this type. A particularly in- 
teresting example is the canonical Boussinesq 

equation 

u, + v, + EUU, = 0 ) 

UI+U.+E(UV)..+EU,~,,=O > (5) 

in which the hamiltonian takes the form (4) with 

Htu, VI = ju’v- fu:. (Kupershmidt [ 1 I] showed 
that (4) is a trihamiltonian system, and Kaup [ 121 
showed how it could be integrated by inverse scat- 
tering techniques.) 
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To leading order in t, (3) is just the linear wave 
equation, with solution 

u=yl(O+y/(rl) > v=(o(O-w(rl) > 

where (=x-t, 9=x+ t are the characteristic vari- 
ables, representing waves moving in both directions. 
We can extract the waves moving to the right by set- 
ting u= u in the linear system. We therefore special- 
ize to a nonlinear submanifold of unidrectional 
solutions by postulating a perturbation expansion of 
the form 

u=u+tP[u] +... . (6) 

Plugging (6) into (3)) and expanding, we find the 
two equations reduce to 

~,+~,+E[D,P+D,E,(H) IU=I,] +O(t2)=0, 

~,+~,+E[D,P+D,~E,(H) IU=,]+O(t2)=0. (7) 

The goal is to choose the nonlinear term P[ u] in (6) 
so as to make both equations in (7) agree up to order 
E. Now 

= -D,P+O(c) , 

so the two equations in (7) will agree up to order t 
provided 

D,[P+E,.(H) IucL.1 =D,[ -P+D,E,(H) Iu=z;l . 

Consequently, we are led to the choice 

f'[ul = 1 [L(H) -G(H)1 I u=,> (8) 

as the nonlinear correction. Then (7) reduces to the 
common unidirectional model 

u,+u,+ftD.,[E,(H)+E,(H)] I,=,.=O. (9) 

Note that (9) is automatically in hamiltonian form 

(l), where 

_CS=5$,=D., 

is the Gardner hamiltonian operator, and the ham- 
iltonian functional is 

k[u]=j(t~~+f~HI~=~)dX. (10) 

Indeed, we find 
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For example, consider the canonical Boussinesq 
equations(5).HereH[u,v]=tu*+juf,soP[u]= 

aU*+tU,, and (9) becomes the Korteweg-de Vries 
equation 

u,+u,+~EUU,-_ttU,,,=O, 

written in the original Gardner hamiltonian form 
with the hamiltonian A[u] = du*+ teu’- ttu; alin- 

ear combination of two of the classical conservation 
laws. 

The direct approach always leads to the same 
model as the multiple scales method used by Ablow- 
itz and Segur [2]. In this method, starting with the 
bidirectional system (3), we introduce a “slow time” 
z=E~, and write U=U(X, t, T), v=u(x, t, T), so u,and 
v, get replaced by u,+ EU, and v,+ tv,. Thus (3) 
becomes 

u,+v,+t[u, +D,E,(H)] =o, 

v,+u,+E[v,+D,E,(H)]=O. 

If we now expand 

U=UO+tU’+ . ..) V=vO+EV’+ . . . . 

then the leading order terms are 

U;‘+v:=o) vp+u:=o, 

with solution 

(11) 

U”=P(L r)+y/(tl, r) 7 v”=u,(T, 7)-Vv/(?, r), 

as before. Substituting into (1 1 ), we find that at or- 
der t, the secular term in c is 

=(p, +teD,E,(Hl.=,=,) . 

(There is a similar secular term in q, which will lead 
to an identical model for the waves moving to the 
left.) To eliminate the secular term, we require that 
it vanish, so we deduce that q must be a solution to 
the equation 

~7 + W,E,(W,=,=,) =O , (12) 

which is clearly hamiltonian with respect to the ham- 
iltonian operator DC. However, (12) agrees with the 
direct perturbation model (9) if we set 

x=r+r/e ) t=Tlc) y,=u. 

Thus we deduce that the reason the direct pertur- 
bation model is always hamiltonian is the same rea- 
son why the identical multiple scales model is also 
hamiltonian. 

