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1. Introduction.

Scott–Russell’s observation of solitary water waves, [56], which are not predicted by
purely linear models, served to motivate the development of nonlinear partial differential
equations for the modeling of wave phenomena in fluids, plasmas, elastic bodies, etc.
In the case of the free boundary problem for incompressible, irrational water waves, the
fundamental perturbation expansion was developed by Boussinesq, [10, 11]; see Whitham,
[60], for a modern presentation. Expanding to the first order in the small parameter
representing the ratio of wave amplitude to undisturbed fluid depth and the square of the
ratio of fluid depth to wave length, Boussinesq derived two models for the unidirectional
propagation of one-dimensional waves. The first is now known as the Boussinesq equation,
[9; p. 258],

utt − uxx + (u2)xx + uxxxx = 0, (1.1)

which, although it admits waves traveling in both directions, is a valid water wave model
only for waves moving to the right. (We will use the familiar form for the models, where
a suitable rescaling has eliminated the physical parameters.) Less well known is the fact
that in the 1870’s Boussinesq also wrote down the celebrated Korteweg-de Vries (KdV)
equation

ut + ux + uux + uxxx = 0, (1.2)

named after its rediscovery in the seminal 1895 paper of Korteweg and de Vries, [34]. The
equation appears in [10; eq. (30), p. 77], [11; eqs. (283, 291)], and the subsequent discus-
sion also includes the derivation of the first three conservation laws of the KdV equation
and its one-soliton and periodic traveling wave solutions. An alternative model, having
better analytical properties, is the BBM or regularized long wave equation,

ut + ux + uux − uxxt = 0, (1.3)

which was originally proposed by Benjamin, Bona and Mahony, [5].

The remarkable discovery of the soliton by Gardner, Green, Kruskal and Miura, [28],
led to the realization that many well-known model wave equations are, in fact, integrable.
Hallmarks of integrability include the existence of infinitely many symmetries and con-
servation laws, cleanly interacting soliton solutions, linearization of the equation by the
method of inverse scattering, and many other remarkable properties. Both the Boussinesq
and Korteweg-de Vries equations are integrable in this sense; the BBM is not since it only
admits three conservation laws, [42, 21]. A particularly powerful method for proving the
integrability of a nonlinear evolution equation was the discovery by Magri, [39], that all
soliton systems admit two distinct, but compatible Hamiltonian structures, making them
into a “biHamiltonian system”. As discussed in [39, 46], the two Hamiltonian operators
are combined to form a recursion operator that recursively constructs the infinite hierar-
chies of symmetries and conservation laws.

The reason why integrable models arise so often in physical systems remains a mys-
tery. In an attempt to understand this phenomenon, the second author conducted a careful
investigation of how the Hamiltonian structure and conservation laws enter into the Boussi-
nesq perturbation expansion, [43, 44]. As shown first by Zakharov, [61], the free boundary
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problem for water waves admits a Hamiltonian structure. (This was later applied in [6]
to determine a complete system of symmetries and conservation laws.) Remarkably, nei-
ther of the Hamiltonian structures of the Korteweg-deVries model comes directly from the
water wave Hamiltonian structure; since the perturbation expansion is not canonical, the
Hamiltonian operator for the water wave problem expands to a certain linear combination
of the two KdV Hamiltonian operators. This fact — that the non-canonical perturbation
expansion of a physical system reduces to a Hamiltonian model — provides a possible
explanation of the previously mentioned observation.

All of the classical models of nonlinear wave phenomena are only valid in the weakly
nonlinear regime. However, many of the most interesting physical phenomena, such as wave
breaking, waves of maximal height, etc., [58, 4], require a transition to full nonlinearity.
In this direction, motivated in part by the Hamiltonian perturbation theory of [43, 44],
Camassa and Holm, [12, 13], proposed the following model equation for water waves:

ut + κux − uxxt = −3uux + uuxxx + 2uxuxx. (1.4)

Note that the linear terms on the left hand side mirror the linear terms in the BBM model.
However, the term uuxxx makes (1.4) nonlinear in its highest order derivatives, and so it
lies in the class of “nonlinearly dispersive” wave models. As shown in [12], the Camassa–
Holm equation is biHamiltonian, and hence admits an infinite hierarchy of symmetries
and conservation laws. Indeed, the equation (1.4) and its biHamiltonian structure were
written down earlier (albeit with an error in one of the coefficients) by Fuchssteiner, [25;
(5.3)]. The basic method of “Hamiltonian duality”, introduced by Fokas and Fuchssteiner,
[27], and extensively developed in [47, 23, 26], is used to produce nonlinearly dispersive
integrable dual biHamiltonian systems for most of the classical soliton models. However,
in contrast to the KdV and Boussinesq models, the Magri recursion scheme now leads to
nonlocal higher order symmetries and conservation laws. An inverse scattering problem
for (1.4) has been proposed, [12]; see also [26, 54], and [22] for an associated Riemann–
Hilbert problem. However, the full details of the inverse scattering linearization of (1.4)
remains undeveloped. Schiff, [55], describes Bäcklund transformations based on a loop
group approach to the equation. The periodic problem for (1.4) has been extensively
analyzed by Constantin and McKean, [19].

As emphasized by Rosenau, [48, 49, 50, 51], the passage to the fully nonlinearly dis-
persive regime leads to the appearance of new types of solutions not predicted by the
classical weakly nonlinearly theory. The solitons for the KdV and Boussinesq model are
nice analytic solutions; in contrast, the Camassa-Holm model admits non-analytic waves
with corners — peakons — as solutions; changing the sign of the uxxt term leads to com-
pacton solutions. General multi-peakon solutions were constructed in [1, 2]. Our earlier
work, [36, 37], investigated in what sense these compactons and peakons are weak solu-
tions, and how they appear as the limits of analytic solitary wave solutions. More recent
work, [50, 35], has uncovered further inhabitants in a vast menagerie of different species
of non-analytic solutions, including cuspons, tipons, ramptons, mesaons, etc., admitted by
nonlinearly dispersive models, both integrable and nonintegrable.

These earlier studies have helped us understand the distinct differences between the
two systems (1.4) and (1.2). The present paper continues the analytical study of the
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Camassa–Holm equation, focusing on well-posedness and singularities of solutions. For the
KdV equation (1.2), all solitary wave solutions are real analytic functions, having unique
analytic extensions to the complex plane except countably many poles. The equation itself
has a smoothing effect on the initial data, and solutions of the Cauchy problem of (1.2)
gain in regularity due to the effect of linear dispersion. On the other hand, the smooth
solitary wave solutions to the Camassa–Holm equation (1.4) have non-unique analytic
extensions to the complex plane with countably many branch points and branch lines.
Moreover, it admits non-analytic solitary wave solutions having singularities on the real
line that propagate in time. Moreover, the cuspon solutions of (1.4) have branch points
singularities of order three, which implies that its derivative is square integrable but not
cubic integrable. These facts strongly indicate that the nonlinear dispersion term uuxxx

has diminished the smoothing effect of the linear dispersion terms uxxt and uxxx.

In this paper, we establish local well-posedness in the Sobolev space Hs with any
s > 3/2 for the following model wave equation:

ut − νuxxt = αux + βuxxx + 3γuux − γν(uuxxx + 2uxuxx), (1.5)

where α, β, γ, ν are constants, and we take ν > 0. Although (1.5) looks more general, the
transformation

u(x, t) 7−→ − 1

γ
u

(
x − β t/ν√

ν
,

t√
ν

)

will simplify (1.5) to the Camassa–Holm equation (1.4). The basic technique to be used is
to regularized this equation and obtain a solution of the equation as the limit of solutions to
the regularized equations. This method was developed for the Korteweg-deVries equation
by several authors, including Bona and Smith, [8], Dushane [20], Masayoshi and Mukasa,
[40], and Saut and Temam [53, 57]. In Section 3, we derive a priori estimates for solutions
to the regularized equation, which is used in Section 4 to prove the local well-posedness for
(1.5) in the Sobolev space Hs for any s > 3/2. We show that when s > 3/2, a necessary
and sufficient condition for a global solution u to exist in the space Hs is that the L∞-norm
of its derivative ux remains bounded. In Section 5, we study existence of solutions to the
Cauchy problem of (1.5) in Hs for 1 < s ≤ 3/2, which includes the nonsmooth weak peakon
solutions. If 1 < s ≤ 3/2, then there is still a local solution in Hs corresponding to the
Cauchy data u0, provided u0x ∈ Hs−1 is essentially bounded. In the last section, we shall
discuss the conditions under which solutions of (1.5) blow up in Hs norm in finite time.
In their original papers, [12, 13], Camassa and Holm give an explanation of why solutions
having an inflection point with sufficiently negative slope will steepen to a vertical slope.
These ideas were developed in detail by Constantin and Escher [15, 16, 17, 18]. They
showed that its solutions u(x, t) whose initial data u(x, 0) ∈ H3 is odd has ux(0, t) become
infinite in finite time; these solutions have apparently developed singularities at x = 0.
Our results are different, and help shed additional light on the blow up mechanism.

The fact that the solutions of the integrable equation (1.5) can develop singularities
in finite time is perhaps surprising, when compared with the familiar Korteweg-deVries
theory. One explanation is that the KdV equation has infinitely many local conserved
quantities which can be used to demonstrate the boundedness of the Sobolev s-norm of
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its solutions independent of time, and thus are important quantities to show global well-
posedness of the equation. Thus far, only three local conserved quantities of the equation
(1.4) have been found. One shows that the H1-norm of solutions remains constant, i.e.,
‖u‖H1 = const, and the other two are

∫

R

u dx = const. and

∫

R

(u3 + κu2 + uu2
x) dx = const.

Although our blow-up results indicates that (1.5) does not have the required local con-
served quantities, this is not the complete story. Other examples of classical integrable
systems having infinite hierarchies of local conservation laws do have solutions which de-
velop singularities in finite time. In [52], it was shown that the completely integrable
Boussinesq equation (1.1) does have solutions that blow up when their initial data is not
small. We should also mention the work of Nutku and the second author, [41, 45], that
produced multi-Hamiltonian structures for a wide variety of nonlinearly hyperbolic sys-
tems, including the equations of gas dynamics, leading to several infinite hierarchies of
symmetries and conservation laws despite the fact that their solutions develop shocks in
finite time.

The precise mode of blow up and singularity formation for the Camassa–Holm equa-
tion remains unclear, and awaits a detailed numerical investigation, which we hope to
report on in a later paper. We include some preliminary numerical solutions obtained us-
ing a pseudo-spectral code at the end of the paper, but defer drawing definitive conclusions
until further investigation has been completed. The complete solution of the equation by
inverse scattering could help shed further light on the singularity formation. Extensions
of these results to other classes of nonlinearly dispersive equations, both integrable and
nonintegrable, are under investigation.

2. Notation.

We begin by summarizing our basic notation. The space of all infinitely differentiable
functions φ(x, t) with compact support in R × [0,∞), is denoted by C∞

c . Let p be any
constant with 1 ≤ p < ∞ and denote Lp = Lp(R) to be the space of all measurable
functions f such that ‖f‖p

Lp =
∫

R
|f(x)|pdx < ∞. The space L∞ = L∞(R) consists of all

essentially bounded, Lebesgue measurable functions f with the standard norm

‖f‖L∞ = infm(e)=0 supx∈R\e |f(x)|.
For any real number s, we let Hs = Hs(R) denote the Sobolev space consisting of all
tempered distributions f such that

‖f‖Hs =

(∫ ∞

−∞
(1 + |ζ|2)s|f̂(ζ)|2dζ

) 1
2

< ∞.

For any function u = u(x, t) : R×[0, T ) → R of two variables with T > 0, denote its Fourier
transform, Lp-norm and Sobolev norm with respect to x by û = û(ξ, t), ‖u‖Lp = ‖u(·, t)‖Lp

and ‖u‖Hs = ‖u(·, t)‖Hs , respectively.

The integral operator Λ = (I − ∂2
x)1/2 will play a key role. For later estimation of

Sobolev norms of solutions, we will require a few basic inequalities.
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Lemma 2.1. For any ξ, η ∈ R, there exists a constant c such that the inequalities

(1 + ξ2)q ≤ c
[
(1 + (ξ − η)2)q + (1 + η2)q

]
, q > 0 (2.1)

and

|(1 + ξ2)q/2 − (1 + η2)q/2| ≤
{

c|ξ − η|
(
(1 + ξ2)

q−1

2 + (1 + η2)
q−1

2

)
, q > 1,

c|ξ − η|(1 + η2)
q−1

2 , 0 < q ≤ 1,
(2.2)

hold.

Proof : The first inequality is elementary. The inequality (2.2) follows directly from
the mean value theorem when q > 1 and the estimate

|(1 + ξ2)q/2 − (1 + η2)q/2| =
q|ξ2 − η2|

2

∫ 1

0

dθ
(
(1 − θ)(1 + η2) + θ(1 + ξ2)

)1− q

2

≤ q|ξ − η|
2

(
|ξ|

(1 + η2)
1−q

2 (1 + ξ2)
1
2

∫ 1

0

dθ

(1 − θ)
1−q

2 θ
1
2

+
|η|

(1 + η2)1−
q

2

∫ 1

0

dθ

(1 − θ)1−
q

2

)

≤ q|ξ − η|
2(1 + η2)

1−q

2

(∫ 1

0

dθ

(1 − θ)
1−q

2 θ
1
2

+

∫ 1

0

dθ

(1 − θ)1−
q

2

)

if 0 < q ≤ 1. Q.E.D.

Lemma 2.2. Given q ≥ 0, let u = u(x) ∈ Hq be any function such that ‖ux‖L∞ <
∞. Then there is a constant cq depending only on q such that the following inequalities
hold:

∣∣∣∣
∫

R

Λqu Λq(uux)dx

∣∣∣∣ ≤ cq‖ux‖L∞‖u‖2
Hq , (2.3)

∣∣∣∣
∫

R

Λqu Λq(u2) dx

∣∣∣∣ ≤ cq‖u‖L∞‖u‖2
Hq . (2.4)

Moreover, if u and f are functions in Hq+1 ∩ {‖ux‖L∞ < ∞}, then

∣∣∣∣
∫

R

Λqu Λq(uf)xdx

∣∣∣∣ ≤






cq‖f‖Hq+1‖u‖2
Hq , q ∈ (1/2, 1],

cq(‖f‖Hq+1‖u‖L∞‖u‖Hq+

+ ‖f‖Hq‖ux‖L∞‖u‖Hq + ‖fx‖L∞‖u‖2
Hq ), q ∈ (0,∞),

(2.5)

Proof : Inequalities (2.3) and (2.4) are direct consequences of Lemmas X1 and X4 in
[31]. For any fixed q ∈ (1/2, 1], one may rewrite the integral

∫

R

Λqu Λq(uf)xdx =

∫

R

(
Λqu Λq(ufx) + fΛqu Λqux + Λqu (Λq(fux) − fΛqux)

)
dx. (2.6)
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We then use the Schwarz and Young inequalities to obtain

∣∣∣∣
∫

R

Λqu Λq(ufx)dx

∣∣∣∣ ≤ ‖u‖Hq

(∫

R

(1 + ξ2)q

(∫

R

û(ξ − η)f̂x(η)dη

)2

dξ

)1/2

≤ ‖u‖Hq

(∫

R

(∫

R

[(1 +
(
ξ − η)2

)q/2
+ (1 + η2)q/2]|û(ξ − η)f̂x(η)|dη

)2

dξ

)1/2

≤ ‖u‖2
Hq‖f̂x‖L1 + ‖u‖Hq‖û‖L1‖f‖Hq+1 ≤ c‖f‖Hq+1‖u‖2

Hq

for some constant c > 0. On the other hand, one may estimate the following integral using
integration by parts

∣∣∣∣
∫

R

fΛqu Λquxdx

∣∣∣∣ =
1

2

∣∣∣∣
∫

R

fx(Λqu)2dx

∣∣∣∣ ≤
1

2
‖fx‖L∞‖u‖2

Hq .

We evaluate the next integral using the Schwarz inequality and (2.2) as follows:
∣∣∣∣
∫

R

Λqu (Λq(fux) − fΛqux)dx

∣∣∣∣

≤ ‖u‖Hq

(∫

R

∣∣∣∣
∫

R

(
(1 + ξ2)q/2 − (1 + η2)q/2

)
f̂(ξ − η)ûx(η)dη

∣∣∣∣
2

dξ

)1/2

≤ α‖u‖Hq




∫

R

∣∣∣∣∣

∫

R

|(ξ − η)f̂(ξ − η)| |ηû(η)|
(1 + η2)

1−q

2

dη

∣∣∣∣∣

2

dξ




1/2

≤ α‖f̂x‖L∞‖u‖2
Hq ≤ cq‖f‖Hq+1‖u‖2

Hq .

Applying the above three inequalities to the integral (2.6) yields the first part of (2.5).
The second part of (2.5) also follows from Lemmas X1 and X4 in [31]. Q.E.D.

3. A Priori Estimates.

In this section, we look at the Cauchy problem for a regularized version of the
Camassa–Holm equation (1.4). Consider the initial value problem

ut − uxxt + ǫuxxxxt = αux + βuux + uuxxx + 2uxuxx, t > 0, x ∈ R,

u(x, 0) = u0(x) ∈ Hs(R), s ≥ 1.
(3.1)

Here α, β, ǫ are constant, and 0 < ǫ < 1/4. We begin by inverting the linear differential
operator on the left hand side.