However, we should remark that all of the above 
remarks depend crucially on the form of the initial 
hamiltonian operator; if the bidirectional model (3) 

has a different hamiltonian structure, then we have 
no reason to expect the first order model (either di- 
rect or multiple scales expansion) to be hamiltonian. 
The simplest example I could think of where this oc- 
curs is to take 

g= 
( 

2 vD, + v, 2(u+ l)Dx+ux 
2(u+l)D,+u, > 2vD,+v, ’ 

which is (if we replace u+ 1 by U) the second ham- 
iltonian operator for the shallow water equations, a 
special case of polytropic gas dynamics when the ex- 
ponent y=3 [8] and 

X[U,V]=- 
1‘ 

[u-t(+V:+;U;)] d.X. 

The bidirectional system is 

u,+v,+E(2v,,,,+2Uv,,,+U,V,,+2U,U,,,v 

+2u~Xv+z4Xu,vX) =o ) 

f4+%+~(2vL,Y +2u~X+2uUXu,+2uu~X 

+u~u,,+2vv,,,+v,v,,)=0. 

In this case P[ U] = -u,,+ u,u, in (6)) and the com- 
mon unidirectional model is 

u,+u,+t(u,,,+2uu,,,+u,u,+2uu,u, 

+2uu~X+u~u,+u,U,,,+u~X)=o) 

which has no obvious hamiltonian structure or even 
conserved density to serve as the hamiltonian. (The 
multiple scales method will of course lead to the same 
unidirectional equation.) Many other examples of 
this type can be readily constructed. 

We now compare with the hamiltonian perturba- 
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tion theory of refs. [ 4,5]. In this approach, we ex- dv. Using the rule (3.2) in ref. [ 51, if v is given by 

pand both the hamiltonian operator (6), then 

and the hamiltonian functional 

and truncate at order t. (One difficulty is that since 
the Jacobi conditions on 3 are nonlinear, the trun- 
cated operator $ = gO+ 69, may not be hamilto- 

nian.) The resulting (pseudo-) hamiltonian model 

u,=~.E,,(Ei)=(~?,+~~,).E,(H,,+EH,) 

t=~/+~Dfq+O(t~), 

where 0: denotes the adjoint of the Frechet deriv- 
ative of P (see ref. [ 71, p. 323) hence 

r]=t-tD$<+O(c*) . 

Substituting, we find that 

+t*iS?,.E (H,) I, (13) 

retains some, but not all terms of order c’. In our 
particular case, on the unidirectional submanifold 
(6)) the hamiltonian itself has expansion 

X[u]=~ J (u2+tHJ,,=, +cwP[u]) dx+O(t’) ) 

Skew-symmetrizing, we find the perturbed hamil- 
tonian operator, is, to first order, 

4=D,, - +(D,.D, +D.,.D:) 3 9cl-4ts, 

Thus we see the occurrence both of the Gardner 
hamiltonian operator go= DA, as well as another 
skew-adjoint operator 9, = Dp.D.,.+ D,.D*,. In many 
cases, 2, is actually a hamiltonian operator; for in- 
stance, in the Korteweg-de Vries example, 

9, = - 0: + uD, + 4 u, is the second hamiltonian 
structure. The hamiltonian unidirectional model (13) 
is 

(14) 

the factor of 4 coming from the fact that we are re- 

stricting to a submanifold (cf. ref. [ 51). We then 
truncate to first order; the perturbed hamiltonian is 
Z?[u]=H,,[u]+~fi,[u], where 

Note that fi[ u] does not agree with the hamiltonian 
E?[ u] coming from the direct expansion, cf. (lo), 
unless P[ u], as given by (S), vanishes! In the Kor- 
teweg-de Vries example, as noted in refs. [ 4,5], the 
correct expansion of the water wave energy is 

(the omitted terms form a divergence), which does 
not agree with the Gardner hamiltonian, or, indeed, 
with any of the conservation laws of the Kor- 
teweg-de Vries equation. 