Lemma 3.1. For any 0 < ǫ < 1/4 and any s, the integral operator

D = (I − ∂2
x + ǫ∂4

x)−1: Hs −→ Hs+4 (3.2)

defines a bounded linear operator on the indicated Sobolev spaces. Moreover,

D(f) =
(
Gǫ ∗ f

)
(x) =

∫

R

Gǫ(x − y)f(y)dy, f ∈ Hs,
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can be expressed as a convolution with respect to

Gǫ(x) =
1

2
√

1 − 4ǫ




√

1 +
√

1 − 4ǫ√
2

e
−
√

2

1+
√

1−4ǫ
|x|

−
√

2ǫ√
1 +

√
1 − 4ǫ

e
−
√

1+
√

1−4ǫ
√

2ǫ
|x|



 .

To show the existence of a solution to the problem (3.1), we apply the operator (3.2)
to both sides of the equation (3.1) and then integrate the resulting equation with respect
to time t. This leads to the following equation

u(x, t) = u0(x) +
1

2

∫ t

0

D
[
2αux + β∂x(u2) + ∂3

x(u2) − ∂x(u2
x)
]
(x, τ)dτ. (3.3)

A standard application of the contraction mapping theorem leads to the following existence
result.

Theorem 3.2. For each initial data u0 ∈ Hs with s ≥ 1, there is a T > 0 depending
only on the norm of u0 in Hs such that there corresponds a unique solution u(x, t) ∈
C([0, T ); Hs) of the equation (3.1) in the sense of distribution. If s ≥ 2, the solution
u ∈ C∞([0,∞); Hs

)
exists for all time. In particular, when s ≥ 4, the corresponding

solution is a classical globally defined solution of (3.1).

The global existence result follows from using the conservation law

∫

R

(u2 + u2
x + ǫu2

xx)dx =

∫

R

(u2
0 + u2

0x + ǫu2
0xx)dx, (3.4)

admitted by (3.1) in its integral form (3.3).

Now we study norms of solutions of (3.1) using energy estimates.

Theorem 3.3. Suppose that for some s ≥ 4, the function u(x, t) is a solution of the
equation (3.1) corresponding to the initial data u0 ∈ Hs. Then the following inequalities
hold:

‖u‖2
H1 ≤

∫

R

(u2 + u2
x + ǫu2

xx) dx =

∫

R

(u2
0 + u2

0x + ǫu2
0xx) dx. (3.5)

For any real number q ∈ (0, s−1], there exists a constant c depending only on q, such that

∫

R

(Λq+1u)2dx ≤
∫

R

(
(Λq+1u0)

2 + ǫ(Λqu0xx)2
)
dx + c

∫ t

0

‖ux‖L∞

∫

R

(Λq+1u)2dx dτ . (3.6)

For any q ∈ (1/2, s− 1] and any r ∈ (1/2, q], there is a constant c depending only on r and
q such that

∫

R

(Λq+1u)2dx ≤
∫

R

(
(Λq+1u0)

2 + ǫ(Λqu0xx)2
)
dx +

+ c

∫ t

0

(∫

R

(Λr+1u)2dx

)1/2(∫

R

(Λq+1u)2dx

)
dτ.

(3.7)

8



For any q ∈ [0, s− 1], there is a constant c such that

(1 − 2ǫ)‖ut‖Hq ≤ c(‖u‖H1 + 1)‖u‖Hq+1 . (3.8)

Proof : Multiplying both sides of equation (3.1) by u and integrating with respect to
x leads to the equation

1

2

d

dt

∫

R

(u2 + u2
x + ǫu2

xx)dx = 0

which implies the inequality (3.5). For any q ∈ (0, s − 1], applying (Λqu)Λq to both sides
of the equation (3.1) and integrating with respect to x again, one obtains the equation

1

2

d

dt

∫

R

(
(Λqu)2 + (Λqux)2 + ǫ(Λquxx)2

)
dx

= β

∫

R

Λqu Λq(uux)dx +
1

2

∫

R

(
(Λ2qu) (u2)xxx + Λqux Λq(u2

x)
)
dx

=

∫

R

[
(β + 1)Λqu Λq(uux) − Λq+1u Λq+1(uux) +

1

2
Λqux Λq(u2

x)
]
dx,

(3.9)

using integration by parts. It follows from the inequalities (2.3) and (2.4) that there is a
constant cq such that

1

2

d

dt

∫

R

[
(Λq+1u)2 + ǫ(Λquxx)2

]
dx ≤ cq‖ux‖L∞‖u‖2

Hq+1 .

Integrating with respect to t on both sides of the above inequality leads to the inequality
(3.6). Applying the inequality ‖ux‖L∞ ≤ cr‖u‖Hr+1 , for r > 1/2, to the right-hand side of
the above inequality again yields the estimate

1

2

d

dt

∫

R

[
(Λq+1u)2 + ǫ(Λquxx)2

]
dx ≤ c ‖u‖Hr+1‖u‖2

Hq+1

for some constant c. Integration with respect to t results in the inequality (3.7). To
estimate the norm of ut, one may apply the operator (I − ∂2

x)−1 to both sides of the
equation in (3.1) to obtain the equation

(1 − ǫ)ut − ǫuxxt + uux = (I − ∂2
x)−1

[
−ǫut + ∂x(αu +

1 + β

2
u2 − u2

x

2
)

]
. (3.10)

Then applying Λqut Λq to both sides of (3.10) for some q ∈ [0, s − 1], one obtains the
equation

(1 − ǫ)

∫

R

(Λqut)
2dx + ǫ

∫

R

(Λquxt)
2 +

∫

R

ΛqutΛ
q(uux)dx

=

∫

R

Λqut(I − ∂2
x)−1Λq

(
−ǫut + ∂x(αu +

β + 1

2
u2 − u2

x

2
)
)
dx.

(3.11)

Since

∣∣∣∣
∫

R

ΛqutΛ
q(uux)dx

∣∣∣∣ ≤ ‖Λqut‖L2

(∫

R

(1 + ξ2)q+1dξ

(∫

R

û(ξ − η)û(η)dη

)2
)1/2

,
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it follows from Young’s inequality and (2.1) that the estimate
∫

R

ΛqutΛ
q(uux)dx ≤

√
2c ‖ut‖Hq‖û‖L1‖u‖Hq+1 ≤ c1‖ut‖Hq‖u‖H1‖u‖Hq+1

holds for some constant c1. On the other hand, the inequalities

∣∣∣∣
∫

R

Λqut(I − ∂2
x)−1Λq

(
−ǫut + αux

)
dx

∣∣∣∣ ≤ ǫ‖ut‖2
Hq + |α|‖ut‖Hq‖u‖Hq

and
∣∣∣∣
∫

R

Λqut(I − ∂2
x)−1Λq∂x

(β + 1

2
u2 − u2

x

2

)
dx

∣∣∣∣

≤ ‖ut‖Hq

(∫

R

(1 + ξ2)q−1dξ

(∫

R

(β + 1

2
û(ξ − η)û(η) − 1

2
ûx(ξ − η)ûx(η)

)
dη

)2
)1/2

≤ ‖ut‖Hq

(∫

R

c (‖u‖2
L2‖u‖2

Hq + ‖ux‖2
L2‖ux‖2

Hq ) dξ

1 + ξ2

)1/2

≤ c2‖ut‖Hq‖u‖H1‖u‖Hq+1

hold for some constant c2. Applying the above three estimates to (3.11) yields the inequal-
ity

(1 − ǫ)‖ut‖2
Hq ≤ (1 − ǫ)‖ut‖2

Hq + ǫ‖uxt‖2
Hq

≤ c1‖ut‖Hq‖u‖H1‖u‖Hq+1 + ǫ‖ut‖2
Hq + |α|‖ut‖Hq‖u‖Hq + c2‖ut‖Hq‖u‖H1‖u‖Hq+1 ,

or,
(1 − 2ǫ)‖ut‖Hq ≤ c (1 + ‖u‖H1)‖u‖Hq+1

for some constant c. Q.E.D.

Remark : In the next section, we will show that for any u0 ∈ Hs with s > 3/2, there
is a T > 0 depending on ‖u0‖Hs such that the Cauchy problem

ut − uxxt = αux + βuux + 2uxuxx + uuxxx,

u(x, 0) = u0(x),
(3.12)

has a unique solution u(x, t) ∈ C([0, T ), Hs) in the sense of distribution and u is obtained
as the limit of solutions of (3.1) as ǫ → 0. Then the estimates (3.6) and Gronwall’s
inequality imply that if ‖ux‖L∞ is bounded whenever u exists, then u can be extended to
a solution in the space C([0,∞); Hs).

4. Local Well-posedness.

Roughly speaking, local well-posedness includes existence, uniqueness and persistence
of a solution of the specified problem for finite time, and the continuous dependence of its
solutions on the corresponding initial data. To show existence of a solution to problem
(3.12), we regularize its initial data u0 and the equation as follows. For any fixed real
number s with s > 3/2, suppose that the function u0 is in Hs(R), and let uǫ0 be the
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convolution uǫ0 = φǫ ∗ u0 of the functions φǫ(x) = ǫ−1/4φ(ǫ−1/4x) and u0 such that the

Fourier transform φ̂ of φ satisfies φ̂ ∈ C∞
c , φ̂(ξ) ≥ 0 and φ̂(ξ) = 1 for any ξ ∈ (−1, 1).

Then it follows from Section 3 that for each ǫ with 0 < ǫ < 1/4, the Cauchy problem

ut − uxxt + ǫuxxxxt = αux + βuux + 2uxuxx + uuxxx, t > 0, x ∈ R,

u(x, 0) = uǫ0(x), x ∈ R
(4.1)

has a unique solution uǫ(x, t) ∈ C∞([0,∞); H∞). To show that uǫ is convergent to a
solution of the problem (3.12), we first demonstrate the properties of the initial data uǫ0

in the following theorem. The proof is similar to that of Lemma 5 in [8].

Theorem 4.1. Under the above assumptions, the following estimates hold for any ǫ
with 0 < ǫ < 1/4:

‖uǫ0‖Hq ≤ c, if q ≤ s, (4.2)

‖uǫ0‖Hq ≤ cǫ
s−q

4 , if q > s, (4.3)

‖uǫ0 − u0‖Hq ≤ cǫ
s−q

4 , if q ≤ s, (4.4)

‖uǫ0 − u0‖Hs = o(1) (4.5)

Here c is a constant independent of ǫ.

Combining the estimates in Theorem 4.1 and Section 3, we shall evaluate norms of
the function uǫ in the following theorem, which will be used to show the convergence of
{uǫ}.

Theorem 4.2. There exist constants c1, c2 and M such that the following inequali-
ties

‖uǫ‖Hs ≤ c1

(2 − Mt)c2
, (4.6)

‖uǫ‖Hs+p ≤ c1ǫ
− p

4

(2 − Mt)c2
, p > 0, (4.7)

‖uǫ t‖Hs+p ≤ c1ǫ
− p+1

4

(2 − Mt)c2
, p > −1, (4.8)

hold for any ǫ sufficiently small and t < 2
M

.

Proof : Choose a fixed number r with 3/2 < r < s. It follows from (3.7) that

∫

R

(Λr+1uǫ)
2dx ≤

∫

R

(
(Λr+1uǫ0)

2 + ǫ(Λruǫ0xx)2
)
dx + c

∫ t

0

(∫

R

(Λr+1uǫ)
2dx

)3/2

dτ.

Then the inequality

‖uǫ‖2
Hr =

∫

R

(Λruǫ)
2dx ≤ 4Mr

(2 − cM
1/2
r t)2

≤ M

(2 − Mt)2
(4.9)

11



holds for any t ∈
[
0, 2/M

)
, where

Mr =

∫

R

(
(Λruǫ0)

2 + ǫ(Λr−1uǫ0xx)2
)
dx and M = max{4Mr, cM

1/2
r }.

Substituting the above inequality into (3.7) with q + 1 = s and u = uǫ, one obtains the
estimate

∫

R

(Λsuǫ)
2dx ≤

∫

R

(
(Λsuǫ0)

2 + ǫ(Λs+1uǫ0)
2
)
dx + c

∫ t

0

√
M

2 − Mt

(∫

R

(Λsuǫ)
2dx

)
dτ

for any t ∈ [0, 2/M). It follows from Gronwall’s inequality and (4.2) that there is a
constant, still denoted by c for simplicity, such that

‖uǫ‖Hs =

∫

R

(Λsuǫ)
2dx ≤ 2cc

(2 − Mt)c
.

In a similar way, applying inequalities (4.3) and (4.9) to (3.7) for q +1 = s+ p for any real
number p > 0, one may obtain the inequality

‖uǫ‖Hs+p ≤ 2cc (ǫ−
p

4 + ǫ1−(p+1)/4)

(2 − Mt)c

for some constant c. Then the inequality (4.8) is just a direct consequence of the inequalities
(3.8), (4.2) and (4.7). Q.E.D.

We shall next demonstrate that {uǫ} is a Cauchy sequence. Let uǫ and uδ be solutions
of (4.1), corresponding to the parameters ǫ and δ, respectively, with 0 < ǫ < δ < 1/4, and
let w = uǫ − uδ and f = uǫ + uδ. Then w satisfies the problem

(1 − ǫ)wt − ǫwxxt + (δ − ǫ)(uδt + uδxxt) +
1

2
(wf)x = (4.10)

= (I − ∂2
x)−1

[
−ǫwt + (δ − ǫ)uδt + αwx +

1 + β

2
(wf)x − 1

2
(wxfx)x

]
, t > 0, x ∈ R,

w(x, 0) = w0(x) = uǫ0(x) − uδ0(x), x ∈ R.

Theorem 4.3. There exists T > 0, such that {uǫ} is a Cauchy sequence in the space
C([0, T ); Hs(R)).

Proof : For a constant q with 1/2 < q < min{1, s−1}, multiplying Λ2qw to both sides
of the equation (4.10) and then integrating with respect to x, we obtain the equation

1

2

d

dt

∫

R

[
(1 − ǫ)(Λqw)2 + ǫ(Λqwx)2

]
dx

= (ǫ − δ)

∫

R

(Λqw)
[
(Λquδt) + (Λquδxxt)

]
dx − 1

2

∫

R

(Λqw)Λq(wf)xdx +

+

∫

R

(Λqw)Λq−2

[
−ǫwt + (δ − ǫ)uδt + αwx +

1 + β

2
(wf)x − 1

2
(wxfx)x

]
dx

12



using integration by parts. It follows from the Schwarz inequality and (2.5) that

d

dt

∫

R

[
(1 − ǫ)(Λqw)2 + ǫ(Λqwx)2

]
dx (4.11)

≤ 2δ‖Λqw‖L2(‖Λquδt‖L2 + ‖Λquδxxt‖L2 + ‖Λq−2wt‖L2) + c ‖f‖Hq+1‖w‖2
Hq +

+ |β + 1|
∣∣∣∣
∫

R

(Λqw)Λq−2(wf)xdx

∣∣∣∣+
∣∣∣∣
∫

R

(Λqw)Λq−2(wxfx)xdx

∣∣∣∣ .

On the other hand, the inequality

∣∣∣∣
∫

R

(Λqw)Λq−2(wf)xdx

∣∣∣∣ (4.12)

≤ c

∫

R

(1 + ξ2)
q−1

2 |ŵ(ξ)|dξ

∫

R

[
(1 + (ξ − η)2)q/2 + (1 + (η)2)q/2

]
|ŵ(ξ − η)f̂(η)|dη

≤ c ‖w‖Hq(‖f‖L2‖w‖Hq + ‖f‖Hq‖u‖L2) ≤ 2c ‖f‖Hq‖w‖2
Hq

holds for some constant c. Moreover, one may obtain the estimate

∣∣∣∣
∫

R

(Λqw)Λq−2(wxfx)xdx

∣∣∣∣

=

∣∣∣∣
∫

R

(1 + ξ2)q−1ξŵ(ξ)dξ

∫

R

(ξ − η)ŵ(ξ − η)ηf̂(η)dη

∣∣∣∣

≤
∫

R

(1 + ξ2)q−1|ξŵ(ξ)|dξ

(∫

R

|ξ − η|2|ŵ(ξ − η)|2
(1 + η2)s−1

dη ·
∫

R

|η|2(1 + η2)s−1|f̂(η)|2dη

)1/2

≤ ‖f‖Hs

(∫

R

(1 + ξ2)q|ŵ(ξ)|2dξ

)1/2(∫

R

|ξ|2
(1 + ξ2)2−q

∫

R

|η|2|ŵ(η)|2
(1 + (ξ − η)2)s−1

dη

)1/2

≤ ‖f‖Hs‖w‖Hq

(∫

R

|η|2|ŵ(η)|2dη

∫

R

dξ

(1 + (ξ − η)2)s−1(1 + ξ2)1−q

)1/2

.

It follows from Lemma 3.1.1 in [7] that there is a constant B > 0 such that

∫

R

dξ

(1 + (ξ − η)2)s−1(1 + ξ2)1−q
≤ B

(1 + η2)1−q
.