To obtain the corresponding perturbed hamilto- 
nian operator, we expand the associated Poisson bi- 
vector (cf. ref. [ 71, ch. 7) 

where 5 and 17 are the “uni-vectors” dual to du and 

504 

-+t’C?,E,,(H,). (15) 

It should be emphasized that the model equations 
(9) and (15) are exactly the same up to order t (as 
they have to be), so 

%A(&) =&(u) =u, > 

while the quantity 

%;o&(H,)-1~,E,(&) 

=D,{IE,(Hl.=,.+u~Ptul)} 

-~(D,.D,+D.,.D*P)u 

must agree with the order t terms in (9), which are 

@L&(Hl,=,.) . 

Thus we conclude that 

an identity which can, in fact, be verified by direct 
computation. 

Summarizing, we have shown that the order t uni- 
directional wave model for the bidirectional system 
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can be written in two different forms. The multiple 
scales approach shows that it is automatically in 
hamiltonian form, 

u,=~o.E,(H,)+~~,.E,(A,>) 

IT, = $EHI,=, . (16) 

On the other hand, the hamiltonian perturbation 
method shows that it is in the form 

~,=~~.E,(H,)+E[~~.E,(A,)-~~,.E,(H,)~, 

A, =R, + $P[ u] . (17) 

These are the same equation, so the order t terms 
must agree; therefore 

BO.EU(fl) = - 49, .E,(H,) , 

fq=$4.P[u] ) (18) 

an equation that is reminiscent of the bihamiltonian 
condition of Magri. We do not have any guarantee 
that the skew-adjoint operator 9, is actually ham- 
iltonian; however, in many cases, we can assert that 
the unidirectional model (9) is actually a bihamil- 
tonian system, and hence “completely integrable” by 
Magri’s theorem. 

Proposition. If the skew-adjoint operator 

9, =D,.D,+D;D*, (19) 

is hamiltonian, then go and 9, form a hamiltonian 
pair (see ref. [ 71, definition 7.19). 

Proof: According to ref. [ 71, corollary 7.21, we 
must check a compatibility condition between the 
bivectors 

and 

Now &, is independent of U, so the compatibility 
condition reduces to 

But this is trivial, since the second Frechet deriva- 
tive 0; is a symmetric operator. 

It is thus of great interest to determine when a dif- 
ferential operator of the form (19) is indeed ham- 
iltonian, i.e. when does it satisfy the Jacobi identity. 
The computational techniques introduced in refs. 
[ 7,13,14] should aid in answering this question. 

In the case when (19) is a hamiltonian operator, 
then (subject to the usual technical hypotheses in 
Magri’s theorem), the hamiltonians Ho and HT form 
the first two terms in an infinite hierarchy of com- 
muting hamiltonians and hamiltonian flows, 

u,=~o.E,(~)=~,.E,(H2:_,). (20) 

However, since 8, is not quite the same as HT, the 
unidirectional model (16) does not quite fit into this 
hierarchy. In many special cases, the original ham- 
iltonian H[ U, v] is a homogeneous polynomial in u 

and U, i.e. H[& puv] =nmp”.H[ U, v], and, conse- 
quently, Z?, equals a multiple of HT, so (16) itself is 
a bihamiltonian system. 

Theorem. Suppose the skew-adjoint operator 9, is 
hamiltonian and the hamiltonian H[ U, v] is homo- 
geneous. Then the unidirectional model equation 
(16) lies in an integrable bihamiltonian hierachy. 

Proof We first note the simple integration by parts 
result that for any hamiltonian H[ u 1, the expression 
u.E,( H) differs from 

by a divergence. But if H[ u] is a homogeneous func- 
tion of u and its derivatives, then Euler’s theorem 
implies that the operator N, just multiplies H by its 
degree of homogeneity. Therefore, if H[u, v] is ho- 
mogeneous in u and v, 

2HT[u]=u.P[u]=u[E,(H)-E,(H)]).=, 

differs from a multiple of A, = ~CHI u=v by a diver- 
gence, and hence serves as an equivalent hamilto- 
nian density for the system. Thus the bihamiltonian 
condition (18) implies that (16) is just a linear com- 
bination of the first two flows in the bihamiltonian 
hierarchy (20). 

I would like to thank Harvey Segur, who originally 
raised the questions concerning the earlier results on 
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hamiltonian perturbation theory that led to this 
paper. 
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