Hence, combining the last two inequalities, one obtains the estimate

∣∣∣∣
∫

R

(Λqw)Λq−2(wxfx)xdx

∣∣∣∣ ≤ c̃‖f‖Hs‖w‖2
Hq (4.13)

for some constant c̃. Applying the inequalities (4.6), (4.7), (4.8), (4.12) and (4.13) to
(4.11), one concludes that for any T̃ ∈ (0, 2/M), there is a constant c depending on T̃ such
that the estimate

d

dt

∫

R

[(1 − ǫ)(Λqw)2 + ǫ(Λqwx)2]dx ≤ c(δγ‖w‖Hq + ‖w‖2
Hq )
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holds for any t with t ∈ [0, T̃ ), where γ = 1 if s ≥ 3 + q, and γ = 1+s−q
4 if s < 3 + q.

Integrating the above inequality with respect to t, one obtains the estimate

1

2
‖w‖2

Hq =
1

2

∫

R

(Λqw)2dx

≤
∫

R

((1 − ǫ)(Λqw)2 + ǫ(Λqwx)2)dx

≤
∫

R

(
(Λqw0)

2 + ǫ(Λqw0x)2
)
dx + c

∫ t

0

(δγ‖w‖Hq + ‖w‖2
Hq )dτ.

Then applying Gronwall’s inequality and (4.4) to the above estimate yields the inequality

‖w‖Hq ≤
(
2

∫

R

(
(Λqw0)

2 + ǫ(Λqw0x)2
)
dx
)1/2

ect + δγ(ect − 1)

≤ c1δ
s−q

4 ect + δγ(ect − 1)

(4.14)

for some constants c1 and any t ∈ [0, T̃ ).

Next, multiplying both sides of the equation (4.10) by Λ2sw and integrating the re-
sulting expression with respect to x, one obtains the following equality by using integration
by parts,

1

2

d

dt

∫

R

((1 − ǫ)(Λsw)2 + ǫ(Λswx)2)dx

= (ǫ − δ)

∫

R

(Λsw)Λs(uδt + uδxxt)dx − 1

2

∫

R

(Λsw)Λs(wf)xdx+

+

∫

R

(Λ2s−2w)(−ǫwt + (δ − ǫ)uδt + αwx +
1 + β

2
(wf)x − 1

2
(wxfx)x)dx

Because wf = w2 + 2wuδ, it follows from (2.3), (2.5), (4.12) that the following estimates

∣∣∣∣
∫

R

(Λsw)Λs(wf)xdx

∣∣∣∣ ≤ c3(‖wx‖L∞ + ‖uδ‖Hs)‖w‖2
Hs + c3 ‖uδ‖Hs+1‖w‖Hq‖w‖Hs ,

∣∣∣∣
∫

R

(Λsw)Λs−2
(β + 1

2
wf
)
x
dx

∣∣∣∣ ≤ c3 ‖f‖Hs‖w‖2
Hs

hold, where c3 is a constant depending only on s. In addition,

∣∣∣∣
∫

R

(Λsw)Λs−2(wxfx)xdx

∣∣∣∣

=

∣∣∣∣
∫

R

(1 + ξ2)s−1ξŵ(ξ)dξ

∫

R

(ξ − η)ŵ(ξ − η)ηf̂(η)dη

∣∣∣∣

≤ c4

∫

R

(1 + ξ2)
s
2 |ŵ(ξ)|dξ

∫

R

[(1 + (ξ − η)2)
s−1

2 + (1 + η2)
s−1

2 ]|(ξ − η)ŵ(ξ − η)ηf̂(η)|dη

≤ c4 ‖w‖Hs(‖f̂x‖L1‖w‖Hs + ‖f‖Hs‖ŵx‖L1) ≤ c4 ‖f‖Hs‖w‖2
Hs
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is valid for some constant c4 > 0. Then it follows from the above estimates, and the
inequalities (4.6), (4.7), (4.8) and (4.14) that there exists a constant c depending on the
real number T̃ ∈ (0, 2/M) such that

d

dt

∫

R

(
(1 − ǫ)(Λsw)2 + ǫ(Λswx)2)dx

≤ 2δ(‖uδt‖Hs + ‖uδxxt‖Hs + ‖Λs−2wt‖L2 + ‖Λs−2uδt‖L2) ‖w‖Hs +

+ c
(
‖w‖2

Hs + ‖uδ‖Hs+1‖w‖Hq‖w‖Hs

)

≤ c
(
δm‖w‖Hs + ‖w‖2

Hs

)
,

where m = min{1/4, (s − q − 1)/4} > 0. Therefore, integrating the above inequality with
respect to t leads to the estimate

1

2
‖w‖2

Hs ≤
∫

R

(
(1 − ǫ)(Λsw)2 + ǫ(Λswx)2)dx

≤
∫

R

(
(Λsw0)

2 + ǫ(Λsw0x)2
)
dx + c

∫ t

0

(δm‖w‖Hs + ‖w‖2
Hs)dτ.

It follows from Gronwall’s inequality and (4.3) that

‖w‖Hs ≤
(
2

∫

R

(
(Λsw0)

2 + ǫ(Λsw0x)2
)
dx
)1/2

ect + δm(ect − 1)

≤ c1(‖w0‖Hs + δ
3
4 )ect + δm(ect − 1)

Then (4.5) and the above inequality show that ‖w‖Hs → 0 as ǫ, δ → 0.

Next, we consider convergence of the sequence {uǫt}. Multiplying both sides of the
equation (4.10) by Λ2s−2wt and integrating the resulting equation with respect to x, one
obtains the equation using integration by parts

(1 − ǫ)‖wt‖2
Hs−1 +

∫

R

(
−ǫ(Λs−1wt)(Λ

s−1wxxt) +

+ (δ − ǫ)(Λs−1wt)Λ
s−1(uδt + uδxxt) +

1

2
(Λs−1wt)Λ

s−1(wf)x

)
dx

=

∫

R

(
Λs−1wt)Λ

s−3(−ǫwt + (δ − ǫ)uδt + αwx +
1 + β

2
(wf)x − 1

2
(wxfx)x

)
dx.

It follows from the inequalities (4.6), (4.7) and (4.8), as well as Schwarz inequality that
there is a constant c depending on T̃ such that

(1 − ǫ)‖wt‖2
Hs−1 ≤ c(δ1/2 + ‖w‖Hs + ‖w‖Hs−1)‖wt‖Hs−1 + ǫ‖wt‖2

Hs−1 .

Hence,
1

2
‖wt‖Hs−1 ≤ (1 − 2ǫ)‖wt‖Hs−1 ≤ c(δ1/2 + ‖w‖Hs + ‖w‖Hs−1),

and wt → 0 as ǫ, δ → 0 in Hs−1-norm. This implies that both {uǫ} and {uǫt} are Cauchy
sequences in the spaces C([0, T̃ ); Hs) and C([0, T̃ ); Hs−1), respectively. Let u(x, t) be the
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limit of the sequence {uǫ}. Taking the limit on both sides of the equation (3.10) as ǫ → 0,
one shows that u is a solution of the problem

ut + uux = (I − ∂2
x)−1∂x

[
αu +

1 + β

2
u2 − u2

x

2

]
t > 0, x ∈ R,

u(x, t) = u0(x), x ∈ R,

(4.15)

and hence u is a solution of (3.12) in the sense of distribution. In particular, if s ≥ 3, u is
also a classical solution of the Cauchy problem (3.12). Q.E.D.

The verification for the uniqueness of the solution u follows the technique to obtain
the norm ‖w‖Hq in Theorem 4.3.

Theorem 4.4. Suppose that u0 ∈ Hs for some constant s > 3/2. Then there is a
T > 0, such that the problem (4.15) has a unique solution u(x, t) in C([0, T ); Hs).

Proof : Suppose that u and v are two solutions of the problem (4.15) corresponding
to the same initial data u0 such that u, v ∈ L2([0, T ); Hs). Then w = u − v satisfies the
Cauchy problem

wt +
1

2
(wf)x = (I − ∂2

x)−1∂x

[
αw +

1 + β

2
wf − 1

2
wxfx

]
, t > 0, x ∈ R,

w(x, 0) = 0, x ∈ R,

where f = u + v. For any 1/2 < q < min{1, s− 1}, applying the operator Λq to both sides
of the above equation and then multiplying the resulting expression by Λqw to integrate
with respect x, one obtains the equality

1

2

d

dt
‖w‖2

Hq +
1

2

∫

R

(Λqw)Λq(wf)xdx =

∫

R

ΛqwΛq−2∂x

[
αw +

1 + β

2
wf − 1

2
wxfx

]
dx.

It follows from (4.12), (4.13) and (2.5) that there is a constant c such that

d

dt
‖w‖2

Hq ≤ c‖f‖Hs‖w‖2
Hq ,

Then Gronwall’s inequality and boundedness of ‖f‖Hs lead to the conclusion that

‖w‖Hq ≤ ‖w0‖Hqec̃t = 0,

for some constant c̃ and any t ∈ (0, T ). Hence, w = 0. Q.E.D.

The last issue on well-posedness is the continuous dependency of solutions on initial
data. One may verify it by using a similar technique used for the KdV equation by Bona
and Smith, [8]. We summarize the main conclusions of this section in the next theorem.

Theorem 4.5. Suppose that the function u0(x) belongs to the Sobolev space Hs for
some s > 3/2. Then there is a T > 0, which depends only on ‖u0‖Hs , such that there exists
a unique function u(x, t) solving the Cauchy problem (3.12) in the sense of distribution
with u ∈ C([0, T̃ ); Hs) and u(x, t) = u0(x). When s ≥ 3, u is also a classical solution of
(3.12). Moreover, the solution u depends continuously on the initial data u0 in the sense
that the mapping of the initial data to the solution is continuous from the Sobolev space
Hs to the space C([0, T̃ ); Hs).
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5. Existence of solutions in lower order Sobolev spaces.

As remarked in the introduction, the KdV equation and many of its generalizations
have a smoothing effect on their solutions. Because of this effect, solutions gain more
regularity than the corresponding initial data, cf. [30, 32, 33]. This regularizing effect
became an important fact used to show well-posedness of these equations in lower order
Sobolev spaces. On the other hand, the peakon solution of the Camassa–Holm equation
demonstrates that, in general, its solutions do not gain more regularity as time evolves.
Therefore, one may expect to use different techniques dealing with well-posedness of the
Camassa–Holm equation in the lower order Sobolev spaces. In this section, we shall give
a sufficient condition for a solution of the Camassa–Holm equation to exist in the Sobolev
space Hs for some 1 < s ≤ 3/2. First, we still use the regularized equation (4.1) to estimate
norms of its solutions, showing that they are bounded when ǫ is sufficiently small, which
leads to weak convergence of these solutions to a solution of the Camassa–Holm equation.

Theorem 5.1. Suppose that u0(x) is a function in the Sobolev space Hs for some
s ∈ [1, 3/2] such that ‖u0x‖L∞ < ∞. Let uǫ0 be defined the same as in Section 4. Then
there are constants T > 0 and c > 0 independent of ǫ such that the corresponding solution
uǫ of (4.1) satisfies the inequality ‖uǫx‖L∞ ≤ c.

Proof : We start from the equation (3.10) with u = uǫ. Differentiating with respect
to x on both sides of (3.10), we obtain

(1− ǫ)uxt − ǫuxxxt + uuxx +
u2

x

2
= −αu− β + 1

2
u2 + Λ−2

(
−ǫuxt + αu +

β + 1

2
u2 − u2

x

2

)
.

Let n > 0 be an integer. Then multiplying the above equation by (ux)2n+1 to integrate
with respect to x yields the equality

1 − ǫ

2n + 2

d

dt

∫

R

(ux)2n+2dx − ǫ

∫

R

(ux)2n+1uxxxt dx +
n

2n + 2

∫

R

(ux)2n+3dx

= −
∫

R

(ux)2n+1(αu +
β + 1

2
u2) dx +

∫

R

(ux)2n+1Λ−2
(
−ǫuxt + αu +

β + 1

2
u2 − u2

x

2

)
dx.

It follows from Hölder’s inequality that

1 − ǫ

2n + 2

d

dt

∫

R

(ux)2n+2dx ≤
[
ǫ

(∫

R

|uxxxt|2n+2dx

) 1
2n+2

+ |α|
(∫

R

|u|2n+2dx

) 1
2n+2

+

+

∣∣∣∣
β + 1

2

∣∣∣∣
(∫

R

|u|4n+4dx

) 1
2n+2

+

(∫

R

|g|2n+2dx

) 1
2n+2

](∫

R

|ux|2n+2dx

) 2n+1

2n+2

+

+
n

2n + 2
‖ux‖L∞

∫

R

|ux|2n+2dx,
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or

(1 − ǫ)
d

dt

(∫

R

|ux|2n+2dx

) 1
2n+2

≤ ǫ

(∫

R

|uxxxt|2n+2dx

) 1
2n+2

+ |α|
(∫

R

|u|2n+2dx

) 1
2n+2

+

+

∣∣∣∣
β + 1

2

∣∣∣∣
(∫

R

|u|4n+4dx

) 1
2n+2

+

(∫

R

|g|2n+2dx

) 1
2n+2

+
n‖ux‖L∞

2n + 2

(∫

R

|ux|2n+2dx

) 1
2n+2

,

where

g = Λ−2

(
−ǫuxt + αu +

β + 1

2
u2 − u2

x

2

)
.

Because ‖f‖Lp → ‖f‖L∞ as p → ∞ for any f ∈ L∞ ∩ L2, integration with respect to t
and taking the limit as n → ∞ on both sides of the above inequality leads to the estimate

(1 − ǫ)‖ux‖L∞ ≤ (1 − ǫ)‖u0x‖L∞ +

+

∫ t

0

[
ǫ ‖uxxxt‖L∞ + c (‖u‖L∞ + ‖u2‖L∞ + ‖g‖L∞) +

1

2
‖ux‖2

L∞

]
dτ.

(5.1)

Because

‖g‖L∞ ≤ c̃ (‖ut‖L2 + ‖u‖L2 + ‖u‖2
L2 + ‖ux‖2

L2)

for some constant c̃ depending only on Λ−2, it follows from (3.5), (3.8) and (4.2) that

‖g‖L∞ ≤ c1 (‖uǫ0‖H1 + 1)2 ≤ c2,

where c1 and c2 are constants independent of ǫ when ǫ is sufficiently small. Moreover,
for any fixed r ∈ (1/2, 1), there is a constant cr such that ‖uxxxt‖L∞ ≤ cr ‖uxxxt‖Hr ≤
cr ‖ut‖Hr+3 , which combined with (3.8), (3.5) yields

‖uxxxt‖L∞ ≤ c ‖u‖Hr+4 . (5.2)

Applying Gronwall’s inequality to (3.6) with q = r + 3 and u = uǫ, one has

‖u‖2
Hr+4 ≤

(∫

R

[
(Λr+4u0)

2 + ǫ(Λr+3u0xx)2
]
dx

)
exp

(
c

∫ t

0

‖ux‖L∞dτ

)
.

Then it follows from (4.3) and (5.2) that

‖uxxxt‖L∞ ≤ c ǫ
s−r−4

4 exp

(
c

∫ t

0

‖ux‖L∞dτ

)
(5.3)

for some constant c > 0. Therefore, as ǫ < 1/4, one obtains the inequality

‖ux‖L∞ ≤ ‖u0x‖L∞ +
c

1 − ǫ

∫ t

0

[
ǫ

s−r

4 exp

(
c

∫ τ

0

‖ux‖L∞ds

)
+

1

2
‖ux‖2

L∞ + 1

]
dτ

≤ ‖u0x‖L∞ +
4c

3

∫ t

0

[
ǫ

s−r

4 exp

(
c

∫ τ

0

‖ux‖L∞ds

)
+

1

2
‖ux‖2

L∞ + 1

]
dτ
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by combining (5.1), (5.3) and (3.5). It follows from the contraction mapping theorem that
there is a T > 0 such that the equation

f(t) = ‖u0x‖L∞ +
4c

3

∫ t

0

[
exp

(
c

∫ τ

0

f(s)ds

)
+

1

2
f2(τ) + 1

]
dτ

has a unique solution f(t) ∈ C[0, T ]. Theorem II in [59; §I.1] shows that ‖ux‖L∞ ≤ f(t)
for any t ∈ [0, T ], which implies the conclusion of Theorem 5.1. Q.E.D.

As a direct result of Theorem 5.1, one may estimate norms of u = uǫ by using (3.6),
(3.8), (4.2), (4.3) and Gronwall’s inequality to show that there is a constant c > 0 such
that the inequalities

‖uǫ‖Hq = ‖u‖Hq ≤ c exp c

∫ t

0

‖ux‖L∞dτ ≤ c exp c

∫ t

0

f(τ)dτ,

and

‖uǫt‖Hr = ‖ut‖Hr ≤ c exp c

∫ t

0

f(τ)dτ

hold for any q ∈ (0, s], r ∈ (0, s − 1] and any t ∈ [0, T ]. Then it follows from Aubin’s
compactness theorem, cf. [38], that there is a subsequence of {uǫ}, denoted by {uǫn

},
such that {uǫn

} and their temporal derivatives {uǫnt} are weakly convergent to a function
u(x, t) and its temporal derivative ut in L2([0, T ], Hs) and L2([0, T ], Hs−1), respectively.
Moreover, for any real number R > 0, {uǫn

} is convergent to the function u strongly in
the space L2([0, T ], Hq(−R, R)) for any q ∈ [0, s) and {uǫnt} converges to ut strongly in
the space L2([0, T ], Hr(−R, R)) for any r ∈ [0, s−1). Therefore, one obtains the existence
of a weak solution to the Cauchy problem (3.12) as follows.

Theorem 5.2. Let u0(x) be a function in the Sobolev space Hs for some s ∈ (1, 3/2 ],
satisfying ‖u0x‖L∞ < ∞. Then there is a T > 0 such that the Cauchy problem (3.12) with
the initial data u0 has a solution u(x, t) ∈ L2([0, T ], Hs) in the sense of distribution, and
ux ∈ L∞([0, T ] × R).

Proof : It follows from Theorem 5.1 that {uǫnx} is bounded in the space L∞. Hence,

the sequences {u2
ǫn
} and {u2

ǫnx} are also weakly convergent to u2 and u2
x in L2

(
[0, T ],

Hr(−R, R)
)

for any r ∈ [0, s − 1), respectively. Therefore, u satisfies the equation

∫ T

0

∫

R

u(ft − fxxt) dx dt =

∫ T

0

∫

R

[
(αu + 1

2βu2 − 1
2u2

x)fx + 1
2u2fxxx

]
dx dt,

with u(x, 0) = u0(x) and any f ∈ C∞
c . Moreover, since X = L1([0, T ] × R) is a separable

Banach space and {uǫnx} is a bounded sequence in the dual space X∗ = L∞([0, T ]×R) of
X , there is a subsequence of {uǫnx}, still denoted by {uǫnx}, weakly star convergent to a
function v in L∞([0, T ]×R). Because {uǫnx} is also weakly convergent to ux in L2([0, T ]×
R), it follows that ux = v almost everywhere. Hence, ux ∈ L∞([0, T ]× R). Q.E.D.
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6. Blowing-up of solutions.

Even though the Camassa–Holm equation also has a bi-Hamiltonian structure, unlike
the KdV equation, it has no conserved quantities providing boundedness of Hs-norms
independent of time for its solutions with any s ≥ 2. In this section, we shall verify
this fact by showing that there are solutions of the Camassa–Holm equation, whose Hq-
norms blow up in finite time for any q > 3/2. This phenomena also implies that in
general, one can not obtain global well-posedness of the Camassa–Holm equation in Hs

for s > 3/2 unconditionally. Moreover, in contrast to using conserved quantities to prove
global existence of solutions for the KdV equation, in the next theorem, we shall use the
conserved quantity ‖u‖H1 = ‖u0‖H1 of the Camassa–Holm equation to show that some of
its solutions exist only in finite time.

Theorem 6.1. Let s ∈ [2,∞) be any real number. If the initial data u0 of the
Cauchy problem (3.12) satisfies the conditions

u0 ∈ Hs,

∫

R

u3
0xdx < 0 and 8b‖u0‖2

H1 <

(∫

R

(u0x)3dx

)2

where b = c (‖u0‖3
H1+‖u0‖4

H1) and c is a constant to be specified in the proof, then there is a
0 < T ∗ ≤ −4‖u0‖2

H1/
∫

R
(u0x)3dx such that the corresponding solution u ∈ C([0, T ∗); Hs)

and ux ceases to exist in Hs at the time T ∗ in the sense that

lim sup
t→T∗

‖ux‖L∞ = ∞ and lim
t→T∗

‖u‖Hq = ∞

for any q ∈ (3/2, s].

Proof : It follows from Theorems 4.3 and 4.5 that there is a T0 > 0 such that the
Cauchy problem (3.12) has a unique solution u(x, t) ∈ C([0, T0); Hs), satisfying the equa-
tion (4.15). Applying u2

x∂x to both sides of (4.15) and integrating with respect to x, one
obtains the equality

1

3

d

dt

∫

R

(ux)3dx +
1

6

∫

R

(ux)4dx = −
∫

R

(ux)2
(

αu +
β + 1

2
u2

)
dx +

+

∫

R

(ux)2Λ−2

(
αu +

β + 1

2
u2 − u2

x

2

)
dx.

(6.1)

Because ∣∣∣∣
∫

R

(ux)3dx

∣∣∣∣ ≤
(∫

R

|ux|4dx

)1/2(∫

R

|ux|2dx

)1/2

,

it follows that
∫

R

|ux|4dx ≥ 1

‖u‖2
H1

(∫

R

(ux)3dx

)2

. (6.2)
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In addition, since the inequalities ‖f‖L∞ ≤ ‖f‖H1 and

|Λ−2f(x)| =

∣∣∣∣
1

2

∫

R

e−|x−y|f(y) dy

∣∣∣∣ ≤






1

2

∫

R

|f(y)| dy

1

2

(∫

R

e−2|x|dx

)1/2

‖f‖L2 ≤ 1

2
‖f‖H1

hold for any f ∈ L1 ∩ H1, the estimate
∣∣∣∣
∫

R

3(ux)2
(
αu +

β + 1

2
u2 − Λ−2

(
αu +

β + 1

2
u2 − u2

x

2

))
dx

∣∣∣∣

≤ 3‖u‖2
H1

(
|α|‖u‖L∞ +

|β + 1|
2

‖u‖2
L∞ +

∣∣Λ−2
(
αu +

β + 1

2
u2 − u2

x

2

)∣∣
L∞

)

≤ 3‖u‖2
H1

(3|α|
2

‖u‖H1 +
3|β + 1| + 1

4
‖u‖2

H1

)
≤ c (‖u‖3

H1 + ‖u‖4
H1)

(6.3)

holds for some constant c with c ≤ 3 max
{ 3|α|

2 , 3|β+1|+1
4

}
. Applying (6.2), (6.3) and the

equality ‖u‖H1 = ‖u0‖H1 to (6.1), and then integrating with respect to t lead to the
estimate
∫

R

(ux)3dx +
1

2‖u0‖2
H1

∫ t

0

(∫

R

(ux)3dx

)2

dτ ≤
∫

R

(u0x)3dx + c (‖u0‖3
H1 + ‖u0‖4

H1)t.

Let b = c (‖u0‖3
H1 + ‖u0‖4

H1). When t < t0 = min
{
T0,−

∫
R
(u0x)3dx/(2b)

}
, the inequality

∫

R

(ux)3dx +
1

2‖u0‖2
H1

∫ t

0

(∫

R

(ux)3dx

)2

dτ ≤ 1

2

∫

R

(u0x)3dx

holds, which leads to the estimate

∫

R

(ux)3dx ≤
1
2

∫
R
(u0x)3dx

1 + t
4‖u0‖2

H1

∫
R
(u0x)3dx

< 0 (6.4)

for any t < min{t0,−4‖u0‖2
H1/

∫
R
(u0x)3dx }. This implies that

t0 ≤ t1 =
−4‖u0‖2

H1∫
R
(u0x)3dx

.

Because if t0 > t1 = −4‖u0‖2
H1/

∫
R
(u0x)3dx, then

lim
t→t1

∫

R

(ux)3dx ≤ lim
t→t1

1
2

∫
R
(u0x)3dx

1 + t
4‖u0‖2

H1

∫
R
(u0x)3dx

= −∞

and the inequality

c ‖u0‖2
H1‖u‖H2 ≥

∣∣∣∣
∫

R

(ux)3dx

∣∣∣∣ ≥
−1

2

∫
R
(u0x)3dx

1 + t
4‖u0‖2

H1

∫
R
(u0x)3dx
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would show that the H2-norm of the solution u blows up at the time t = t1 < t0 ≤ T0,
contrary to the condition u ∈ C([0, T0), H

s) for some s ≥ 2. On the other hand, since

t0 ≤ t1 =
−4‖u0‖2

H1∫
R
(u0x)3dx

<
−1

2b

∫

R

(u0x)3dx,

it follows that t0 = T0, which combined with (6.4) and the estimate
∣∣∣∣
∫

R

(ux)3dx

∣∣∣∣ ≤ cq‖u‖2
H1‖u‖Hq = cq‖u0‖2

H1‖u‖Hq

shows that limt→T0
‖u‖Hq = ∞, where q is any real number with q ∈ (3/2,∞) and cq is a

constant independent of u.

To verify lim supt→T0
‖ux‖L∞ = ∞, one may use (3.6), (4.2), (4.3) and Theorem 4.3

to show that u, as the limit of the solutions {uǫ} of (4.1), satisfies the inequality

‖u‖2
Hq ≤ ‖u0‖2

Hq + c

∫ t

0

‖ux‖L∞‖u‖2
Hqdτ,

for any q ∈ (3/2, s]. It follows from Gronwall’s inequality that

‖u‖2
Hq ≤ ‖u0‖2

Hq exp

∫ t

0

‖ux‖L∞dτ . (6.5)

Therefore, if lim supt→T0
‖ux‖L∞ < ∞, then it would lead to the boundedness of ‖u‖2

Hq ,
i.e.

lim sup
t→T0

‖u‖2
Hq < ∞

which is contrary to limt→T0
‖u0‖Hq = ∞. Hence, T0 = T ∗ is the finite time for ux and u

to cease existing in L∞ and Hq for any q ∈ (3/2, s], respectively. Q.E.D.

In general, the Cauchy problem (3.12) does not necessarily have a global solution. But
one might have realized from the proof of last theorem that a necessary condition for a
global solution u to exist is the boundedness of L∞-norm of ux. This result is in contrast
to that of the generalized KdV equation

ut + f(u)x + uxxx = 0.

The singularities of its blowing-up solutions are caused by the nonlinear term f(u) when
f becomes too strong compared with the linear dispersion term uxxx, and these solutions
become unbounded in their L∞-norm in finite time [3]. Whereas, the nonlinearly dispersive
term uuxxx of the equation (1.4) has weakened the smoothing effect of the linear dispersion
term uxxt, causing some of its solutions to form singularities and their first derivatives
to blow up in finite time, but their own L∞-norms are always bounded because of the
conserved quantity ‖u(·, t)‖H1 = const. Now we state this result in the next theorem.

Theorem 6.2. Suppose that u0 ∈ Hs for some s > 3/2 and that T0 is the maximum
time for the corresponding solution u of (3.12) to exist in the space C([0, T0), Hs). If
T0 < ∞, then sup0≤t<T0

‖ux(·, t)‖L∞ = ∞.
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Proof : Assume that T0 < ∞ and sup0≤t<T0
‖ux(·, t)‖L∞ < ∞. Then it follows from

(6.5) that sup0≤t<T0
‖u(·, t)‖Hq < ∞ for any q ∈ (3/2, s]. Hence, one may use an argument

similar to that in the proof of Theorem 4.3 to show that u has a unique extension as a
solution of (3.12) in the space C([0, T1), Hs) for some T1 > T0 which contradicts the
condition that T0 is maximum. Hence, T0 = ∞. Q.E.D.

Remark : The technique we have used to show well-posedness, and the existence of
blow-up solutions of (3.12) for the initial data u0 ∈ Hs(R) also applies to the initial value
problem (3.12) with periodic boundary conditions, i.e. its solutions satisfy the condition
u(x, t) = u(x + 2π, t) and u0 ∈ Hs(T) for some s > 3/2, where T is the unit circle. There-
fore, there also exist periodic solutions of (3.12), which develop singularities in finite time.
A related study was recently conducted by Camassa and Holm [12, 13], and Constantin
and Escher, [15, 16], who proved that the Camassa–Holm equation (1.5) has solutions u
whose initial data u0(x, 0) ∈ H3 are odd and ux(0, t) become infinite in finite time. These
solutions have apparently developed singularities at x = 0. It will also be interesting to
investigate whether the spatial derivatives ux of the blowing-up solutions given in Theo-
rem 6.1 also develop singularities in finite time. We have planned to study this problem
both theoretically and numerically.

Now, we show an example of the initial data u0 of (3.12), which will generates a
solution existing only in the finite time t = T ∗ and T ∗ can be chosen as small as possible.
Then we shall conclude this section by our preliminary, numerical computation report.

Example 6.3. For a fixed ǫ ∈ (0, 1), define the function

u0(x) =






4ex

(1 − ǫ2)2
+

(ǫ2 − 2ǫ + x − ǫx)ex/ǫ

ǫ(1 − ǫ)2
x < 0

(
(1 + ǫ)x + ǫ2 + 2ǫ

)
e−x/ǫ

ǫ(1 + ǫ)2
x ≥ 0.

Then u0 ∈ Hs(R) for any s < 9/2. Since

∫ ∞

−∞

(
u′

0(x)
)3

dx = − 8(4ǫ3 + 44ǫ2 + 89ǫ + 52)

27ǫ2(1 + ǫ)4(1 + 2ǫ)2(2 + ǫ)3
,

and

‖u0‖2
H1 =

∫ ∞

−∞

[(
u0(x)

)2
+
(
u′

0(x)
)2]

dx =
5

2ǫ
,

it follows that

8b‖u0‖2
H1 = 8c(‖u0‖3

H1 + ‖u0‖4
H1)‖u0‖2

H1 = 125c(1 +
√

2ǫ/5 )/ǫ3

and

8b‖u0‖2
H1

(∫∞
−∞
(
u′

0(x)
)3

dx
)2 =

125(27)2ǫc(1 +
√

2ǫ/5 )(1 + ǫ)8(1 + 2ǫ)4(2 + ǫ)6

64(4ǫ3 + 44ǫ2 + 89ǫ + 52)2
−→ 0
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as ǫ → 0. Therefore, when ǫ is sufficiently small, u0 satisfies all conditions stated in
Theorem 6.1. It follows that the corresponding solution u(x, t) blows up in finite time in

the Sobolev space Hr for any r > 3/2. In addition, since ‖u0‖2
H1/

∫∞
−∞
(
u′

0

)3
dx → 0 as

ǫ → 0, for any T > 0, there is also an ǫ1 > 0, whenever 0 < ǫ < ǫ1,

0 < t1 =
−4‖u0‖2

H1

∫∞
−∞
(
u′

0

)3
dx

< T.

As we have pointed out in Theorem 6.1 that u(x, t) blows up at some time T0 ≤ t1. This
shows that one can always find some initial data for which the corresponding solution
blows up in any short, designated time.

As a matter of fact, one may construct a smooth initial function u0 by regularizing
the function

f(x) =

{
ex, x < 0,

0, x ≥ 0.

i.e. define u0 to be the convolution of f and φǫ, where φǫ(x) = 1
ǫ φ(x/ǫ) such that φ ∈ Hs

for some s > 1 and 0 <
∫

R
φdx ≤

∫
R
|φ|dx < ∞. Then f ∗φǫ ∈ Hs+1 and as ǫ is sufficiently

small, u0 = f ∗φǫ satisfies conditions in Theorem 6.1. We have used this method to obtain
the initial data u0 by choosing φ(x) = (1 + |x|)e−|x| ∈ Hs for any s < 7/2.

The figures included at the end of the paper illustrate the finite time blow-up of the first
and second derivatives of a solution whose initial data satisfies the conditions of Camassa
and Holm, [12, 13] Constantin and Escher, [15, 17]. (Unfortunately, we were not able to
construct initial data for the periodic problem that satisfies our blow-up conditions, and yet
blows up in a sufficiently short time before periodic effects — the front of the disturbance
catching up with the end of the wave — are manifest. We are hoping to implement these
in a later, more extensive numerical computation.) The constants in the Camassa-Holm
model (1.5) have been taken to be

α = 0, β = 0, γ = −1, ν = 1. (6.6)

The initial data is
u(x, 0) = − tanh

(
3
2x
)
sech

(
3
2x
)
. (6.7)

In the first figure, we plot the initial data and its first and second derivatives. The numerical
solution of the equation is obtained using a standard pseudo-spectral code, cf. [24], using
N = 1024 mesh points with the uniform spatial step size ∆x = 20/N on the interval
(−10, 10), using periodic boundary conditions. The size of the interval was chosen so that
no significant signal propagation across the periodic boundary was detected during the
time interval of solution. The time step was taken to be 0.0157∆x. Initially, the numerical
solution is well behaved. There is a noticeable steepening of the profile between the crest
and the trough, as well as a sharpening of the crest and trough. A typical plot is shown
in the second Figure, at time t1 = 0.552, after 1800 time steps. The top plot gives the
solution u(t1, x) for −10 ≤ x ≤ 10, and the left hand graphs show its first and second
spatial derivatives on the interval −5 ≤ x ≤ 5; the right hand graphs zoom in on parts of
their left hand counterparts and show the absence of numerical noise at this time. Notice
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particularly how the first derivative has become much larger negative between the peak
and the dip; the blowing up of the second derivative is even more pronounced. At a time
between t1 = 0.552 and t2 = 0.828, as shown in the final Figure, the numerical integration
method has broken down, and numerical instabilities are now in evidence according to the
noise appearing in the two derivative plots, even though the plot of u(t2, x) looks fairly
smooth. This is strong evidence that the solution has experienced a blow-up in its first
two derivatives before t2, and the numerical solution is no longer valid.

We are now conducting a more detailed investigation into the blow-up mechanism.
The pseudo-spectral approach is not so directly applicable, and one must resort, either
to a finite difference scheme with mesh refinement, or, in a more speculative direction, to
some form of pseudo-spectral wavelets, [14, 29], which will allow focusing in of localized
small-scale phenomena.
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